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SUMMARY
Identifying the molecular programs underlying human organ development and how they differ from model
species is key for understanding human health and disease. Developmental gene expression profiles provide
a window into the genes underlying organ development and a direct means to compare them across species.
We use a transcriptomic resource covering the development of seven organs to characterize the temporal
profiles of human genes associated with distinct disease classes and to determine, for each human gene,
the similarity of its spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat, and rabbit.
We find clear associations between spatiotemporal profiles and the phenotypic manifestations of diseases.
We also find that half of human genes differ from their mouse orthologs in their temporal trajectories in at least
one of the organs. These include more than 200 genes associated with brain, heart, and liver disease for
which mouse models should undergo extra scrutiny.
INTRODUCTION

The genetic programs underlying human organ development are

only partially understood, yet they are fundamental to under-

standing organ morphology, physiology, and disease (Bruneau,

2013; DeFalco and Capel, 2009; Si-Tayeb et al., 2010; Silbereis

et al., 2016; Vainio and Lin, 2002; Wang and Zoghbi, 2001). Gene

expression is a molecular readout of developmental processes

and therefore provides a window into the genes and regulatory

networks underlying organ development (Lein et al., 2017; Pan-

talacci and Semon, 2014). By densely profiling gene expression

throughout organ development, we get closer to identifying the

genes and molecular processes underlying organ differentiation,

maturation, and physiology (Bakken et al., 2016; Cardoso-Mor-

eira et al., 2019; Giudice et al., 2014; Houmard et al., 2009;

Zhu et al., 2018). In addition, spatiotemporal gene expression

profiles provide awealth of information on human disease genes,

which can be leveraged to gain new insights into the etiology and

symptomatology of diseases (Finucane et al., 2018; Gerrelli

et al., 2015; Lein et al., 2017; Li et al., 2018).

Much of the progressmade in identifying the genetic programs

underlying humanorgandevelopment has come from research in

model organisms.Mice andothermammals (e.g., rats and rhesus

macaques) are routinely used asmodels of normal human devel-

opment and disease because it is generally assumed that the ge-

netic programs underlying development are largely conserved

across these species.While usually true, there are also critical dif-

ferences between species during development, which underlie
C
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the large diversity of mammalian organ phenotypes (Bruneau,

2013; DeFalco and Capel, 2009; Lein et al., 2017; Si-tayeb

et al., 2016; Silbereis et al., 2016; Vainio and Lin, 2002; Wang

andZoghbi, 2001). Identifying the commonalities and differences

between the genetic programs underlying organ development in

different mammalian species is therefore key for assessing the

translatability of knowledge obtained from mammalian models

to understand human health and disease. Critically, gene expres-

sion profiles can be directly compared between species, espe-

cially when they are derived from matching cells/organs and

developmental stages. Although there are challenges (e.g., it is

easier to compare gene expression for more closely related spe-

cies, and comparisons are limited to genes with a 1:1 orthology

relationship between species), gene expression offers a direct

means to evaluate similarities and differences between species

in organ developmental programs (reviewed in Pantalacci and

Semon, 2014). While the relationship between gene expression

and phenotypes is not linear, identifying when and where gene

expression differs between humans and other species will help

identify the conditions (i.e., developmental stages, organs, and

genes) under which model species may not be well suited to

model human development and disease.

To characterize the organ developmental profiles of human

disease genes and gain new insights into the symptomatology

of diseases, we use a developmental gene expression resource

that we recently generated (Cardoso-Moreira et al., 2019). This

dataset densely covers the development of seven major organs

in humans and other mammals. For each human gene in our
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dataset (including disease-associated genes), we determine the

similarity of its spatiotemporal expression with that of its ortho-

logs in mouse, rat, rabbit, and rhesus macaque, providing a

new resource that is relevant for the choice of mammalian spe-

cies to model the action of individual genes and/or processes

in both healthy and pathological human organ development.

RESULTS

An Expression Atlas of Human Organ Development
This work is based on a resource that we recently generated

(Cardoso-Moreira et al., 2019), which provides human gene

expression time series for seven major organs: brain (forebrain/

cerebrum), cerebellum (hindbrain/cerebellum), heart, kidney,

liver, ovary, and testis (Figure 1A). The time series starts at

4 weeks post-conception (wpc), which corresponds to early

organogenesis for all organs except the heart (mid-organogen-

esis), and then covers prenatal development weekly until 20

wpc. The sampling restarts at birth and spans major develop-

mental milestones, including aging (Figure 1A; total of 297

RNA-sequencing [RNA-seq] libraries). This resource also pro-

vides matching datasets for four species commonly used to

study human development and disease: mouse (316 libraries),

rat (350 libraries), rabbit (315 libraries), and rhesus macaque

(starting at a late fetal stage that corresponds to 19 wpc in hu-

man; 154 libraries; STAR Methods).

We used a weighted gene co-expression network analysis to

identify the main clusters (modules) of highly correlated genes

during human organ development (STAR Methods). We then

characterized each module according to its developmental pro-

file (Figures 1B and S1A), functional and disease enrichments

(Figure 1B; Table S1), and proportion of transcription factors

(TFs) (Zhang et al., 2015), RNA-binding proteins (RBPs) (Gerst-

berger et al., 2014), and developmentally dynamic long noncod-

ing RNAs (lncRNAs) (Sarropoulos et al., 2019) (Figure 1B). As ex-

pected, we observed a match between the disease enrichments

of each module and its organ developmental profile (Figure 1B).

For example, module M3 comprises 2,420 genes predominantly

expressed in the liver and is enriched for several liver-related dis-

eases (e.g., fatty liver). Module M20 (822 genes) comprises

genes mainly expressed in the heart and is associated with a

number of cardiomyopathies.

Through ‘‘guilt by association’’, these modules additionally

provide putative functions for poorly characterized genes (Table

S2). Surprisingly, we identified a strong positive correlation be-

tween the fraction of protein-coding genes in a module that are

among the least studied in the human genome (based on

Stoeger et al., 2018) and the module’s fraction of dynamic

lncRNAs (r: +0.77, p value = 2 3 10�7; Figure S1B). Modules

rich in poorly studied protein-coding genes and developmentally

dynamic lncRNAs are frequently associated with high expres-

sion in the gonads (Figure 1B) but are also found in association

with high expression in each of the other organs (e.g., module

M9 for brain and module M11 for cerebellum).

