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SUPPLEMENTARY TEXT

Manual calculation inclusion levels:

A few alternatively spliced cassette/skipped exons (SE) and mutually exclusive exons
(MXE) that we found in the literature were not included in our gene model. For these
exons we calculated the inclusion levels manually as follows. The inclusion level ¥ of an
alternatively spliced exon is defined as the fraction of transcripts that include the exon
out of the total number of transcripts that either include the exon or skip over it [1,2].
This can be estimated from the density of reads that align to the upstream splice
junction, the alternative exon itself, and the downstream splice junction, vs. the density
of reads that align to the skipping splice junction that directly connects the upstream
exon to the downstream exon. It is also possible to use only reads that span the splice
junctions.

We define I to be the number of reads that map to the exon inclusion isoform and S to
be the number of reads that map to the exon skipping isoform. Since we are interested
in the density of reads, we need to normalize the read counts I and S by the “effective
lengths” — the lengths of the isoform-specific segments that they align to. We therefore
define [; as the effective length of the exon-inclusion isoform, that is, the number of the
unique positions to which reads can be aligned in the upstream splice junction, the
alternative exon itself, and the downstream splice junction. Likewise we define [ as the
effective length of the exon-skipping isoform, that is, the number of unique positions to
which reads can be aligned in the skipping splice junction that directly connects the
upstream exon to the downstream exon (see Fig. S1 of [1] and supplementary note of

[2]).

Given the effective lengths [; and [s for each isoform, the inclusion level Y can now be
estimated from read counts I and S as:

~ /)
(/1) + (S/1s)
For our manual calculation we counted only reads that span the splice junctions, and

approximated the effective lengths as the number of junctions from which each isoform
is composed (see Fig. S1 of [1]), that is:

For a skipped exon: [; = 2 and I = 1 - two splice junctions for the inclusion isoform
and one splice junction for the skipping isoform.

For mutually exclusive exons: [; = 2 and [; = 2 - two splice junctions for the inclusion
isoform of the first exon and two splice junctions for the inclusion isoform of the second
exon.



Quantifying alternative splicing using DEXSeq:

We used DEXSeq [3] to count the number of reads that align to each exon (or segment
of an exon) within each “bulk” in-silico transcriptome representing each cell population
(Table S11), and then plotted the number of reads that align to selected exons. In order
to take into account the different depths of each transcriptome due to the highly
varying number of cells in each population, we normalized the exon-specific counts by
dividing by the total number of reads that align to the specific gene.

DEXSeq can be used to complement rMATS in validating specific differential expression
in specific exons for which the junction coverage is low.



The gene Wt1 undergoes splice isoform switching during kidney development:

We also inspected the Wt1 gene, which is essential for normal kidney development [4—
7]. Mutations and alternative splicing in Wtl were found to play an important role in
developmental defects such as Denys-Drash syndrome and Frasier syndrome, as well as
in Wilms’ tumors. Wtl is known to encode for multiple splice isoforms [4,8]: for
example, three amino acids (K-T-S) at the 3’ end of exon 9 may be included, creating a
KTS+ isoform, or skipped, resulting in a KTS- isoform (Fig. S20). It was previously found
that these isoforms differ in their affinity to DNA [9] and in their localization to different
compartments within the nucleus [10]. Moreover, it was found that normal tissues have
a KTS+:KTS- ratio of approximately 0.6, while in tissue from patients with Frasier
syndrome the amount of KTS+ transcripts decreases, resulting in a lower KTS+:KTS- ratio
of approximately 0.4 [5,11,12].

In our dataset we observed a decrease in the KTS+:KTS- isoform ratio, starting from from
~0.75 in the un-induced mesenchyme (UM) and the cap mesenchyme (CM), and
converging to ~0.6 in the podocytes (PODO), early epithelial structures (PROX_1), and
proximal tubules (PROX_2) (Fig. S20). It was interesting to observe the relative similarity
of the KTS+:KTS- ratio in the podocytes and epithelial populations (PODO, PROX_1, and
PROX_2), which was lower than the ratio for the mesenchymal populations (UM, CM).
This might indicate the existence of a mechanism for stabilizing and tightly regulating
this ratio in maturing renal cell populations. Likewise, we also observed a gradual
increase in the inclusion levels of cassette exon 5 (Fig. S20).

