

b

Common pathways in DTG and EMPD profiles	Specific pathways in mouse DTG profile	Specific pathways in human EMPD prof
Ribosome Ribosome biogenesis in eukaryotes Pathways in cancer PI3K-Akt signaling pathway MAPK signaling pathways Ubiquitin-mediated proteolysis RNA transport Ras signaling pathway Spliceosome FoxO signaling pathway Cell cycle Protein processing in endoplasmic reticulum ErbB signaling pathway Proteoglycans in cancer Regulation of actin cytoskeleton Neurotrophin signaling pathway Daytocin signaling pathway Daytocin signaling pathway MTOR signaling pathway Epstein-Barr viral infection Choline metabolic in cancer Huntington's disease Hepatatis B mRNA surveillance pathway HTLV-infection Hippo signaling pathway Pocal adhesion Wnt signaling pathway Non-alcoholic fatty liver disease (NAFLD) Purine metabolism Occyte meiosis Rap1 signaling pathway Endocytosis Glycerophospholipid metabolism	Small cell lung cancer Pyrimidine metabolism Proteosome Dopaminergic synapse Tuberculosis AGE-RAGE signaling pathway TNF signaling pathway Oxidative phosphorylation Non-small cell lung cancer Serotonergic synapse Chronic myeloid leukemia T cell receptor signaling pathway	Cell adhesion molecules (CAMs) Lysosome Measles Herpes simplex infection cAMP signaling pathway Viral carcinogenesis Dilated cardiomyopathy Calcium signaling pathway Phagosome Vascular smooth muscle contraction Alzheimer's disease Tight junction Alcoholism Adrenergic signaling in cardiomyocytes Peroxisome Hypertrophic cardiomyopathy Chemokine signaling pathway Influenza A Toxoplasmosis Insulin resistance Phospholipase D signaling pathway Leukocyte transendothelial migration Cytokine-cytokine receptor interaction cGMP-PKC signaling pathway p53 signaling pathway Apoptosis Viral myocarditis Osteoclast differentiation Axon guidance Transcriptional misregulation in cancer RNA degradation Basal transcription factors Hepatasis C Sphingolipid signaling pathway Carbon metabolism Protein digestion and absoprtion Biosynthesis of amino acids Platelet activation Cardiac muscle contraction Pancreatic secretion Insulin signaling pathway

Fig.S18 Gene Ontology and KEGG pathway analyses of DTG mouse and human EMPD skin. **a** qRT-PCR analysis of select DEGs in control *vs*. DTG mouse dorsal skin. Student's *t*-test; **P* < 0.05; ***P* < 0.01; ****P* < 0.001. **b** KEGG pathway analysis of DEGs in DTG mouse and EMPD human skin. Common and specific pathways in DTG ($P \le 10^{-11}$) and EMPD human skin ($P \le 10^{-13}$) are shown. **c** Venn diagrams showing overlapping Pi3K-Akt signaling pathway members between DTG mouse and EMPD human skin. Values in the graphs represent means ± SD.