Science Advances

advances.sciencemag.org/cgi/content/full/6/43/eaba4733/DC1

Supplementary Materials for

Mycobacterial EST12 activates a RACK1–NLRP3–gasdermin D pyroptosis–IL-1β immune pathway

Zilu Qu, Jin Zhou, Yidan Zhou, Yan Xie, Yanjing Jiang, Jian Wu, Zuoqin Luo, Guanghui Liu, Lei Yin*, Xiao-Lian Zhang*

*Corresponding author. Email: zhangxiaolian@whu.edu.cn (X.-L.Z.); yinlei@whu.edu.cn (L.Y.)

Published 23 October 2020, *Sci. Adv.* **6**, eaba4733 (2020) DOI: 10.1126/sciadv.aba4733

The PDF file includes:

Figs. S1 to S6 Tables S1 to S4 Legends for movies S1 and S2 Data file S1

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/43/eaba4733/DC1)

Movies S1 and S2

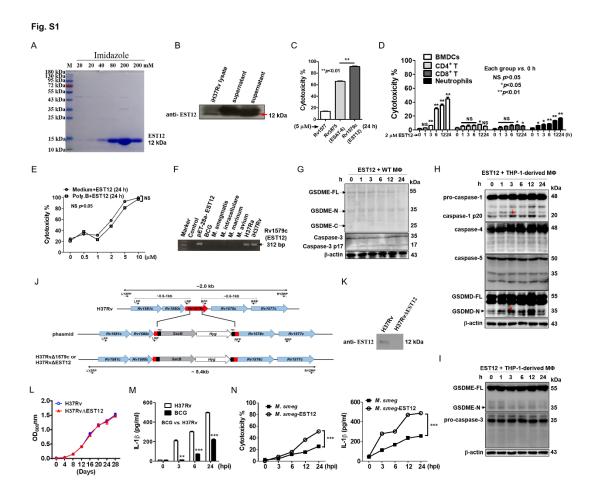
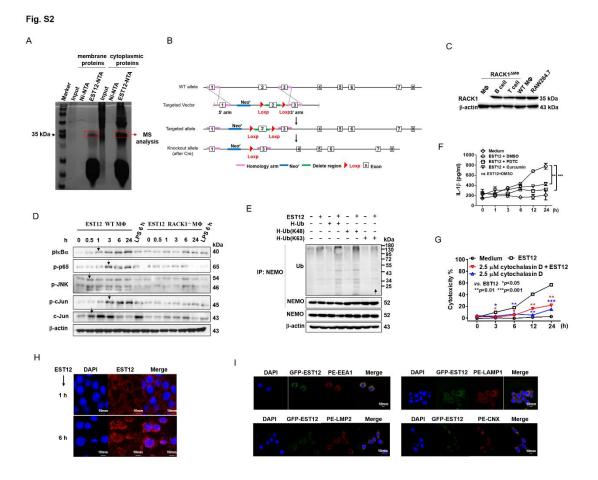



Fig. S1. Characterization and the cytotoxicity of EST12 protein. (A) Representative purified recombinant EST12 protein analyzed by SDS-PAGE. (B) Supernatants and whole bacterial lysates from H37Rv cultures were analyzed by WB. (C-E) Cytotoxicity assay by LDH. Peritoneal macrophages treated with Rv1577, ESAT-6 and EST12 (C). Mouse BMDCs, $CD4^+T$, $CD8^+T$ cells and neutrophils treated with EST12. Unpaired *t*-test. (C, D). Peritoneal macrophages pretreated with Poly. B followed by EST12 treatment. Two-way ANOVA with Bonferroni's multiple comparison test (E). (F) Identification of EST12 gene in different mycobacterial strains by PCR. (G-I) Peritoneal macrophages (G) or THP-1-derived macrophages (H, I) treated with EST12 were detected for caspase-3/GSDME (G, I) and caspase-1/4/5/GSDMD (H) activation by WB. (J-L) Schematic of H37RvΔEST12 strain construction (J). The

H37Rv Δ EST12 strain examined by WB (K). The growth kinetics of the strains (L). (M) BMDMs infected with H37Rv and BCG were detected for IL-1 β secretion by ELISA. Unpaired *t*-test. (N) BMDMs infected with *M. smeg* and *M. smeg*-EST12 were analyzed by LDH and ELISA. Two-way ANOVA with Bonferroni's multiple comparison test. The data are expressed as the mean \pm SEM of n =3, NS, not significant (p > 0.05); * p<0.05, ** p <0.01, *** p <0.001.