We note that when inspecting the expression behavior of Wtl we found multi-level
expression differences between the different cell populations (Fig. S20). Wtl is most
highly expressed in the podocytes [13] (PODO), in which it was previously shown to be a
key transcriptional regulator [7], moderately expressed in the un-induced mesenchyme
(UM, partially) and cap-mesenchyme (CM), and under-expressed in the loop of Henle
(LOH) and distal tubules/collecting duct (DIST/CD). In the early epithelial structures
(PROX_1) we observed a wide distribution of Wt1 expression, probably due to the fact
that some cells (e.g. those in the cleft of the S-shaped body [14]) are in the process of
differentiating to podocytes while others are destined to become constituents of the
proximal tubule, loop of Henle, or distal tubule.



SUPPLEMENTARY FIGURES
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Figure S1: A sketch of the various cell lineages that co-exist in the nephrogenic zone of
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Figure S2: Preprocessing of single-cell data from the Smartseq2 protocol and removing
low quality cells. Raw reads from 576 cells (6 x 96-well plates) were aligned to the
mouse mm10 genome and the numbers of reads that align to each gene were counted
and normalized. We filtered out 11 cells that expressed zero levels of the “housekeeping
genes” Gapdh or Actb, resulting in 565 cells. (A) We chose highly variable genes. We
followed the method by Macosko et al. [16] to select for genes whose cell-to cell



variance exceeds that which would have resulted from a Poisson distribution. These are
actually genes whose cell to cell heterogeneity cannot be attributed to random
distribution of transcripts between wells and are therefore likely to be actively over-
expressed or under-expressed in the different cell populations. We first removed all
non-expressed genes and plotted the mean vs. coefficient of variance (CV=STD/Mean)
for each gene (blue dots). Then, we filtered out genes whose normalized counts are less
than 10. We divided the mean expression (horizontal axis) into 100 equally sized bins in
log1l0 space, and for each bin we calculated the mean and dispersion (=standard
deviation) of the CV (vertical axis). We chose only genes whose CV exceeded the mean
CV within their respective bin by at least one standard deviation (red large dots). This
actually chooses genes whose variance exceeds those of other genes having a similar
mean expression value. This step resulted in 647 highly variable genes, to which we
added a list of genes from the literature that were previously shown to be involved in
kidney development (Table S2). We also added an additional list of 48 genes from a
previous single-cell gPCR study that we previously conducted on human fetal kidney
cells [17] (Table S2), which, in retrospect, were not crucial to the identification of the
different cell populations. These steps resulted in a gene expression matrix of 677 genes
x 565 cells. Each gene was then modified-log-transformed [log2(1+expression)] and
standardized by subtracting the mean, dividing by the standard deviation, and
truncating to the range [-1,1] (B) Principal Components Analysis (PCA) plot of the
resulting matrix consisting of 677 genes vs. 565 cells. The first two principal components
(PC’s 1-2) show a triangular shaped structure whose vertices correspond to the un-
induced mesenchyme (UM), cap mesenchyme (CM), and epithelial populations. (C)
Higher principal components (PC’'s 3-4, 5-6, etc.) capture additional heterogeneity
arising from other cell populations such as macrophages, podocytes, and endothelial
cells. (D) The explained variance of each principal component. PC’s 14 and onwards do
not explain more variance than is explained by a randomized matrix, that is, a matrix in
which each gene (=row) was randomly permuted. (E) A tSNE plot of 565 single cell
profiles, each consisting of 677 highly variable genes. Cells over-expressing genes that
were previously shown to mark different populations are marked by additional symbols
(as in Fig. 2A in the main text). We identified a population of 21 low quality cells that
appears as “mixture” of many cell types (circled). These 21 low quality cells were filtered
out, resulting in a 544 cells. The process of selecting for highly variable genes (and
adding known genes related to kidney development as described above) was then
repeated for the remaining high quality cells, resulting in a matrix of 728 genes x 544
cells, whose analysis is shown in the main text.
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Figure S3: Removing low quality cells. (A) The population of 21 low quality cells (black
squares) have low expression levels of the “housekeeping genes” Actb and Gapdh. (B)
Likewise, they have low DESeq size factors [18,19]. The annotations “CM_ALL” and “CM”
are used interchangeably to represent all cells that were classified as belonging to the
cap mesenchyme. “CM_DIV” represents a subset of cells from the cap mesenchyme that
are presumably dividing since they over-express the genes Mki67 and Top2a that are
known to be over-expressed during the S-G2-M phase of the cell cycle.
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Figure S5: Confirmation of cell population identity. Shown are histograms and tSNE plots
marking genes that are known to be over-expressed in the cap mesenchyme (CM)
[24,25]. Note that Crym is also moderately expressed in the early epithelial structures

