Strain Name	Responsible Protein/Description	Axonemal Defect	Reference
CC-124	N/A	Normal	[1]
CC-125	N/A	Normal	[1]
<i>cw15</i> (CC-4533)	Likely cell-wall protein, regarded as	Normal	[2, 3]
	wild-type in this study		
fbb18	FBB18	Defects in both ODA and	Manuscript in
		IDAs	preparation
<i>ift46-1</i> (CC-4375)	IFT46	Paralyzed short cilia, defects	[4, 5]
		in ODA and central-pair	
<i>ift74-1</i> (CC-5159)	IFT74	Very short or no cilia	[6]
<i>ift74-2</i> (CC-5161)	IFT74	No cilia	[6]
mot48-1 (ida10-1)	MOT48/IDA10	Slight defects in ODA,	[7, 8]
		reduced amounts of some	
		IDAs	
mot48-2 (ida10-2)	MOT48/IDA10; a new allele of	Slight defects in ODA,	This study, [9]
	mot48	reduced amounts of some	
		IDAs	
mot48-2; twi1-1	MOT48/IDA10 and TWI1; PIH	Slight defects in ODA, greatly	This study
	double mutants	reduced amounts of some	
		IDAs, severer than <i>mot48-2</i>	
mot48-2; twi1-1; TWI1::HA	mot48-2; twi1-1 strain rescued with	Slight defects in ODA,	This study
	3HA tagged TWI1	reduced amounts of some	
		IDAs, apparently similar to	
		mot48-2	
mot48-2; pf13	MOT48/IDA10 and PF13; PIH	Very short or no cilia, dynein	This study
	double mutants	defect not analyzable	
mot48-2; MOT48::HA	mot48-2 strain rescued with 3HA	Not analyzed	This study
	tagged MOT48		
mot48-2;	mot48-2 strain rescued with	Not analyzed	This study
MOT48::mCherry-HA	mCherry-3HA tagged MOT48		
oda5 (CC-2236)	ODA5	Lacking ODA	[8, 10, 11]
oda7(CC-2240)	ODA7	Lacking ODA	[8, 10, 12]
oda8 (CC-2242)	ODA8	Lacking ODA	[8, 10, 13]
oda10 (CC-2246)	ODA10	Lacking ODA	[10, 14]
oda11 (CC-2672)	ODA11/DHC13	Lacking HCa of ODA	[10, 15]
oda16-1 (CC-4554)	ODA16	Lacking ODA	[8, 16]

Supplemental Table 2. Chlamydomonas strains used in this study

pf13	PF13	Greatly reduced ODA and	[8, 17, 18]
		reduced amounts of some	
		IDAs	
pf13; twi1-1	PF13 and TWI1; PIH double	Greatly reduced ODA and	This study
	mutants	some IDAs, severer than <i>pf13</i>	
<i>pf22</i> (CC-1382)	PF22 and TWI1; found to have	Lacking ODA and reduced	[17, 19]
	<i>twi1-2</i> background in this study	amounts of some IDAs	
<i>pf22</i> (CC-2495)	PF22	Lacking ODA and reduced	[8, 17, 19]
		amounts of some IDAs	
<i>pf22A</i> (CC-2493)	PF22	Lacking ODA and reduced	[8, 17, 19]
		amounts of some IDAs	
<i>pf23</i> (CC-1383)	PF23 and TWI1; found to have	Slight defects in ODA, greatly	[17, 20]
	<i>twi1-2</i> background in this study	reduced amounts of IDAs	
<i>pf23</i> (CC-3660)	PF23 and TWI1; found to have	Slight defects in ODA, greatly	[17, 20]
	<i>twi1-2</i> background in this study	reduced amounts of IDAs	
<i>pf23</i> (5-4)	PF23; parent strain used to map the	Subtle defects in ODA,	[17, 20]
	PF23/DYX1C1 locus and for part of	greatly reduced amounts of	
	the rescue experiments in our	some IDAs	
	previous study [20]		
twi1-1	TWI1; progeny from mating cross of	Slight defects in IDAs "c, e"	This study, [9]
	wild-type (CC-125) and the		
	LMJ.RY0402.076787 CLiP strain		
twi1-1; TWI1::HA	twi1-1 strain rescued with 3HA	Apparently normal	This study
	tagged TWI1		

References

1. Harris EH. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use: Academic Press, San Diego, 780pp; 1989.

2. Davies DR, Plaskitt A. Genetical and structural analyses of cell-wall formation in Chlamydomonas reinhardi. Genet Res. 1971;17(1):33-43.

3. Hyams J, Davies DR. The induction and characterisation of cell wall mutants of Chlamydomonas reinhardi. Mutat Res. 1972;14(4):381-89.

4. Lv B, Wan L, Taschner M, Cheng X, Lorentzen E, Huang K. Intraflagellar transport protein IFT52 recruits IFT46 to the basal body and flagella. J Cell Sci. 2017;130(9):1662-74.

5. Hou Y, Qin H, Follit JA, Pazour GJ, Rosenbaum JL, Witman GB. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J Cell Biol. 2007;176(5):653-65.

6. Brown JM, Cochran DA, Craige B, Kubo T, Witman GB. Assembly of IFT trains at

the ciliary base depends on IFT74. Curr Biol. 2015;25(12):1583-93.

7. Yamamoto R, Hirono M, Kamiya R. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J Cell Biol. 2010;190(1):65-71.

8. Hom EF, Witman GB, Harris EH, Dutcher SK, Kamiya R, Mitchell DR, et al. A unified taxonomy for ciliary dyneins. Cytoskeleton (Hoboken). 2011;68(10):555-65.

9. Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, et al. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell. 2016;28(2):367-87.

10. Kamiya R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J Cell Biol. 1988;107(6):2253-8.

11. Wirschell M, Pazour G, Yoda A, Hirono M, Kamiya R, Witman GB. Oda5p, a novel axonemal protein required for assembly of the outer dynein arm and an associated adenylate kinase. Mol Biol Cell. 2004;15(6):2729-41.

12. Freshour J, Yokoyama R, Mitchell DR. Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem. 2007;282(8):5404-12.

13. Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton (Hoboken). 2015;72(1):16-28.

14. Dean AB, Mitchell DR. Chlamydomonas ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly. Mol Biol Cell. 2013;24(23):3689-96.

15. Sakakibara H, Mitchell DR, Kamiya R. A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain. J Cell Biol. 1991;113(3):615-22.

16. Ahmed NT, Mitchell DR. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol Biol Cell. 2005;16(10):5004-12.

17. Huang B, Piperno G, Luck DJ. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979;254(8):3091-9.

18. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008;456(7222):611-16.

19. Mitchison HM, Schmidts M, Loges NT, Freshour J, Dritsoula A, Hirst RA, et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet. 2012;44(4):381-9, s1-2.

20. Yamamoto R, Obbineni JM, Alford LM, Ide T, Owa M, Hwang J, et al. Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms. PLoS Genet. 2017;13(9):e1006996.