Fig. S2. EST12 induces the activation of NF-κB/Ap-1 pathways via RACK1. (A) An EST12-His pull-down experiment with RAW264.7 lysates analyzed by SDS-PAGE and coomassie brilliant blue staining. The specific bands were excised for MALDI-TOF/TOF MS analysis. (B) Schematic of the construction of mouse macrophagespecific deletion of RACK1. (C) WB analysis of RACK1 expression in the purified indicated cells. (D) WT and RACK1^{-/-} peritoneal macrophages stimulated with EST12 were analyzed by WB (LPS as a control). (E) RAW264.7 cells transfected with the indicated plasmids and then stimulated with EST12 protein were subjected to IP with anti-NEMO and IB analysis. (F) Peritoneal macrophages pretreated with PDTC and curcumin, followed by EST12 stimulation, were evaluated for the secreted IL-1β by ELISA. Two-way ANOVA with Bonferroni's multiple comparison test. (G) Peritoneal

macrophages pretreated with cytochalasin D, followed by 2 μ M EST12 treatment, were analyzed by LDH assay. Unpaired *t*-test. (**H**) RAW264.7 cells stimulated with EST12 were analyzed by confocal microscopy with anti-EST12 (red) and DAPI (blue). (**I**) RAW264.7 cells transfected with pEGFP-C1-EST12 were analyzed by confocal microscopy with anti-CNX/EEA1/LAMP1/LMP2 (red) and DAPI (blue) staining. The data are expressed as the mean \pm SEM of n =3, * *p* <0.05, ** *p* <0.01, *** *p* <0.001.

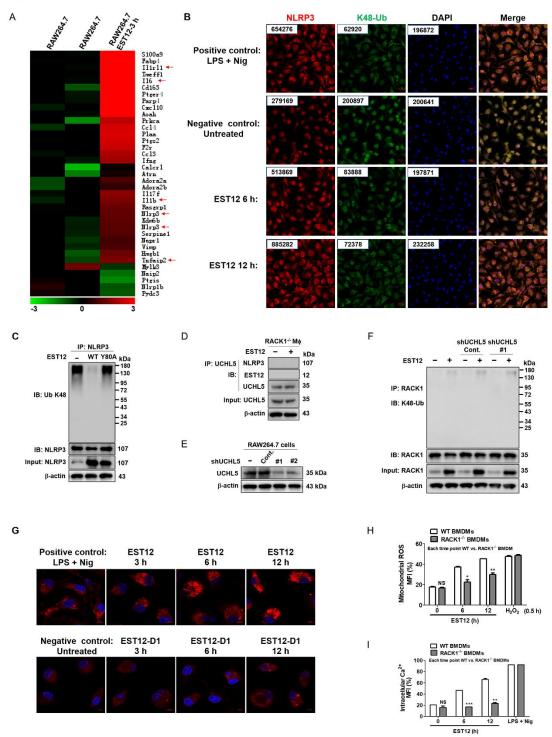
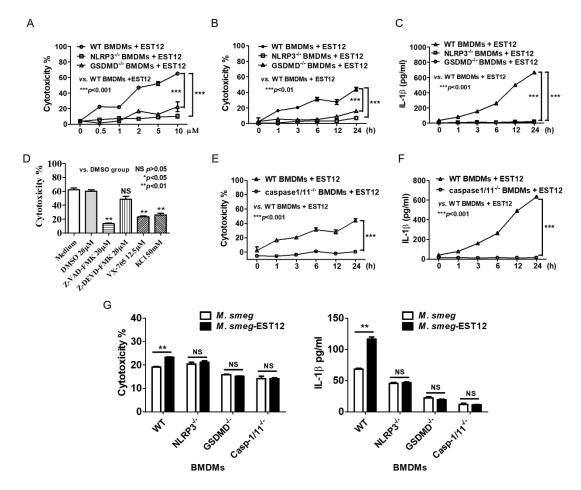