(PROX_1) and proximal tubules (PROX_2) [21,23].
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Figure S7: Confirmation of cell population identity. Shown are histograms and tSNE plots
marking genes that are known to be over-expressed in the early epithelial structures
(PROX_1) and proximal tubules (PROX_2) or genes that distinguish between them. Both
populations express high levels of the proximal tubular marker Cdh6 [24,26] (Fig. 2D in
main text). Hnf4a [20] is expressed in both PROX_1 and PROX_2, while Mdk [20,21],
Lhx1 [20,24,27], Wnt4 [24,28,29], and Hes5 [20] are higher in the early epithelial
structures (PROX_1) — which are presumably the pre-tubular aggregates, renal vesicles,
and C/S-shaped bodies [21,23].
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Figure S9: Confirmation of cell population identity. Shown are histograms and tSNE plots
marking genes that are known to be over-expressed in the distal tubule and/or
collecting duct (DIST_CD) [21,24,29-31]. We found it difficult to distinguish between the
two populations, probably due to the small number of cells in our analysis. Note that the
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genes Ret and Wnt9b, which are known to mark the collecting duct, are slightly more
restricted that the other genes which are known to mark both the collecting duct and
the distal tubules.
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the higher expression in the early epithelial structures (PROX_1) with respect to the
proximal tubules (PROX_2).
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Figure S11: RNA velocity [32] of all Six2-high cells shows a consistent directional “flow”
along the circular manifold created by the cells of the cap mesenchyme (CM) in gene
expression space (PC 1 vs. 2). Each cell is represented by a dot. The arrows represent the
directionality of each cell in gene expression space that is inferred from the difference
between the spliced transcriptome (=present state) vs. yet-unspliced transcriptome
(=near future state) [32]. Circle fill colors represent expression levels of selected genes
(Red — high expression, green —low expression). It can be seen that cells over-expressing
genes such as Top2a and Mki67 - genes that are known to be over-expressed in the S-
G2-M phases of the cell cycle - are located in a specific segment of the circular manifold
representing the S-G2-M segment of the cell cycle. At this segment the arrows are
longest, indicating a rapidly changing transcriptional state.
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Figure S12: Mesenchymal to epithelial transition (MET) during kidney development.
Shown are histograms and tSNE plots marking genes that are over-expressed in
mesenchymal cells (Cdh11 [26] and Cdh2 [33]) and epithelial cells (Cdh1 and Cdh6 [26]).
Note that Cdh11l is expressed in three levels: high expression in the un-induced
mesenchyme (UM), moderate expression in the cap mesenchyme (CM), and low
expression in the remaining epithelial populations (PROX_1, PROX_2, LOH, DIST_CD). In
the podocytes we observed Cdh11 to have a bimodal distribution consisting of medium
and low expression levels, indicating two distinct levels of differentiation.
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Figure $13: Mesenchymal to epithelial transition during kidney development. Shown are
barplots of expression levels of selected genes within the in-silico “bulk” transcriptomes
representing the different populations. (A) Epithelial markers (B) The mesenchymal
marker Cdh2 [33] is over-expressed in the cap mesenchyme (CM) (C) Other
mesenchymal markers. Note that Vimentin (Vim) is also highly expressed in the
podocytes.
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Figure S14: No obvious correlation between gene expression levels and inclusion levels
of associated cassette exons. Shown are expression levels of selected genes in the in-
silico “bulk” transcriptomes representing the different cell populations. For example,
exons in the genes Dnm2 and Map3k7 have low inclusion levels in the mesenchymal
populations and high inclusion levels in the epithelial populations (Fig. 3) but almost
constant levels of gene expression.
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Figure S15: The genes Fgfr2 and Epb41l5 switch between mesenchymal and epithelial
isoforms during kidney development. (A) The mesenchymal isoform of Fgfr2 (Fgfr2-llic)