Spatiotemporal Profiles of Disease Genes
We used this expression atlas of human organ development to

test for associations between the spatiotemporal profiles of hu-
2 Cell Reports 33, 108308, October 27, 2020
man disease genes and the etiology and phenotypic manifesta-

tion of human diseases.We first assigned genes to different clas-

ses of phenotypic severity by integrating a dataset of human

essential genes (Bartha et al., 2018) with a dataset of genes

associated with inherited disease in the manually curated Hu-

man Gene Mutation Database (‘‘disease genes’’) (Stenson

et al., 2017) (Figure 2A). We then compared the breadth of devel-

opmental expression for genes in these different classes (Fig-

ure 2B). This analysis revealed a clear association between

expression pleiotropy (i.e., fraction of total samples in which

genes are expressed) and the severity of phenotypes. Essential

genes that are not associated with disease are likely enriched for

embryonic lethality and are, congruently, the most pleiotropic.

The group of genes that when mutated range from lethality to

causing disease (often developmental disorders affecting multi-

ple organs) are less pleiotropic than embryonic lethals but are

more pleiotropic than genes only associated with disease (both

p values = 2 3 10�16, Wilcoxon rank sum test, two sided; Fig-

ure 2B). Finally, nonlethal disease genes are more pleiotropic

than genes unassociated with any deleterious phenotypes (p

value = 2 3 10�5; Figure 2B). A similar association is obtained

when looking independently at organ and time specificity (Fig-

ure S2A). The breadth of developmental expression is therefore

positively correlated with phenotypic severity.

Human diseases differ in terms of severity, age of onset, and

organs affected, all of which should be reflected in the spatio-

temporal expression profiles of the underlying disease genes.

Therefore, we looked at the time and organ specificity of genes

associated with different classes of disease (Stenson et al.,

2017) (Figure 2C). As expected, the specificity of the spatiotem-

poral profiles of disease genes differs considerably among dis-

ease classes. Genes implicated in developmental disorders,

cancer, and diseases of the nervous system tend to be

ubiquitously expressed, whereas genes causing heart and

reproductive diseases tend to have more restricted expression

(Figure 2C).

Further insights were obtained by analyzing the temporal tra-

jectories of disease genes within the organs they affect. To do

this, we used a soft clustering approach to identify the most

common expression profiles in each organ and assigned each

gene a probability of belonging to each of the clusters (STAR

Methods; Table S2). Disease genes are enriched within specific

clusters, which are disease and organ specific. For example,

genes associated with heart disease are significantly enriched

among genes characterized by a progressive increase in expres-

sion throughout heart development (Figure S2B; Bonferroni-cor-

rected p value = 2 3 10�6, binomial test), whereas genes asso-

ciated with metabolic diseases are enriched among genes that

exhibit a strong upregulation in the liver in the first months after

birth (Figure S2C; Bonferroni-corrected p value = 3 3 10�15,

binomial test). Within the brain, we focused on the temporal tra-

jectories of genes associated with three neurodevelopmental

disorders: primary microcephaly, autism spectrum disorders,

and schizophrenia (STARMethods). Consistent with these disor-

ders having different etiologies and ages of onset, the associated

genes are significantly enriched among distinct temporal profiles

in the brain (Figure 2D). Genes causing primary microcephaly

show their highest expression at the earliest developmental
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Figure 1. An Expression Atlas of Human Organ Development

(A) Description of the dataset. The dots mark the developmental stages sampled in each organ (median of two replicates), and its colors reflect the colors used

throughout the figures to represent each organ.

(B)Modules in the gene co-expression network (number of genes in eachmodule in parentheses). The left panel shows the correlations between eachmodule and

the expression levels in each organ or developmental time (full developmental profiles in Figure S1A). The color intensity and the size of the circles are proportional

to the correlation coefficients. A positive correlation with developmental time (first column) means higher expression late in development, and a negative cor-

relation means higher expression early in development. The middle panel shows the fraction of genes in each module that correspond to TFs, RBPs, devel-

opmentally dynamic lncRNAs, and poorly studied protein-coding genes (i.e., genes with three or fewer publications). The right panel shows examples of

overrepresented diseases (FDR <1%, hypergeometric test). Table S1 lists the top five biological and disease enrichments (FDR <1%) for each of the 32 modules.

The modules are ordered vertically by decreasing number of genes. Module 0 (bottom) includes genes not assigned to any of the other modules.
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Figure 2. Spatiotemporal Profiles of Disease Genes

(A) Number of expressed (RPKM >1) protein-coding genes in different classes of phenotypic severity.

(B) Expression pleiotropy of genes in different classes of phenotypic severity (p values fromWilcoxon rank sum test, two sided; the number of genes in each class

is shown in A).

(C) Organ and time specificity (median across organs) of genes associated with different disease classes (number of genes in each class in parentheses). Genes

are only assigned to one class; those affecting multiple organs appear in the classes ‘‘Multiple organs,’’ ‘‘Developmental’’, or ‘‘Other organs’’ depending on

whether they affect multiple organs that include at least one of the organs in this study, are associated with developmental phenotypes, or affect organs that are

not part of this study, respectively.

(D) Genes associated with primary microcephaly, autism, and schizophrenia are significantly enriched in distinct expression clusters in the brain (binomial tests

with Bonferroni correction). On the left are the developmental profiles for the clusters identified through soft clustering of the brain developmental samples. The y

axis shows standardized expression levels (STAR Methods). The profile of each gene in the cluster is shown in red; the white line shows the cluster center. The

genes associated with each disorder are significantly enriched in only one of the eight clusters (right).

(legend continued on next page)
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stages followed by a progressive decrease in expression (Fig-

ure 2D; 9 out of 15 genes, Bonferroni-corrected p value =

0.002, binomial test), whereas genes implicated in schizophrenia

show the opposite profile: a progressive increase in expression

throughout development (16 out of 45 genes, Bonferroni-cor-

rected p value = 0.0005). Genes associated with autism are ex-

pressed throughout prenatal development and subsequently

display a sharp decrease in expression near birth (Figure 2D;

27 out of 79 genes, Bonferroni-corrected p value = 0.008,

consistent with Satterstrom et al., 2020). The two temporal pro-

files enriched with microcephaly- and autism-associated genes

are also enriched with essential genes (Bonferroni-corrected

p value < 10�15, binomial test).

Organ-Specific Phenotypes of Ubiquitously Expressed
Genes
Most disease genes that we analyzed are associated with phe-

notypes in multiple organs (3,060 genes [71%]), but this still

leaves hundreds of genes that affect exclusively one organ.

Many of these genes with organ-specific phenotypes present a

puzzle in biomedical research, because their expression is not

organ specific (Barshir et al., 2018; Lage et al., 2008). Our anal-

ysis of developmental transcriptomes further highlights this

issue. Genes associated with organ-specific phenotypes exhibit

dynamic temporal profiles in a similar number of organs as genes

associated with phenotypes across multiple organs (i.e., median

of four organs for both gene sets; Figure S2D). This raises the

intriguing question of how mutations that predominantly disrupt

the coding sequences of genes employed during the develop-

ment of multiple organs result in diseases that are organ specific.