Fig. S3. EST12 induced NLRP3 K48-deubiquitination and inflammasome activation. (A) The microarray analysis. (B) BMDMs treated with EST12 or LPS+Nig were stained with anti-NLRP3 (green), anti-K48-Ub (red) and DAPI (blue) and analyzed by confocal microscopy. The integrated densities of NLRP3 and K48-Ub were

quantified as indicated numbers with Image J software. (**C**, **D**, **F**) BMDMs treated with EST12 or EST12-Y80A were immunoprecipitated with anti-NLRP3 (**C**), anti-RACK1 (**D**) and anti-UCHL5 (**F**) and IB analysis. (**E**) WB analysis of UCHL5 expression in RAW264.7 cells transfected with shRNAs-UCHL5. (**G**) Peritoneal macrophages treated with EST12 or EST12-D1 were analyzed by confocal microscopy with anti-ASC (red) and DAPI (blue). LPS + Nig as a positive control. (**H**, **I**) Statistical analysis of the MFI percentages of the mtROS (**H**) and intracellular Ca²⁺ (**I**). WT and RACK1^{-/-} BMDMs treated with EST12 were analyzed by FCM. Treatments of H₂O₂ (**H**) or LPS+Nig (**I**) as positive controls. Unpaired *t*-test. The data are expressed as the mean \pm SEM of n =3 cultures. * *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001, NS, not significant (*p*> 0.05).

Fig. S4. Cytotoxicity effects of EST12 on WT/NLRP3-/-/**GSDMD**-/-/**Caspase-1/11**-/-**BMDMs**. (A-C) WT, NLRP3-/- and GSDMD-/- BMDMs treated with EST12 at the indicated doses (A) or for the indicated time periods (B, C) were analyzed for cytotoxicity by LDH assay (A, B) and IL-1β secretion by ELISA (C). Two-way ANOVA with Bonferroni's multiple comparison test. (D) Peritoneal macrophages pretreated with Z-VAD-FMK, Z-DEVD-FMK, VX-765, KCL and DMSO and then with EST12 stimulation for 24 h were evaluated by LDH assay. Unpaired *t*-test. (E, F) WT and caspase-1/11-/- BMDMs treated with EST12 were detected for LDH assay (E), secreted IL-1β by ELISA (F), two-way ANOVA with Bonferroni's multiple comparison test. (G) WT, NLRP3-/-, GSDMD-/- and caspase-1/11-/- BMDMs infected with *M. smeg*

and *M. smeg*-EST12 were analyzed by LDH for cytotoxicity and by ELISA for secreted IL-1 β . Unpaired *t*-test, *vs M. smeg* was employed for analysis. The data are expressed as the mean \pm SEM of n =3. NS, not significant (*p*>0.05); ** *p* <0.01, *** *p* <0.001.

