
 

 
advances.sciencemag.org/cgi/content/full/6/44/eabc1937/DC1 

 
Supplementary Materials for 

 
Viscoelastic properties of biopolymer hydrogels determined by Brillouin 

spectroscopy: A probe of tissue micromechanics 
 

Michelle Bailey, Martina Alunni-Cardinali, Noemi Correa, Silvia Caponi, Timothy Holsgrove, Hugh Barr,  
Nick Stone, C. Peter Winlove, Daniele Fioretto*, Francesca Palombo* 

 
*Corresponding author. Email: f.palombo@exeter.ac.uk (F.P.); daniele.fioretto@unipg.it (D.F.) 

 
Published 30 October 2020, Sci. Adv. 6, eabc1937 (2020) 

DOI: 10.1126/sciadv.abc1937 
 

This PDF file includes: 
 

Figs. S1 to S9 
Supplementary Methods 
References 



Supplementary Materials 

 

 

Supplementary Figure s1. Brillouin spectrum and fit. (A) Brillouin spectrum of a 12% gelatin 

hydrogel, with grey shading denoting the standard error (square root of number of counts). (B) 

Results of a damped harmonic oscillator (DHO) fit (see eq. S2) to the Stokes peak. 

  



 

Supplementary Figure s2. Refractive index and density. (A) Measured refractive index for varying 

gelatin concentration. Error bars indicate the standard deviation for four measurements on different 

gels. (B) Plot of the density-to-refractive index square ratio vs. polymer concentration. The 

maximum deviation observed here is <1%, validating the approximation of uniform ratio made in 

many Brillouin scattering investigations. 

  



 

Supplementary Figure s3. Linearized model. Plot of Eq. 4 (empty circles) and linear fit (red line) 

giving a gradient 𝑁!(𝜀 − 1) = 9566 (see main text; Methods). 

  



 

Supplementary Figure s4. Gel transition. Evolution of (A) frequency shift and (B) linewidth 

derived from Brillouin spectra of hydrogels as the temperature is reduced from 65 to 4-5°C. Arrows 

indicate the gel transition. 

  



 

Supplementary Figure s5. Compressive testing measurements. (A) Plot of Young’s modulus vs. 

polymer concentration. (B) Plot of longitudinal modulus vs. Young’s modulus for all the gelatins. 

Error bars denote the standard deviation. 

  



Supplementary Methods 

To increase the information in each spectrum, we enlarged the investigated frequency range by 

mounting the sample onto a reflecting substrate (fig. S6), so that the scattering from phonons 

travelling parallel to the surface was simultaneously collected, corresponding to a scattering 

wavevector 𝑞" = 2𝑘# sin 𝜃 2⁄  (21). 

 

 

Supplementary Figure s6. 45° scattering geometry. (A) Schematic diagram of the platelet-like 

configuration employed to access both bulk and parallel to surface modes in Brillouin spectroscopy 

measurements at a 45° angle of the incident beam to the sample mounted onto a reflective substrate. 

(B) Diagrams of wavevectors in the scattering process. 

 

In this case, the measured spectrum is given by the sum of two Brillouin peaks: 

 

𝐼$%&%(𝜔) = 𝐼$!(𝜔) + 𝐼$"(𝜔)    (s1) 

 



where subscripts 𝑞" and 𝑞' refer to the parallel to surface and bulk modes, respectively. Further 

improvement to the fitting procedure was obtained by fixing 𝑛(𝑥), 𝑐#(𝑥) and 𝛽(𝑥) to values 

obtained from extrapolation of limiting behaviours, as described below. 

In a narrow region around the frequency of Brillouin peaks 𝜔', one can approximate the 

spectrum of density fluctuations (see main text) to a DHO function (54): 

 

𝐼$(𝜔) = 𝐼#
("
#)"

*("
#+(#,

#
+(()")#

    (s2) 

 

where 𝜔'/ = 𝑞/𝑀0(𝜔')/𝜌 and 𝜔Γ' = 𝑞/𝑀00(𝜔')/𝜌 + 𝜔Γ1, with 𝑀0(𝜔') and 𝑀0′(𝜔') being 

the real and imaginary parts of the modulus at the single frequency of the Brillouin peak, and 

Γ1the unrelaxed part of kinematic viscosity. 