23



[34,35] is predominantly expressed in the mesenchymal and early developmental cell
populations (UM, CM, PODO, and to some extent PROX_1 and PROX_2) while the
epithelial isoform (Fgfr2-lllb) is expressed mostly in the mature epithelial cell
populations (LOH and DIST_CD). Shown is a Sashimi plot and a bar plot of inclusion
levels of each exon. Note that the tubular epithelial cell populations PROX_1, PROX_2,
and LOH contain varying mixtures of the two isoforms. The dominance of the
mesenchymal isoform of Fgfr2 (Fgfr2-llic) in the un-induced mesenchyme (UM) and cap
mesenchyme (CM) is in agreement with previous observations that deletion of Fgfr2-llic
(along with conditional deletion of Fgfrl in the metanephric mesenchyme) results in
poorly formed metanephric mesenchyme and unbranched ureteric buds [36,37]. (B) The
longer mesenchymal isoform of Epb41l5 [34] is predominantly expressed in the
mesenchymal and early developmental cell populations (UM, CM, PODO, and PROX_1)
while the shorter epithelial isoform is expressed mostly in the mature epithelial cell
populations (LOH and DIST_CD). Shown is a Sashimi plot and bar plots of normalized
DEXSeqg counts of reads that align to each exon. Note that the proximal tubular cell
population (PROX_2) contains a mixture of the two isoforms.
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Figure S16: The gene Fatl, a known target of the splicing regulator Rbfox2 [38],
undergoes splice isoform switching during kidney development. A cassette exon is
expressed in the mesenchymal cell populations (UM, CM) and podocytes (PODQ), and
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repressed in the epithelial cell populations (PROX_1, PROX_2, LOH, and DIST_CD), in
accordance with the expression levels of Rbfox2. This indicates that Rbfox2 acts as a
splicing regulator during kidney development. Shown is a Sashimi plot and a bar plot of
inclusion levels (manually calculated) for the alternatively spliced exon in Fat1, as well as
a bar plot of expression levels for Rbfox2.
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Figure S17: The gene Arhgef10l, a known target of the splicing regulators Esrp1/2 [39],
undergoes splice isoform switching during kidney development. A cassette exon is
repressed in the mesenchymal populations (UM,CM) and podocytes (PODO) and over-
expressed in the distal tubules/collecting duct (DIST_CD). This is in accordance with the
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expression levels of Esrpl and Esrp2, which are jointly under-expressed in the
mesenchymal populations (UM,CM) and over-expressed in the epithelial populations
(mainly LOH and DIST_CD). This indicates that Esrpl and Esrp2 act as splicing regulators
during kidney development. Shown is a Sashimi plot and a bar plot of inclusion levels
(manually calculated) for the alternatively spliced exon in Arhgef10l, as well as bar plots
of expression levels for Esrp1/2. Note that Arhgef10l is sufficiently expressed only in the
mesenchymal populations (UM, CM), podocytes (PODO), and distal tubules/collecting
duct (DIST_CD) but not so much in the other epithelial populations (PROX_1, PROX_2,
and LOH), thus limiting our ability to reliably measure the inclusion levels of the
alternatively spliced exon in these populations.
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Figure S18: Alternative splicing in the genes Enah and CD44, two genes that are known
to undergo splice isoform switching during EMT [34,35,38,40—42]. Shown are Sashimi
plots from replicates of “bulk” RNA samples that were isolated from Six2-high and Six2-

low mouse fetal kidney cells. We also show a bar plot of inclusion levels (manually

calculated) of the alternatively spliced exon in Enah and a bar plot of normalized DEXSeq

counts of reads that align to a selected alternatively spliced exon in Cd44. Since these

cells contain a GFP under the control of a Six2 promoter, and since Six2 is highly