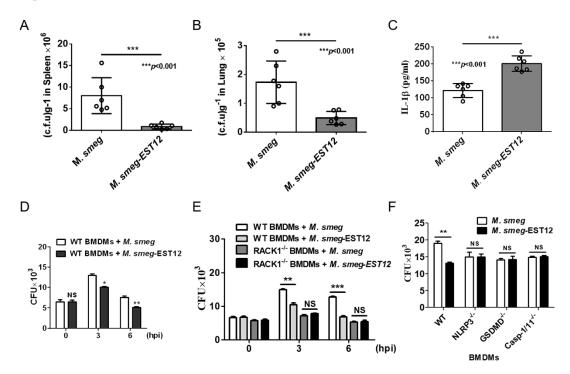


Fig. S5. *M. smeg*-EST12 increased IL-1 β expression and bacterial clearance compared with *M. smeg.* (A-C) On day 0, WT mice (n=6 per group) were intravenously (*i.v.*) infected with WT-*M. smeg* or *M. smeg*-EST12. On Day 3, the mice were sacrificed for CFUs assay in spleens (A) and lungs (B). The serum IL-1 β concentrations were analyzed by ELISA (C). (D-F) WT, RACK1^{-/-}, NLRP3^{-/-}, GSDMD^{-/-} and caspase-1/11^{-/-} BMDMs were infected with *M. smeg* and *M. smeg*-EST12 and CFUs were enumerated. Unpaired *t*-test. The data are expressed as the mean ± SEM. NS, not significant (*p*>0.05); * *p* < 0.05, ** *p* < 0.01.

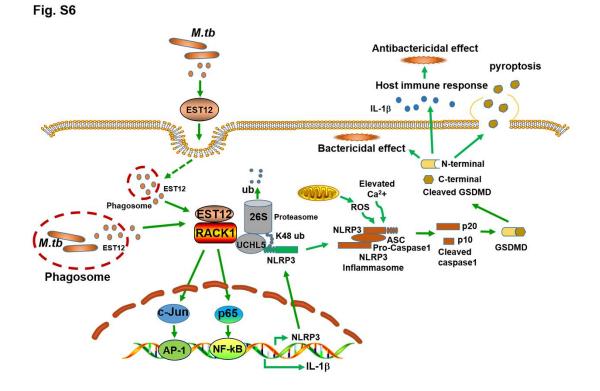


Fig. S6. A schematic mechanism model of *M.tb*-EST12-induced macrophage pyroptosis.

No.	Protein Name	Protein ID (UniProt)	Numbers of unique peptides	Species	Protein Score [#]
1	RACK1	P68040	7	MOUSE	13.56
2	Ldha	G5E8N5	6	MOUSE	12.86
3	Eno1	P17182	6	MOUSE	10.82
4	Eeflal	P10126	4	MOUSE	8.9
5	Rps3a2	D3Z6C3	3	MOUSE	6.44
6	TOM34	Q9CYG7	3	MOUSE	6.33

Table S1. LC-MS/MS analysis.

A higher score indicates a more confident match.

G	D 1 21 1
Space group	P 1 21 1
Data Collection	
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	26.539 60.14 28.121
α, β, γ (°)	90 107.847 90
Resolution (Å)	15.7-1.9 (1.97-1.90) ^a
Rmerge (%)	14.3(21.3)
I/s (I)	5.71(2.37)
Completeness (%)	92(85)
Redundancy	1.9(1.8)
Refinement	
Resolution (Å)	15.7-1.9(1.97-1.90) ^a
No. reflections	6582 (634)
Rwork/Rfree(%)	20.47/24.33(28.67/31.28)
No. of atoms	
Protein	74
Water	37
R.m.s deviations	
Bond lengths (Å)	0.003
Bond angles (°)	0.56
Ramachandran plot	
favored region (%)	100
allowed region (%)	0
outlier region (%)	0

Table S2. Diffraction data collection and refinement statistics.

^aData for outer shell shown in parentheses

Table S3. Reagent sources.