While a number of factors may explain this phenomenon,

including alternative splicing (Omer Javed et al., 2018), functional

redundancy (Barshir et al., 2018), and dependency on the char-

acteristics of specific cell types like protein-misfolding diseases

in long-lived neurons, it has been suggested that pathologies

tend to be associated with the organ where the genes display

elevated expression (Lage et al., 2008). This prompted us to

ask if genes associated with organ-specific diseases exhibit their

maximum expression during the development of the affected or-

gan.We focused on heart, neurodevelopmental, psychiatric, and

metabolic diseases (the latter tested in association with the liver)

and found a strong association between the organ of maximum

expression during development and the organ where the pathol-

ogy manifests (Figure 2E). We found that 56% of the genes

exclusively associated with heart disease showmaximal expres-

sion in the heart (versus 15% for all genes, Bonferroni-corrected

p value = 93 10�15, binomial test; Figure 2E), 56% of the genes

with an exclusively metabolic phenotype show maximal expres-

sion in the liver (versus 19% for all genes, Bonferroni-corrected p

value = 93 10�15; Figure 2E), and 39% of the genes exclusively

associated with neurodevelopmental diseases show maximal

expression in the brain (versus 32% for all genes, Bonferroni-

corrected p value = 0.1; Figure 2E).
(E) Organs where genes associated with organ-specific phenotypes show

correction.

(F) Time specificity in the different organs of genes with heart- and metabolic-sp

In (B), (C), and (F), the boxplots depict the median ±25th and 75th percentiles, w
At least for heart disease, the duration of gene expression may

also help explain organ-specific pathologies. Genes expressed

in multiple organs that have heart-specific phenotypes are ubiq-

uitously expressed during heart development but show a signif-

icantly higher time specificity (i.e., shorter expression window) in

the other organs (all Bonferroni-corrected p values < 10�4, Wil-

coxon rank sum test, two sided; Figure 2F). In contrast, the dura-

tion of gene expression does not appear to underlie metabolic-

or neurodevelopmental-specific phenotypes, as we see no

difference in the time specificity of genes in the affected organs

versus the others (Figures 2F and S2E). Overall, the association

of pathology with the level of gene expression and, to a lesser

extent, the duration of gene expression suggests that the devel-

opment of organ-specific pathologies can at least in some cases

be explained by differences in the abundance of the cell types

that express the mutated gene in the different organs.

Most Disease Genes Have Orthologs in Mammalian
Models
The extensive use of mice, rats, and other mammals in biomed-

ical research is predicated on the assumption of an overall con-

servation of developmental programs between humans and

these species. This assumption has been largely supported by

comparative analyses of developmental expression profiles

(Cardoso-Moreira et al., 2019) and comparative analyses of the

human and mouse trans-acting regulatory circuitry (Stergachis

et al., 2014). However, there are exceptions to this overall con-

servation that can profoundly impact the translatability of pheno-

types between humans and other species.

One exception applies to genes that have duplicated recently

in human history and therefore do not have a strict 1:1 orthology

relationship with other species. The lack of 1:1 orthologs poses

challenges to the study of recently evolved human genes, which

is reflected in younger genes (i.e., more recently originated) be-

ing more poorly studied than older genes (as measured by the

number of publications; Figure S3; see also Zhang et al.,

2012). In this context, it is notable that the younger genes are,

the less likely they are to be associated with disease (with the

caveat that they are also more poorly studied) (Figure 3A). While

29% of human genes with 1:1 orthologs across vertebrates are

associated with disease, the same is true for only 1% of hu-

man-specific genes (Figure 3A). One likely explanation is that

the younger genes are, the more organ- and time-specific they

are also likely to be (Figure 3B; see also Milinkovitch et al.,

2009). This relation is important because (as shown above) the

more specifically genes are expressed during development

(temporally and spatially), the less severe are the phenotypes

associated with mutations in those genes (Figure 2B).

Of the 4,295 disease-associated genes that are expressed in

the human developmental atlas, only 155 (4%) do not have a

1:1 ortholog in at least one of four mammals commonly used

to study human physiology: mouse, rat, rabbit, and rhesus ma-

caque. Of these 155 genes, most (85%) originated before
maximum expression. p values are from binomial tests after Bonferroni

ecific phenotypes.

ith the whiskers at 1.5 times the interquartile range.
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Figure 3. Recently Originated Genes Are Infrequently Associated with Disease
(A) The proportion of disease-associated genes decreases for groups of genes of successively younger evolutionary ages. 2,231 genes do not have an age

assignment, and of these, 310 (13%) are associated with human disease.

(B) Organ and time specificity of human genes with different evolutionary ages.

In (A) and (B), the youngest genes are those that are human specific (top), and the oldest are those shared across vertebrates (bottom). In parentheses are the

number of genes in each age class.
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primates split from the glires lineage (i.e., rodents and rabbits),

which indicates gene loss events in the non-human lineages or

genome annotation problems (Shao et al., 2019). Overall, these

analyses suggest that most human disease genes could in prin-

ciple be studied in one of the four mammalian models.

Presence/Absence Expression Differences Are Rare
between Species
We next evaluated the extent of differences between human and

each of the four model species in terms of stark differences in

spatiotemporal profiles of 1:1 orthologs: presence/absence of

gene expression in a given organ or large differences in expres-

sion pleiotropy across multiple organs. Our analyses showed

that differences between human and the other species in terms

of presence/absence of gene expression in an organ are rare. In

a comparison between human and mouse, only 1%–3% of pro-

tein-coding genes (177–372 genes depending on the organ) are

robustly expressed (reads per kilobase of exon per million map-

ped reads [RPKM]R 5) in human, but not in mouse (RPKM% 1).

These percentages are similar for the comparisonswith the other

species (i.e., 1%–2% of genes robustly expressed in human are

not expressed in rat, rabbit, or rhesus macaque). Although rare,

these differences include disease genes. For example, among

genes robustly expressed in heart in human, but not in mouse,

are 17 genes associated with heart disease (similar to the ex-

pected number given presence/absence differences in the

heart). These include NKX2-6, which causes conotruncal heart

malformations in human (Ta-Shma et al., 2014) that, congruently,

are not recapitulated by a mouse knockout (Bello et al., 2015).

The developmental profile of NKX2-6 in the human heart is

ancestral; heart expression was lost specifically in rodents,

and this is therefore an example of a disease gene that would

be better studied in the rabbit (Figure 4A). Genes associated

with neurological diseases are depleted among the set of genes

expressed in the human, but not in the mouse, brain (11 differ
6 Cell Reports 33, 108308, October 27, 2020
versus 28 expected, p value = 4 3 10�4, binomial test). Among

the exceptions isCHRNA2, a gene expressed in the human brain

starting at birth that has been implicated in epilepsy (Aridon et al.,

2006; Conti et al., 2015). Once again, and congruently, this clin-

ical phenotype is not recapitulated in the mouse knockout (Bello

et al., 2015) (Figure 4B).