expressed

in the cap mesenchyme,
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mesenchymal, as it contains mainly cells from the cap mesenchyme (CM), whereas the
Six2-low cell fraction contains all other cell populations including all the epithelial cells
(PODO, PROX_1, PROX_2, LOH, DIST_CD) as well as some mesenchymal cells from the
un-induced mesenchyme (UM). Accordingly, the cassette exons are repressed in the
Six2-high cell fraction (that is enriched for the cap mesenchyme, CM) and over-
expressed in Six2-low cell fraction (that is enriched with the epithelial cell populations).
We isolated total RNA from 3 replicates of cells that were sorted by FACS for high and
low levels of the Six2-GFP reporter gene. RNA was isolated using two different kits (TR
reagent and Norgen) and sequenced. We note that the splice isoform switching in Enah
and CD44 was difficult to observe in the single cell RNAseq dataset, probably due to the
bias and relative sparsity of reads in the single cell data, but was more apparent in the
“bulk” RNAseq dataset.
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Figure S19: Alternative splicing of the gene Cldn10. The isoform Cldn10-1a, a kidney-
specific isoform known to be expressed in the kidney cortex [43], was observed to be
predominantly expressed in the early epithelial structures (PROX_1) and the proximal
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tubular cells (PROX_2). The isoform Cldn10-1b, which is known to be expressed in the
kidney medulla, was observed to be predominantly expressed in the loop of Henle
(LOH). Shown is a Sashimi plot and bar plots of normalized DEXSeq counts of reads that
align to exons that are alternatively spliced in these two isoforms. The different isoforms
might be related to the variable paracellular permselectivity (i.e., the permeability of the
epithelial tight junctions to specific ions) along the different segments of the nephron
tubules [43]: Cldn10-1a creates “leaky” pores in the tubular epithelium, and is therefore
over-expressed in the proximal tubule which is more “leaky” in order to allow for rapid
reabsorption of essential ions, whereas Cldn10-1b is over-expressed in the loop of Henle
in which ion transport is more tightly regulated.
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Figure S20: Splice isoform switching and gene expression analysis of the gene Wtl, a
central gene in kidney development, whose deletion or mutation can lead to

developmental defects and pediatric tumors of the kidney (e.g. Wilms’ tumors) [4-8].

(A) Cassette exon 5 increases gradually during development. Shown are a barplot of
inclusion levels and a Sashimi plot of the in-silico “bulk” transcriptomes representing the

different populations. (B) KTS alternative splicing in exon 9. Shown are a barplot of

inclusion levels, a likelihood plot for the inclusion levels (see below), and a Sashimi plot.

An alternative splice donor site at exon 9 inserts or skips the three amino acids lysine

(K), threonine (T), and serine (S). The ratio between the Wt1(+KTS) isoform - that
includes the KTS segment - and the Wt1(-KTS) isoform — that skips the KTS segment - is
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typically 60:40 [5,11,12]. A disruption of this ratio to 30:70 is associated with Frasier
syndrome, a kidney developmental defect. Here we see that the KTS+:KTS- ratio is



approximately 70:30 in the mesenchymal cell populations (the un-induced mesenchyme
[UM], the cap mesenchyme [CM], and CM_DIV which consists of only the actively
dividing cells within the cap mesenchyme) and converges to approximately 60:40 in the
epithelial cell populations (podocytes [PODO], early epithelial structures [PROX_1], and
proximal tubules [PROX2]). (C) Single-cell gene expression analysis of Wtl. Shown is a
tSNE plot and histograms showing the expression levels of Wtl in each of the different
populations. It can be seen that Wtl is most highly expressed in the podocytes [13]
(PODO), moderately expressed in the un-induced mesenchyme (UM) and cap-
mesenchyme (CM), and under-expressed in the loop of Henle (LOH) and distal
tubules/collecting duct (DIST/CD). Note the wide distribution of expression in the early
epithelial structures (PROX_1), which is probably due to the fact that some cells (e.g.
those in the cleft of the S-shaped body [14]) are in the process of differentiating to
podocytes while others are destined to become constituents of the proximal tubule,
loop of Henle, or distal tubule. The area of each circle in the tSNE plots is proportional
to log2(1+expression) of Wt1 in that particular cell.

Calculation of KTS inclusion levels: To calculate the likelihood function for the KTS
inclusion level 1, which is defined as the fraction of transcripts that include the KTS
segment out of the total number of transcripts that either include the KTS segment or
skip over it [1,2], we used both rMATS and manual read counting and obtained similar
results.

For manual read counting, we counted the number of reads that span the junction
between exons 9 and 10, while either including the KTS segment (I) or skipping it (S).

Since:
I|lY~Binomial(N =1+ S,p =)
I+S\ 104 _ NS
T -y
Note that since we only counted reads that span the junction between exons 9 and 10,
the effective lengths [1] (that is, the number of unique isoform-specific read positions)
of the KTS-inclusion isoform and the KTS-skipping isoform are taken to be the same.