Lot#		
Lot#		
Lot#		
58895		
C100		
821		
3797		
7000		
-1-AP		
RRID:AB 10733244		
 Cat# A6495, RRID:AB 2767094		
20		
Lot#		
Lot		
11		
284		
321		
575		
0165		
5249		
1		
Lot#		

Rabbit polyclonal antibody	Ding et al., 2016	The rabbit GSDMD polyclonal
anti-GSDMD		antibody was a gift from Feng Shao.
Ubiquitin antibody	Proteintech	Cat# 10201-2-AP Lot#
		RRID:AB_671515
Goat Anti-Mouse IgG (H+L),	Proteintech	Cat# SA00001-1 Lot#
HRP conjugate antibody		RRID:AB_2722565
Goat Anti-Rabbit IgG (H+L),	Proteintech	Cat# SA00001-2 Lot#
HRP conjugate antibody		RRID:AB_2722564
Actin antibody	Proteintech	Cat# 60008-1-Ig Lot#
		RRID:AB_2289225
Rabbit anti-RACK1 polyclonal	Abcam	Cat# ab62735 Lot#
antibody		RRID:AB_956255
EST12 rabbit polyclonal	This paper	N/A
antibody		
Bacterial strains		
<i>M.tb</i> H37Rv	ATCC	ATCC 93009
<i>M.tb</i> H37RvΔEST12	This paper	N/A
BCG	ATCC	ATCC 35734
BCG-EST12	This paper	N/A
M. smeg	ATCC	ATCC 19420
M. smeg-EST12	This paper	N/A
M. smeg-EST12-D1	This paper	N/A
M. smeg-EST12-D2	This paper	N/A
M. smeg-EST12-E55A	This paper	N/A
M. smeg-EST12-F76A	This paper	N/A
M. smeg-EST12-Y80A	This paper	N/A
M. intracellulare	ATCC	ATCC 13950
M. avium	ATCC	ATCC 25291
M. marinum	ATCC	ATCC 927
Escherichia coli (E. coli) DH5a	ATCC	ATCC 25922
E.coli BL-21	ATCC	ATCC BAA-1025
Chemicals, Peptides, and		
Recombinant Proteins		
Middlebrook 7H9 broth	BD Difco TM	Cat# 271310
Middlebrook 7H10 agar	BD Difco TM	Cat# 262710
BD BBL TM Middlebrook	BD Difco TM	Cat# 212351
OADC Enrichment		
Fluid Thioglycollate Medium	BD Difco TM	Cat# 225650
propidium iodide (PI)	Biolegend	Cat# 421301
DAPI	Sigma	Cat# D9542
Fetal bovine serum (FBS)	Gibco	Cat# 10099141
GM-CSF	Peprotech	Cat# 315-03-20
M-CSF	Peprotech	Cat# 315-02-50
	- proteen	

IL-4	Peprotech	Cat# 214-14-20
РМА	Sigma	Cat# P1585
Curcumin	Sigma	Cat# 78246
PDTC	Sigma	Cat# P8765
Z-VAD-FMK	Targetmol	Cat# T6013
Z-DEVD-FMK	Targetmol	Cat# T6005
VX-765	Targetmol	Cat# T6090
Cytochalasin D	Invitrogen	Cat# PHZ1063
Ni NTA agarose	Qigen	Cat# 30310
LPS	Sigma	Cat# L2630
Nigericin	Millipore	Cat# 481990
ploymyxin B	Sigma	Cat# P1004
Gentamicin	Sigma	Cat# E003632
Protein A/G magnetic beads	MCE	Cat HY-K0202
Pierce [™] High Capacity	Thermo Fisher	Cat# 88270
Endotoxin Removal Resin	Scientific	
MitoSOX Red Mitochondrial	Thermo Fisher	Cat# M36008
Superoxide Indicator	Scientific	
Fluo 4-AM	Beyotime	Cat# S1060
IPTG	Sigma	Cat# I6758
NEOFECT TM DNA	Neofect Biotech	Cat# TF201201
transfection reagent		
jetPEI®-Macrophage	Polyplus	Cat#103-05N
	Transfection	
Immobilon WesternBright ECL	Advansta	Cat#K-12045-D10
HRP substrate		
PMSF	Roche	Cat#10837091001
TRIzol Reagent	Invitrogen	Cat# 15596026
ReverTra Ace® qPCR RT Kit	Toyobo Life Science	Cat# FSQ-101
SYBR [®] Green Realtime PCR	Toyobo Life Science	Cat# QPK-201
Master Mix		
Critical Commercial Assays		
EasySepTM mouse CD4 ⁺ T	Stemcell	Cat#19852
Cell Isolation Kit	Technologies	
EasySep [™] Mouse Naïve CD8+	Stemcell	Cat#19858
T Cell Isolation Kit	Technologies	
CD19 Microbeads mouse	Miltenyi Biotec	Cat#: 130-052-201
CytoTox 96 Non-Radioactive	Promega	Cat# G1780
Cytotoxicity Assay		G
Mouse IL-1β ELISA kit	Dakewe Biotech	Cat# 1210122
Experimental models:		
Cell lines		C-+# CDC0142
RAW264.7	The China Center for	Cat# GDC0143