The breadth of spatiotemporal expression is also very similar

between human genes and their orthologs in mouse, rat, rabbit,

and rhesus macaque. They are highly correlated in terms of their

organ specificity (Pearson’s r = 0.86, all Bonferroni-corrected p

values < 10�15), time specificity (r = 0.67–0.84 for individual or-

gans and 0.83–0.84 for median time specificity, all Bonferroni-

corrected p values < 10�15), and, therefore, global expression

pleiotropy (r = 0.85–0.88, all Bonferroni-corrected p values <

10�15). There are only 141 genes expressed in at least half the

human samples but in fewer than 10% of the mouse samples,

and 172 genes with the opposite pattern (Figure S4). These

genes are depleted for essential genes (4% versus 11% in entire

dataset, p value = 8 3 10�6, binomial test) and disease genes

(16% versus 26% in entire dataset, p value = 0.02, binomial

test). Similar results are obtained in comparisons between hu-

man and each of the other species (Figure S4). Together with

the results above, these analyses indicate that differences in

the breadth and presence/absence of gene expression between

humans and other species are confined to a small set of genes.

However, when present, they can translate into relevant pheno-

typic differences that are relevant to biomedical research.

Organ Developmental Trajectory Differences Are
Common
Although stark differences in gene expression are rare between

humans and other species, we previously showed that it is not

uncommon for genes with broad spatiotemporal profiles to

evolve new organ-specific developmental trajectories (Car-

doso-Moreira et al., 2019). In that work, we studied the evolution
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Figure 4. Suitability of the Mouse as a Model

(A) Developmental profile of NKX2-6 in human, mouse, rat, rabbit, and opossum (marsupial). NKX2-6 is robustly expressed in the human heart, but not in mouse,

and the conotruncal heart malformations observed in human are not recapitulated by a mouse knockout. The human heart profile of NKX2-6 is ancestral, as it is

similar to the profiles in rabbit and opossum.

(B) Developmental profile of CHRNA2 in human and mouse. CHRNA2 is robustly expressed in the human brain, but not in mouse, and the epileptic phenotypes

observed in human are not recapitulated by a mouse knockout.

In (A) and (B), the x axis shows samples for each organ ordered from early to late development (stages sampled in Table S4), and the y axis shows expression

levels in reads per kilobase of exon model per million mapped reads (RPKM).

Article
ll

OPEN ACCESS
of developmental expression programs across distantly related

mammals using a phylogenetic approach that assigned changes

in organ temporal trajectories to individual phylogenetic

branches (Cardoso-Moreira et al., 2019). This limited the number

of human genes that could be tested for trajectory changes

(1,871–3,980 genes depending on the organ), because jointly

analyzing distantly related species considerably reduced the

number of available 1:1 orthologs, and trajectory changes had

to be unambiguously assigned to one branch of the phylogenetic

tree.

Here, we aimed to identify differences in organ developmental

trajectories between human and each of the four mammalian

models for the maximum number of human genes. Therefore,

we compared the developmental profiles of human genes with

their orthologs in each of the species separately, in a pairwise

manner. Doing pairwise comparisons allowed us to double or tri-

ple (depending on the organ) the number of human genes that

could be evaluated for organ trajectory differences (e.g.,

5,253–8,666 genes in human-mouse comparisons). We used a

two-step approach. First, we used soft clustering to identify

themain types (or clusters) of temporal trajectories in each organ

jointly for human and non-human orthologs (STAR Methods).

Second, we identified all instances where the human gene and

its ortholog were assigned to different clusters (5% false discov-

ery rate [FDR]; STARMethods; Figures 5 and S5). We were inter-

ested in genes that differ between species in the entirety of their

temporal trajectory (e.g., genes assigned to cluster 0 in one spe-

cies and to cluster 1 in another in Figure 5 for the brain) and in

genes that differ in only part of the time series (e.g., genes as-
signed to cluster 2 in one species and to cluster 6 in the other

in Figure 5 for the brain).

Overall, we identified thousands of genes with different

developmental trajectories between human and each of the

other species (Figure 6A; Table S3). Because we performed

our trajectory comparisons in a pairwise fashion, we could

examine our calls across trios of species (e.g., mouse, rat,

and human) to evaluate the sensitivity and specificity of our

approach. Genes inferred to have a similar trajectory between

mouse and rat and between mouse and human should also

have a similar trajectory between human and rat. This was

true for ~96% of the calls, consistent with our 5% FDR

threshold (Figure S6A). Conversely, genes inferred to be similar

between mouse and rat and different between mouse and hu-

man should have a different trajectory between human and rat.

This was true for 65%–82% of the calls, suggesting our

approach is conservative when calling for species differences

(Figure S6A). We further evaluated the consistency of our tra-

jectory calls using an external dataset generated by the Psy-

chENCODE consortium that compared gene expression pro-

files between human and rhesus macaque for 11 different

areas of the neocortex for the prenatal, postnatal and adult pe-

riods (Li et al., 2018; Zhu et al., 2018). In support of our

approach, the genes that we identified as having different brain

developmental trajectories between human and rhesus ma-

caque were also significantly more likely to show spatial and

temporal differences between these two species in the Psy-

chENCODE dataset (Figure S6B; p value = 1 3 10�5, Wilcoxon

rank sum test).
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Figure 5. Developmental Trajectory Differences between Human and Mouse in Brain, Heart, and Kidney

We used soft clustering to group human genes and their mouse orthologs according to their temporal expression in each organ. The genes for which the human

and mouse orthologs were assigned to a different cluster are shown on top. Each line represents a pair of human-mouse orthologs with a significant trajectory

difference and shows the cluster assignment in human (top) and mouse (bottom). The lines are colored according to the human cluster assignment. The clusters

identified in each organ are shown below (gray lines correspond to individual genes and the colored lines to the cluster center). The y axis shows the log

normalized expression levels, and the x axis shows the samples ordered from early to late development. The same analysis for cerebellum, kidney, and testis is

shown in Figure S5.
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As expected, a smaller fraction of genes differ between hu-

man and rhesus macaque (diverged ~29 million years ago)

than between human and mouse, rat, or rabbit (diverged ~90

million years ago) (Figure 6A). However, for all organs and

despite the same divergence time, a higher proportion of genes

differ between human and mouse than between human and

rabbit (Figure 6A). In human-mouse comparisons, 51% of the

genes tested show a different developmental trajectory in at

least one of the organs (6,816 out of 13,471 genes tested). In

human-rat comparisons, this percentage is 45% (5,459 out of

12,155 genes), and in human-rabbit comparisons, it is only

38% (4,568 out of 11,731 genes). These species differences

are robust to using the same gene set of 1:1 orthologs for all

pairwise species comparisons (Figure S6C) and using different

clustering parameters (Figure S6D). The observation that there

are more genes with trajectory differences between human and

mouse than between human and rabbit is consistent with the

rodent lineage having evolved a larger number of trajectory dif-

ferences (Cardoso-Moreira et al., 2019) and suggests that rab-
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bits have some advantages over mice for studying human

biology.