In both relaxed and unrelaxed conditions, the modulus is independent of frequency, and both bulk 

and parallel to surface modes give the same value for 𝑀0. This implies that, in these conditions, 

𝜔#'/𝑞' =	𝜔#"/𝑞" from which the refractive index can be obtained, 𝑛 = (𝜔#'/𝜔#") sin 𝜃 2⁄ . 

The values of 𝑛 measured by refractometry at low concentrations (black dots) are reported in fig. 

S7 together with the values obtained by the ratio of the frequencies of bulk and parallel to surface 

modes (red dots). 

 

 



 

Supplementary Figure s7. Refractive index. Plot of the refractive index measured by 

refractometry at low concentration (black dots) and obtained from Brillouin measurements (red 

dots). The blue line is a linear extrapolation of 1 𝑛/⁄  in the range 0–19% polymer concentration, 

𝑛 = 1 √0.56467 − 0.00175𝑥⁄ . 

 

As expected, Brillouin data confirm the refractometry data in relaxed (low 𝑥) and unrelaxed (high 

𝑥) conditions, validating the linear extrapolation of 1 𝑛/⁄ . The rationale for this linear 

extrapolation can further be found in an almost constant ratio 𝑛/ 𝜌⁄  (fig. S2B). 

In the following elaboration, we will fix 𝑛(𝑥) according to this law. 

Notice that in the intermediate 𝑥 region, the presence of the relaxation process is associated with 

the frequency dependence of the modulus, responsible for the breakdown of the simple relation 

𝑛 = (𝜔#'/𝜔#") sin 𝜃 2⁄  and the deviation from the linear behaviour observed in Fig. 3A. In this 

condition, Brillouin peaks will be most sensitive to the values of the relaxation parameters. 

 

The next step for the characterization of the glass transition is the determination of the relaxed 

sound velocity, 𝑐#(𝑥). 



 

Using the Voigt fit described in the main text (Fig. 3A), we obtained values for the longitudinal 

modulus in this relaxed regime, 𝑀#(𝑥). The concentration dependence of 𝑐# is then obtained as 

𝑐#(𝑥) = (𝑀#(𝑥) 𝜌⁄ )2 /⁄ . 

 

A reasonable estimation for the value of the stretching parameter 𝛽 can be obtained from the 

Cole-Cole plot of the imaginary vs. real part of the elastic modulus (64), shown in fig. S8. 

 

 

Supplementary Figure s8. Cole-Cole plot of the imaginary vs. real part of the elastic moduli. 𝑀0 

and 𝑀0′ were obtained from DHO fit of the BLS peaks of bulk phonons. By an iterative process, in 

first approximation black dots were calculated fixing 𝑐1 to the limiting high concentration value 

𝑐1 = 3250 m/s and subtracting a constant unrelaxed contribution 𝛤1=1.1 GHz from the measured 

linewidths. In this representation, the single exponential relaxation would give a semicircle. 

Conversely, the shrunk shape of the curve is evidence of a stretched exponential behaviour. A good 

representation of the data can be obtained using a stretching parameter 𝛽 » 0.3 (solid line). This 

value was fixed to fit Brillouin spectra to eqs. S1, S2, and 6. A better approximation for 𝑐1(x) was 

thus obtained and used, in the second iteration, to recalculate the Cole-Cole plot (red dots), giving 

a 𝛽 parameter of 0.45. This value was ultimately used to fit the Brillouin spectra. 

 



Fixing the values of 𝜌, 𝑛, 𝑐# as described above and 𝛽 = 0.45 as explained in fig. S8, we can now  

fit Brillouin spectra, both bulk and parallel to surface modes, to eqs. S1, S2, and 6, leaving only  

𝑐1 and 𝜏 as free parameters. The results for the gels at 𝑥 = 41% and 59% are shown in fig. S9.  

  

 

Supplementary Figure s9. Damped harmonic oscillator fit. Results of DHO fitting applied to both 

bulk (high frequency) and parallel-to-surface modes (low frequency) in Brillouin spectroscopy 

measurements at 45° of hydrogels at (A) 41% and (B) 59% polymer concentration. 
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