	Type Culture	
	Collection (CCTCC)	
THP1	The China Center for	Cat# GDC0100
	Type Culture	
	Collection (CCTCC)	
Experimental models:		
organisms/strains		
Mouse: C57BL/6	Animal Laboratory	http://shydw.whu.edu.cn/
	Center of Wuhan	
	University	
Mouse: B6.129S6-Nlrp3 ^{tm1Bhk/J}	The Jackson	Stock No: 021302
	Laboratory	
Mouse: B6.129P2-	The Jackson	Stock No: 004781
Lyz2 ^{tm1(cre)Ifo} /J	Laboratory	
Mouse: Gnb2l1 ^{<i>Fl/Fl</i>}	Dr. Jiyan Zhang	N/A
Mouse: GSDMD-/-	Dr. Feng Shao	N/A
Mouse: caspase-1/11-/-	Dr. Feng Shao	N/A
Oligonucleotides		
Primers for PCR, see Table S2	This paper	N/A
Primers for cloning, see Table	This paper	N/A
S3		
Recombinant plasmids		
pET-28a-Rv1579c	This paper	N/A
pET-22b-Rv1579c	This paper	N/A
pMV261-Rv1579c	This paper	N/A
pMV261-Rv1579c-D1	This paper	N/A
pMV261-Rv1579c-D2	This paper	N/A
pMV261-Rv1579c-E55A	This paper	N/A
pMV261-Rv1579c-F76A	This paper	N/A
pMV261-Rv1579c-Y80A	This paper	N/A
pEGFP-C1-Rv1579c	This paper	N/A
pAsRED2-C1-RACK1	This paper	N/A
pSilencer 1.0-U6-sh-UCHL5	This paper	N/A
pET-28a- Rv1579c -D1	This paper	N/A
pET-28a- Rv1579c -D2	This paper	N/A
pET-28a- Rv1579c -Y80A	This paper	N/A
pET-28a- Rv1579c -F76A	This paper	N/A
pET-28a- Rv1579c -E55A	This paper	N/A
wild-type ubiquitin (H-Ub)	Drs. Hongbing Shu	N/A
<i>y</i> ¹ (12.00)	and Yanyi Wang	
ubiquitin mutant H-Ub (K48)	Drs. Hongbing Shu	N/A
-1	and Yanyi Wang	
ubiquitin mutant H-Ub (K63)	Drs. Hongbing Shu	N/A
	_ is. Hongoing bild	

	and Yanyi Wang		
Software and Algorithms			
GraphPad Prism	GraphPad Software	https://www.graphpad.com. SCR_002798	RRID:

Primer	Primer sequences	Restriction
names		Endonuclease
pET-28a-	Forward: TAGGATCCATGACCCCGATCAACC	<i>Bam</i> HI
Rv1579c	Reverse: TTAAGCTTCGATGGCGACCCCG	HindIII
pET-22b-	Forward: TAGGATCCATGACCCCGATCAACC	BamHI
Rv1579c	Reverse: TTAAGCTTCGATGGCGACCCCG	HindIII
pMV261-	Forward: TAGGATCCATGACCCCGATCAACC	BamHI
Rv1579c	Reverse: TTAAGCTTCGATGGCGACCCCG	HindIII
pEGFP-C1-	Forward:ATCTCGAGAATGACCCCGATCAACCGG	XhoI
Rv1579c	Reverse: ATGAATTCATCGATGGCGACCCCGCCC	EcoRI
pAsRED2-	Forward: GCAAGCTTCTATGACCGAGCAGATGAC	HindIII
C1-RACK1	Reverse: AGCTGCAGAGCGGGTACCAATAGTTA	PstI
pSilencer	Oligo1: GGAGTGGTGTCTCATGGAAAGTTCA	Oligo1+Oligo
1.0-U6-sh-	Oligo2: AGCTTGAACTTTCCATGAGACACCACTCCGGCC	2
UCHL5 1#	Oligo3: AGCTTCTTTCCATGAGACACCACTCCTTTT	Oligo3+Oligo
	Oligo4: AATTAAAAAGGAGTGGTGTCTCATGGAAAGA	4
pSilencer	Oligo1: GGGTCTTCACCGAGCTCATTATTCA	Oligo1+Oligo
1.0-U6-sh-	Oligo2:	2
UCHL5 2#	AGCTTGAATAATGAGCTCGGTGAAGACCCGGCC	
	Oligo3: AGCTTTAATGAGCTCGGTGAAGACCCTTTTT	Oligo3+Oligo
	Oligo4: AATTAAAAAGGGTCTTCACCGAGCTCATTAA	4
pET-28a-	Forward: TTGGATCCGTGACCCCGATCAA	BamHI
EST12-D1	Reverse: TTAAGCTTGGCAAGCCAGTCAC	HindIII
pET-28a-	Forward: TTGGATCCATGTGCTCACCCGA	BamHI
EST12-D2	Reverse: TTAAGCTTCGATGGCGACCCCG	HindIII
pET-28a-	Forward	
EST12-	CTTGCCTTCCACGCGTCGGCTCCCGGCAACGACCCGC	
Y80A	TGC	

Table S4. Primer sequences for molecular cloning.

Movie S1. Pyroptosis effect of EST12 protein on murine peritoneal macrophage. Representative video of PI uptake by WT mouse peritoneal macrophages after treatment with EST12. WT mouse peritoneal macrophages were treated with 2 μ M EST12 for 4 h, and then stained with 5 ng/ml PI to monitor cell membrane integrity. Imaging was carried out using Zeiss LSM 880 with a 63×/1.49 NA oil objective. The total time was 100 min, and images were acquired every 2.5 min.

Movie S2. Effect of EST12 protein on the RACK1^{-/-} peritoneal macrophage. Representative video of PI uptake by RACK1^{-/-} mouse peritoneal macrophages after treatment with EST12. RACK1^{-/-} mouse peritoneal macrophages were treated with 2 μ M EST12 for 4 h, and then stained with 5 ng/ml PI to monitor cell membrane integrity. Imaging was carried out using Zeiss LSM 880 with a 63×/1.49 NA oil objective. The total time was 100 min, and images were acquired every 2.5 min.

Data file S1. Full wwPDB X-ray structure validation report.

Preliminary Full wwPDB X-ray Structure Validation

Report (i)

04:05 AM EST Nov 12, 2019

This is a Preliminary Full wwPDB X-ray Structure Validation Report.

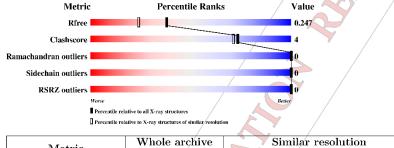
This report is produced by the standalone wwPDB validation server. The structure in question has not been deposited to the wwPDB. This report should not be submitted to journals.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (1) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