Next, we set to characterize the genes with trajectory differ-

ences between humans and the other species. Below, we report

on the human-mouse comparison, but the results are consistent

across all species comparisons. An analysis of the GTEx dataset

(Lonsdale et al., 2013), which contains human gene expression

profiles for hundreds of adults across multiple tissues, shows

that genes with trajectory differences between species do not

show greater variation in gene expression among humans (Fig-

ure S6E; STAR Methods). Therefore, the species differences

are not a consequence of the genes involved having more vari-

able expression profiles. At the level of the coding sequence,

we found that genes with trajectory differences are under similar

levels of functional constraint as genes with similar trajectories.

For most organs, genes in both groups show similar levels of

intolerance to loss-of-function mutations (Figure S7A). The

exception are the neural tissues (brain and cerebellum), where

genes with trajectory differences show more tolerance to



A

B

C

Figure 6. Developmental Trajectory Differences

(A) Percentage of genes in each organ that have different tra-

jectories between human and mouse, rat, rabbit, and rhesus

macaque (because of the shorter time series, this analysis was

only performed for brain, heart, and liver in rhesus). The sets of

genes compared differ between species as they correspond to

the total number of 1:1 orthologs available between human and

each species. Figure S6C shows the same analysis but using

the same set of 1:1 orthologs across all species (similar results).

Table S3 lists the genes tested for trajectory differences and

those found to be significantly different between human and

each of the other species.

(B) Examples of human disease genes with different develop-

mental trajectories between human and mouse in the affected

organ (FDR <5%).

(C) Percentage of genes in brain, heart, and liver that differ in

trajectories between human and mouse. Bonferroni-corrected

p values for comparisons between disease and non-disease

genes are from Fisher’s exact tests, and Bonferroni-corrected

p values for comparisons of disease genes with different ages

of onset are from binomial tests.
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functional mutations than those with similar trajectories (Fig-

ure S7A). Similar relationships apply to genes’ intolerance to

copy-number variation (duplications and deletions); genes with

trajectory differences in the neural tissues are slightly more

tolerant to copy-number variation than genes with similar trajec-

tories, and no differences are observed for the other organs (Fig-

ure S7B). Interestingly, genes with different trajectories in the

brain (but not other organs) are also enriched among a set of

genes identified as carrying signs of positive selection in their

coding sequences across mammals (Kosiol et al., 2008) (Benja-

mini-Hochberg corrected p value = 0.02, Fisher’s exact test).

Finally, across organs, genes with trajectory differences are en-

riched for protein metabolism (Benjamini-Hochberg corrected p

value = 0.0001, hypergeometric test).

Organ Trajectory Differences among Disease Genes
The genes depicted in Figure 6B are associated with diseases

that affect the organ in which human andmouse display different

trajectories. For these genes, the disease etiology may not be

fully recapitulated by mouse models. The mouse knockouts

are still expected to affect the development of the organ associ-

ated with the disease, but the cellular and developmental

context of the phenotypes in mouse could differ substantially

from those in human. It is therefore noteworthy that genes asso-

ciated with human disease are less likely than non-disease

genes to differ in their trajectories between human and mouse

(Figure 6C). Genes causing diseases that affect the brain and

liver are depleted for trajectory differences between human

and mouse in each of the organs (Figure 6C; p value = 0.002

for the brain, p value = 0.1 for the heart, and p value = 9 3

10�5 for the liver, Fisher’s exact test after Bonferroni correction).

This is also true for comparisons between human and other spe-

cies (Figure S7C). Nevertheless, that still leaves more than 200

disease genes whose developmental profiles may not be fully

recapitulated in the mouse (Figure 6C; ~40% fewer genes in

the rabbit; Figure S7C).

We further asked if genes underlying diseases with different

ages of onset are equally likely to differ in their organ trajectories

between human and mouse. Although the number of disease

genes associated with an exclusive congenital or exclusive post-

natal onset is low, we found that genes with congenital onsets

rarely differ in terms of their developmental trajectories between

human andmouse (i.e., only 1 out of 82 genes causing disease in

the brain, heart, or liver; Figure 6C), whereas genes with post-

natal onsets are more likely to show differences (Figure 6C;

same applies to comparisons between human and other spe-

cies; Figure S7C). This suggests that diseases with a congenital

onset may be easier to study in model species than diseases

whose phenotypic manifestations start later in life.

DISCUSSION

In order to shed new light on the causes and phenotypic mani-

festations of human diseases, we integrated a resource of hu-

man organ developmental gene expression profiles with data-

sets of human essential and disease genes. We found that the

breadth of developmental expression is positively correlated

with phenotypic severity and that it varies considerably among
10 Cell Reports 33, 108308, October 27, 2020
disease classes. Disease-associated genes are enriched within

specific developmental modules in the organs affected. For

example, genes associated with different brain developmental

disorders show distinct temporal profiles during brain develop-

ment. Overall, we found a clear association between spatiotem-

poral profiles and the phenotypic manifestations of diseases.

The analysis of developmental transcriptomes further

strengthened the apparent paradox of ubiquitously expressed

genes often having organ-specific phenotypes (Barshir et al.,

2018; Hekselman and Yeger-Lotem, 2020; Lage et al., 2008).

We could not distinguish genes associated with organ-specific

phenotypes from those associated with multi-organ phenotypes

based on the breadth of spatiotemporal profiles, which were

similar. However, for genes associated with organ-specific phe-

notypes, we found a strong association between the organ

affected and the organ of maximal expression during develop-

ment. This association suggests that some organ-specific pa-

thologies could be explained by differences between organs in

the spatial and temporal abundance of the cells expressing the

mutated gene.

Gene expression links geneswith their organismal phenotypes

and hence offers a direct means to compare both across spe-

cies. This is not without its challenges. Gene expression differ-

ences can relate to phenotypes in complex ways, genes that

have duplicated cannot be directly compared across species,

and cross-species comparisons of whole organs cannot directly

address the extent to which differences in cell abundances

underly changes in gene expression (discussed below) (Panta-

lacci and Semon, 2014). Despite these challenges, comparing

gene expression between species for matching organs and

developmental stages provides a powerful tool to evaluate the

likelihood that insights obtained from studies in model species

can be directly transferable to human. Within this context, it is

notable that most (96%) genes associated with human disease

have 1:1 orthologs in commonly usedmammalianmodel species

and can, therefore, be directly compared.