Prob(I|N =1+ S,p = ) = (

Therefore, for given values of I and S, we get the likelihood:

LaiLs) = (") v a -y

Where the, maximum likelihood is Yy, = I1/(I + S).
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Figure S21: Additional putative splicing regulators. Shown are barplots for selected RNA
binding proteins (RBP’s) [44] that change their expression during the transition from
mesenchymal to epithelial states.
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Figure S22: Motif enrichment analysis for additional UGG-enriched motifs that were
previously found to be binding sites for the RNA binding proteins Esrpl [39,45] and
Esrp2 [46]. Cassette exons that are over-expressed in the epithelial populations contain
a significant enrichment of ESRP1/2 binding motifs in their downstream 3’-flanking

t
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introns, and in some cases (CM vs. LOH), also in the far 5’ end of their upstream 5’-
flanking introns as was previously observed using SELEX-Seq experiments in EMT [45].
This further indicates that ESRP1/2 are splicing regulators involved in Mesenchymal to
Epithelial Transition (MET) during kidney development. Note that although the TGGTGG
motif (2" panel from top) is usually regarded as an RNA binding site for Esrpl [44,45]
(Table S10), we hypothesize that in this case it serves as a binding site for Esrp2 since
Esrpl is not expressed in the podocytes and since this motif is similar to the Esrp2
binding motif TGGTG [46,47].
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Figure S$23: The gene Abil undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S24: The gene Add3 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S25: The gene App undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S26: The gene Csnklg3 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S27: The gene Ctage5 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S28: The gene Ctnndl undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S29: The gene Dnm2 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S30: The gene Dtnb undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S31: The gene Gk undergoes splice isoform switching during kidney development.
Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively spliced exon
(skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads that align to the
alternatively spliced exon.
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Figure
development. Shown is a Sashimi plot, a bar plot

$32: The gene Lrrfipl undergoes splice isoform switching during kidney

of inclusion levels of the alternatively

spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads

that align to the alternatively spliced exon.
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Figure S33: The gene Map3k7 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S34: The gene Mark3 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S35: The gene Mprip undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S36: The gene Myolb undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S37: The gene Nadkdl undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S38: The gene Osbpl9 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S39: The gene Pard3 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S40: The gene Plod2 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S41: The gene Rps24 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
spliced exon (skipped exon, SE), and a bar plot of normalized DEXSeq counts of reads
that align to the alternatively spliced exon.
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Figure S42: The gene Actnl undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, bar plots of inclusion levels of the alternatively
spliced mutually exclusive exons (MXE, calculated manually), and bar plot of normalized

DEXSeq counts of reads that align to one of the alternatively spliced exons.
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Figure S43: The gene Tpml undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, bar plots of inclusion levels of the alternatively
spliced mutually exclusive exons (MXE), and bar plot of normalized DEXSeq counts of
reads that align to the alternatively spliced exons.

58



Acsld

Acsi4_chrX_142351378_142351908_142351378_142351618_142360386_142360436_
1 T T T T T T T

Acsl4_chrX_142351619_142351908_-_16_

o o
@ @

(=1
£
Normalized DEXSEQ counts

Inclusion Levels

[0 -20]

b

|
|
|
[0-159] I CM AlLbam
7&4; —
3
' |

[0 - 86] I I PODO.bam

[0-42] I I PROX_1.bam
i [

o - 351 I I PROX_2.bam
" ' ~
: | |

o - 191 I LOH.bam

DIST_CD.bam

o - 1701

L L L ]
142351398 142352130 142352862 142353594

Figure S44: The gene Acsl4 undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternative 3’
splice site (A3SS), and a bar plot of normalized DEXSeq counts of reads that align to the
alternatively spliced segment of the exon.
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undergoes splice isoform switching during kidney

development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternative 3’
splice site (A3SS), and a bar plot of normalized DEXSeq counts of reads that align to the

alternatively spliced segment of the exon.
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Figure S46: The gene Polr2k undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternative 5’
splice site (A5SS), and a bar plot of normalized DEXSeq counts of reads that align to the
alternatively spliced segment of the exon.
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Figure S47: The gene Srsfl undergoes splice isoform switching during kidney
development. Shown is a Sashimi plot, a bar plot of inclusion levels of the alternatively
retained intron (RI), and a bar plot of normalized DEXSeq counts of reads that align to
the alternatively retained intron. The intron is expressed at high levels in the podocytes,
but does not differ much between the mesenchymal and epithelial cell populations.
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