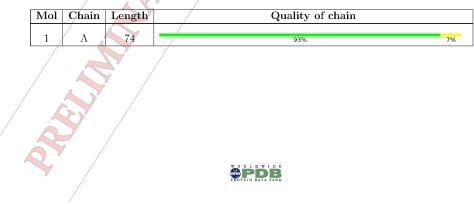
- MolProbity Xtriage (Phenix)
 - 1.13
- EDŚ 2.6.1Percentile statistics 20171227.v01 (using entries in the PDB archive December 27th 2017)
 - Refmac CCP4
- 5.8.0158 7.0.044 (Gargrove) Engh & Huber (2001)
- Ideal geometry (proteins) Ideal geometry (DNA, RNA) Validation Pipeline (wwPDB-VP)
- Parkinson et al. (1996)

4.02b-467


2.6.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION


The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution			
Metric	(# Entries)	(#Entries, resolution range(Å))			
R _{free}	111664	5502 (1.90-1.90)			
Clashscore	122126	6115 (1.90-1.90)			
Ramachandran outliers	120053	6048 (1.90-1.90)			
Sidechain outliers	120020	6048 (1.90-1.90)			
RSRZ outliers	108989	5379(1.90-1.90)			
	1 70-				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Page 2 $\,$

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 608 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein.

Mol	Chain	Residues		At	oms	/		ZeroOcc	AltConf	Trace
1	А	74	Total 571	C 354	N 100	0 /14	$\frac{S}{3}$	0	/1	0

• Molecule 2 is water.

Mol	Chain	Residues	Aton	ns /	ZeroOcc	AltConf
2	S	37	Total 37	0 37	0	0
			/	/	N Y	
				L	31	
		/	Å	V	/ /	
			4	/		
	/					
		N	/	/		
		R				
/						
	1	· /				
Â	5	/				
Q.	1 /					
				3	POTEIN DATA BANK	
	/					

3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1:

Chain A:		/		7% /
Hand ASS Anos Anos Anos Anos Anos Anos Anos Anos	/		5	
		R		
/				
	SF			
	•	/		
A A A				

Data and refinement statistics (i) $\mathbf{4}$

		, /
Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	26.54Å 60.14Å 28.12Å	Deneiten
a, b, c, α , β , γ	90.00° 107.85° 90.00°	Depositor
Resolution (Å)	19.34 - 1.90	Depositor
Resolution (A)	30.07 - 1.90	EDS
% Data completeness	92.3 (19.34-1.90)	Depositor
(in resolution range)	93.5 (30.07-1.90)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.35 (at 1.91 Å)	Xtriage
Refinement program	phenix.refine 1.10.1_2155, PHENIX 1.10.1_2155	Depositor
R, R_{free}	0.205 , 0.244	Depositor
It, It _{free}	0.206 , 0.247	DCC
R_{free} test set	657 reflections $(10.05%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	31.7	Xtriage
Anisotropy	0.518	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37,51.4	EDS
L-test for twinning ²	$< L > = 0.50, < L^2> = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
$\mathbf{F}_o, \mathbf{F}_c$ correlation	0.94	EDS
Total number of atoms	608	wwPDB-VP
Average B, all atoms $(Å^2)$	39.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 9.92% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes. ²Theoretical values of $<|L|>, < L^2 >$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles		
WO	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5/	
1	A	0.32	0/584	0.52	0/793/	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Α	571	0	544	4	0
2	S	/37	0	0	3	0
All	All	608	0	544	4	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (4) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:22:GLN:NE2	2:S:28:HOH:O	2.31	0.63
1:A:10:ASN:ND2	2:S:33:HOH:O	2.28	0.60
1:A:68:HIS:ND1	2:S:29:HOH:O	2.32	0.59
1:A:51[B]:ARG:NH1	1:A:60:GLU:HG3	2.37	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed		
1	A	73/74 (99%)	73~(100%)	0	0	100 100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers		
1	А	60/59 (102%)	60 (100%)	0	100 100	

There are no protein residues with a non-rotameric sidechain to report.

Some side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (1)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no carbohydrates in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average/B-factor per residue. The column labelled 'Q < 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

	Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSR2	Z>2	OWAB(Å ²)	Q < 0.9
	1	А	74/74 (100%)	-0.24	0 100	100	27, 37, 51, 57	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

PDB