Overall, we found that stark changes in gene expression (e.g.,

presence/absence of expression) are rare between species.

However, instances of such changes sometimes occur in dis-

ease genes, and in these cases, the differences that we identify

may explain why animal models fail to recapitulate human phe-

notypes. In contrast, we found that differences in temporal tra-

jectories during organ development are common between hu-

mans and other species. Approximately half of human genes

exhibit a different developmental trajectory from their mouse or-

thologs in at least one of the organs. In further support of the use

of model organisms for disease research, we found that disease

genes are less likely to differ than the other genes. Nevertheless,

we still identified more than 200 genes known to be causally

associated with brain, heart, and/or liver disease that differ in

their developmental trajectories between human and mouse in

the affected organ. It is unclear how the subtler differences in

developmental trajectories that we have identified (e.g.,

COL4A2 in Figure 6B) translate at the level of phenotypes. Sill,

we suggest that for disease genes with different temporal trajec-

tories between human andmouse, the existing mousemodels of

human diseases should undergo extra scrutiny, and the possibil-

ity of studying alternativemodels should be carefully considered.
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When human disease genes with organ trajectory differences

are studied in animal models, their genetic manipulation (e.g.,

knockout) is still expected to affect the functioning of the organ

affected by the human disease. Genes with trajectory differ-

ences show dynamic temporal profiles in both species, suggest-

ing the orthologs play roles during organ development in the two

species, but potentially different ones. This poses considerable

challenges for phenotyping efforts of animal models of human

disease, with abnormal organ function expected in the model

species when genes have both similar and different develop-

mental trajectories. Luckily, efforts to systematically and

comprehensively phenotype animal models of human disease

are currently underway that will address these challenges (Ca-

cheiro et al., 2019; Meehan et al., 2017).

How differences in organ developmental trajectories translate

into phenotypic differences between species will depend to a

large extent on the reasons for the trajectory differences. Trajec-

tory differences can be created by gene expression differences

between species in homologous cell types, differences between

species in cellular composition, and/or differences between spe-

cies in the cell types that express orthologous genes. All of these

non-mutually exclusive possibilities can decrease the likelihood

that the phenotype associated with a human gene will be fully

recapitulated in a model species. However, the magnitude of

the phenotypic differences is expected to differ depending on

the underlying reasons. For example, trajectory differences

created by changes in the identity of the cell types that express

an orthologous gene could lead to the greatest phenotypic diver-

gence. Such differences would be highly relevant to interpreting

animal models of human disease genes with adult onsets,

because they would suggest a distinct cellular basis for the dis-

ease in humans and in the model species. Endeavors that seek

to clarify the causes of trajectory differences therefore represent

a key next step, and the application of single-cell technologies

across species will greatly aid these efforts (Bakken et al.,

2020; Shami et al., 2020; Xue et al., 2013).

Gene expression is only one of several steps connecting

genes to their phenotypes (Buccitelli and Selbach, 2020). Simi-

larities and differences in gene expression between species

will not always translate into conserved and divergent pheno-

types, respectively. This notwithstanding, detailed comparisons

of developmental gene expression profiles, as performed here,

can substantially help to assess the translatability of the knowl-

edge gathered for individual genes from model species to

humans.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Resource
B Gene co-expression networks

B Inherited disease genes

B Age of human genes and orthology

B Organ developmental trajectories

B Characterization trajectory differences

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

celrep.2020.108308.

ACKNOWLEDGMENTS

We thank S. Anders, R. Arguello, M. Sanchez Delgado, M. Sepp, T. Studer,

Y.E. Zhang, and members of the Kaessmann group for discussions. D.N.C.

and M.M. are in receipt of financial support from Qiagen through a License

Agreement with Cardiff University. This research was supported by grants

from the European Research Council (615253, OntoTransEvol) and Swiss Na-

tional Science Foundation (146474) to H.K. and Marie Curie FP7-PEOPLE-

2012-IIF (329902) to M.C.-M.

AUTHOR CONTRIBUTIONS

M.C.-M. and H.K. conceived the study. M.C.-M. performed most analyses,

with contributions from I.S. B.V. and W.H. contributed to the analyses on tra-

jectory differences. M.M. and D.N.C. contributed to the analyses on human in-

herited disease. M.C.-M. wrote the manuscript, with input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 4, 2019

Revised: August 16, 2020

Accepted: October 5, 2020

Published: October 27, 2020

REFERENCES

Anders, S., and Huber,W. (2010). Differential expression analysis for sequence

count data. Genome Biol. 11, R106.

Aridon, P., Marini, C., Di Resta, C., Brilli, E., De Fusco, M., Politi, F., Parrini, E.,

Manfredi, I., Pisano, T., Pruna, D., et al. (2006). Increased sensitivity of the

neuronal nicotinic receptor a 2 subunit causes familial epilepsy with nocturnal

wandering and ictal fear. Am. J. Hum. Genet. 79, 342–350.

Auguie, B. (2016). gridExtra: miscellaneous functions for ‘‘grid’’ graphics. R

package version 2.2. 1.

Bakken, T.E., Miller, J.A., Ding, S.L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer,

A., Dalley, R.A., Royall, J.J., Lemon, T., et al. (2016). A comprehensive tran-

scriptional map of primate brain development. Nature 535, 367–375.

Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Tian, W., Kalmbach, B.E.,

Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., et al. (2020). Evolution

of cellular diversity in primary motor cortex of human, marmoset monkey, and

mouse. bioRxiv.

Barshir, R., Hekselman, I., Shemesh, N., Sharon, M., Novack, L., and Yeger-

Lotem, E. (2018). Role of duplicate genes in determining the tissue-selectivity

of hereditary diseases. PLoS Genet. 14, e1007327.

Bartha, I., di Iulio, J., Venter, J.C., and Telenti, A. (2018). Human gene essen-

tiality. Nat. Rev. Genet. 19, 51–62.

Bello, S.M., Smith, C.L., and Eppig, J.T. (2015). Allele, phenotype and disease

data at Mouse Genome Informatics: improving access and analysis. Mamm.

Genome 26, 285–294.
Cell Reports 33, 108308, October 27, 2020 11

https://doi.org/10.1016/j.celrep.2020.108308
https://doi.org/10.1016/j.celrep.2020.108308
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref1
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref1
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref2
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref2
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref2
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref2
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref3
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref3
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref3
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref3
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref4
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref4
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref4
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref5
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref5
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref5
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref5
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref6
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref6
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref6
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref7
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref7
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref8
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref8
http://refhub.elsevier.com/S2211-1247(20)31297-3/sref8


Article
ll

OPEN ACCESS
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57,

289–300.

Bruneau, B.G. (2013). Signaling and transcriptional networks in heart develop-

ment and regeneration. Cold Spring Harb. Perspect. Biol. 5, a008292.

Buccitelli, C., and Selbach, M. (2020). mRNAs, proteins and the emerging prin-

ciples of gene expression control. Nat. Rev. Genet. 21, 630–644.

Cacheiro, P., Haendel, M.A., Smedley, D., Meehan, T., Mason, J., Mashhadi,
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human developmental time-series for the brain,

cerebellum, heart, kidney, liver, ovary and testis

Cardoso-Moreira et al., 2019 ArrayExpress: E-MTAB-6814

rhesus macaque developmental time-series for the

brain, cerebellum, heart, kidney, liver, ovary and testis

Cardoso-Moreira et al., 2019 ArrayExpress: E-MTAB-6813

mouse developmental time-series for the brain,

cerebellum, heart, kidney, liver, ovary and testis

Cardoso-Moreira et al., 2019 ArrayExpress: E-MTAB-6798

rat developmental time-series for the brain,

cerebellum, heart, kidney, liver, ovary and testis

Cardoso-Moreira et al., 2019 ArrayExpress: E-MTAB-6811

rabbit developmental time-series for the brain,

cerebellum, heart, kidney, liver, ovary and testis

Cardoso-Moreira et al., 2019 ArrayExpress: E-MTAB-6782

Software and Algorithms

WGCNA (1.61) Langfelder and Horvath, 2008 https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/Rpackages/WGCNA/

DESeq2 (1.12.4) Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

WebGestalt (0.0.5) Wang et al., 2017 https://cran.r-project.org/web/packages/

WebGestaltR/index.html

mFuzz (2.32.0) Futschik and Carlisle, 2005;

Kumar and Futschik, 2007

https://www.bioconductor.org/packages/

release/bioc/html/Mfuzz.html

GPClust Hensman et al., 2012, 2013, 2015 https://github.com/SheffieldML/GPclust

R (3.3.2) R Core Team, 2014 https://www.r-project.org/

ggplot2 (2.2.1) Wickham, 2009 https://cran.r-project.org/web/packages/

ggplot2/index.html

gridExtra (2.2.1) Auguie, 2016 https://cran.r-project.org/web/packages/

gridExtra/index.html

reshape2 (1.4.2) Wickham, 2007 https://cran.r-project.org/web/packages/

reshape2/index.html

plyr (1.8.4) Wickham, 2011 https://cran.r-project.org/web/packages/

plyr/index.html

factoextra (1.0.4) Kassambara and Mundt, 2017 https://cran.r-project.org/web/packages/

factoextra/index.html

tidyverse (1.2.1) Wickham, 2017 https://cran.r-project.org/web/packages/

tidyverse/index.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Margarida Cardoso-

Moreira (margarida.cardosomoreira@crick.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This study did not generate any unique datasets or code.
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METHOD DETAILS

Resource
From a mammalian resource on organ development (Cardoso-Moreira et al., 2019), we analyzed data from 1,443 strand-specific

RNA-seq libraries sequenced to a median depth of 33 million reads: 297 from human, 316 from mouse (outbred strain CD-1 -

RjOrl:SWISS), 350 from rat (outbred strain Holtzman SD), 315 from rabbit (outbred New Zealand breed) and 165 from rhesus ma-

caque. The organs, developmental stages and replicates sampled in each species are described in Table S4. The mouse time

series started at e10.5 and there were prenatal samples available for each day until birth (i.e., e18.5). There were postnatal sam-

ples for 5 stages: P0, P3, P14, P28 and P63. The rat time series started at e11 and there were prenatal samples available for each

day until birth (i.e., e20). There were postnatal samples for 6 stages: P0, P3, P7, P14, P42 and P112. The rabbit time series started

at e12 and there were 11 prenatal stages available up to and until e27 (gestation lasts ~29-32 days). There were postnatal samples

for 4 stages: P0, P14, P84 and P186-P548. Finally, the time series for rhesus macaque started at a late fetal stage (e93) and there

were 5 prenatal stages available up to and until e130 (gestation last ~167 days). There were postnatal samples for 8 stages: P0,

P23, 5-6 months of age, 1 year, 3 years, 9 years, 14-15 years, and 20-26 years. For mouse, rat, and rabbit, there were typically 4

replicates (2 males and 2 females) per stage, except for ovary and testis (2 replicates). For human and rhesus macaque, the me-

dian number of replicates was 2.

Gene co-expression networks
We built gene co-expression networks using weighted correlation network analysis (WGCNA 1.61) (Langfelder and Horvath, 2008).

We used as input data the read counts after applying the variance stabilizing (VS) transformation implemented in DESeq2 (1.12.4)

(Love et al., 2014). Each stage was represented by the median across replicates. In addition to protein-coding genes, we included

a set of 5,887 lncRNAs that show significant differential temporal expression in at least one organ and that show multiple signatures

for being enriched with functional genes (Sarropoulos et al., 2019). We only excluded genes that failed to reach an RPKM (reads per

kilobase of exon model per million mapped reads) across all stages and organs higher than 1. Using WGCNA we built a signed

network (based on the correlation across all stages and organs) using a power of 10 and default parameters. We then correlated

the eigengenes for each module with the sample traits (i.e., organ and developmental stage).

We characterized eachmodule in terms of biological processes and disease enrichments (GLAD4U) using the R implementation of

WebGestalt (FDR% 0.01; version 0.0.5) (Wang et al., 2017). The lists of TFs are from the animalTFDB (version 2.0) (Zhang et al., 2015)

and the list of RNA-binding proteins are from the work of Gerstberger and colleagues (Gerstberger et al., 2014).

Inherited disease genes
The list of genes associated with human inherited disease was obtained from themanually curated HGMD (PRO 17.1) (Stenson et al.,

2017). We only used genes with disease-causing mutations (DM tag; Table S2). Genes associated with DMmutations were mapped

onto the Unified Medical Language System (UMLS), and aggregated into one or more of the following high level disease types: Eye,

Nervous system, Reproductive, Cancer, Skin, Heart, Blood, Blood Coagulation, Endocrine, Immune, Digestive, Genitourinary, Meta-

bolic, Ear Nose & Throat, Respiratory, Developmental, Musculoskeletal, and Psychiatric (Stenson et al., 2017).

We also characterized the developmental profiles of genes associated with three neurodevelopmental disorders: primary micro-

cephaly, autism spectrum disorders and schizophrenia. For all three disorders we limited our analyses to those genes with dynamic

temporal expression in the brain and asked if they were enriched in particular clusters when compared to all genes showing dynamic

temporal expression in the brain (binomial tests with Bonferroni correction). This translated into 15 genes associated with primary

microcephaly and with dynamic temporal profiles in the brain (out of a set of 16 genes associated with this condition; Verloes

et al., 1993), 79 genes associated with autism spectrum disorders (out of 102; Satterstrom et al., 2020) and 45 genes associated

with schizophrenia (out of 75; Ripke et al., 2014). For our analysis of genes associated with schizophrenia we only considered loci

where atmost two geneswere associatedwith the causative variant.We also performed the analysis of genes associated with autism

spectrum disorders using a larger dataset of autism associated genes (164 with dynamic temporal profiles out of 233; Iossifov et al.,

2015) and obtained the same result (i.e., significant enrichment in cluster 8, 62 out of 164 genes, Bonferroni-corrected P-value = 83

10�9). The list of human essential genes was obtained from the work of Bartha and colleagues (Bartha et al., 2018).

The time- and organ-specificity indexes were based on the Tau metric of tissue-specificity (Yanai et al., 2005) and were retrieved

from the developmental resource (Cardoso-Moreira et al., 2019). Both indexes range from 0 (broad expression) to 1 (restricted

expression). The pleiotropy index is the number of samples where a gene is expressed (RPKM > 1) over the total number of samples.

Themost common temporal profiles in each organwere identified using the soft-clustering approach (c-means) implemented in the

R package mFuzz (2.32.0) (Futschik and Carlisle, 2005; Kumar and Futschik, 2007). The clustering was restricted to genes previously

identified as showing significant temporal differential expression in each organ (i.e., developmentally dynamic genes) (Cardoso-Mor-

eira et al., 2019). We used as input the VS-transformed counts. Prior to clustering, mFuzz standardizes the expression values of every

gene so that the average expression value for each gene is zero and the standard deviation of its expression profile is one. This is

done to make genes comparable. The number of clusters was set to 6-8 depending on the organ.
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Age of human genes and orthology
The classification of human genes according to their evolutionary age (i.e., to when they first originated) was retrived from the Gen-

Tree database (http://gentree.ioz.ac.cn/) (Shao et al., 2019). The age assignments are based on the human genome assembly hg19

and on Ensembl version 73 annotations.

The lists of orthologs between human genes and mouse, rat, rabbit, and rhesus macaque was obtained using Ensembl’s BioMart

(Yates et al., 2016). The lists of orthologs are based on Ensembl version 85 annotations.

Organ developmental trajectories
For each organ, we compared the developmental trajectories of orthologous genes previously identified as showing significant tem-

poral differential expression (Cardoso-Moreira et al., 2019). We used as input the VS-transformed counts (median across replicates)

for matching stages between human and each of the other species. The developmental stage correspondences across species were

retrieved from the developmental resource (Cardoso-Moreira et al., 2019). We used GPClust (Hensman et al., 2012, 2013, 2015),

which clusters time-series using Gaussian processes, to cluster the combined data for human and each of the other species. We

set the noise variance (k2.variance.fix) to 0.7 and let GPClust infer the number of clusters. For each gene, GPClust assigned the prob-

ability of it belonging to each of the clusters. Therefore, for each gene we obtained a vector of probabilities that could be directly

compared between pairs of 1:1 orthologs. We calculated the probability that pairs of orthologs were in the same cluster and used

an FDR cut off of 5% to identify the genes that differed in trajectory between human and each of the other species. In Table S3,

we provide the P-values for each organ and species (adjusted for multiple testing using the Benjamini-Hochberg procedure (Benja-

mini and Hochberg, 1995)) for the null hypothesis that orthologs have the same trajectory, and their classification as ‘same’ or

‘different’ based on an FDR of 5%.

Changing the noise variance (k2.variance.fix) impacts the number of clusters that are identified. The fewer the clusters, the more

distinct are the expression profiles among the clusters, and vice versa. The degree of distinctiveness among the clusters impacts the

type of trajectory differences that are identified between species. If the k2.variance.fix is increased to 1, the number of clusters iden-

tified decreases and only genes with opposing developmental trajectories (i.e., whose expression is negatively correlated throughout

the time series) are identified as having trajectory differences between species (Figure S7D). Decreasing the k2.variance.fix to 0.5 has

the opposite effect; a larger number of clusters are identified and a larger number of genes with subtler temporal differences is iden-

tified (Figure S7D). In this study we were interested both in genes with opposing developmental trajectories (e.g., RIT1 and ABCA1 in

Figure 6B) and in genes that differ in only part of the time series (e.g., CLP1 and ABCB4 in Figure 6B). A k2.variance.fix of 1 identified

the former but a k2.variance.fix of 0.7 was required to identify the latter (all genes identified using a k2.variance.fix of 1 are also iden-

tified using the 0.7 cutoff). Further decreasing the k2.variance.fix increases the number of clusters but the extra clusters identified are

not enriched with specific biological processes and are strongly biased toward having genes from only one of the species (data not

shown). For these reasons, we decided to use a k2.variance.fix of 0.7 in our work. However, in Table S5 we provide the results from

this analysis (Benjamini-Hochberg adjusted P-values) using the three cutoffs (1, 0.7 and 0.5). Irrespective of the k2.variance.fix

threshold used, we always observe more differences between human and mouse (and rat) than between human and rabbit (Fig-

ure S6D), and the correlation coefficient distributions for genes identified as having different trajectories are at least as low as those

of genes that have no orthology relationship with each other (Figure S7D).

Characterization trajectory differences
The PsychENCODE consortium provides calls of differential gene expression between human and rhesus macaque for 16 brain

regions (11 areas of the cerebral neocortex, hippocampus, amygdala, striatum,mediodorsal nucleus of thalamus, and cerebellar cor-

tex) for 3 developmental periods (prenatal, postnatal, and adult) (Zhu et al., 2018). We compared the genes that we identified as hav-

ing similar or different brain developmental trajectories between human and rhesus macaque in terms of the number of comparisons

(regions * developmental periods) that the PsychENCODE dataset called as differentially expressed between the two species.We did

this analysis using 1) the set of 11 cerebral neocortex samples (Figure S6B), and 2) all brain regions except for the cerebellum (i.e., 15

regions). The result was the same.

We calculated variation in gene expression across the GTEx dataset (Lonsdale et al., 2013) using three measures: 1) the standard

deviation (SD), 2) the coefficient of variation (CV, standard deviation divided by the mean), and 3) the residual CV. The SD and CV are

the classical measures to estimate variation in gene expression but have known biases: SD tends to be biased toward genes with

high expression levels, whereas the CV tends to be biased toward genes with low expression levels (Simonovsky et al., 2019).

Because expression variation is highly correlated with the levels of gene expression (Anders and Huber, 2010), we also used a mea-

sure of expression variation that takes into account gene expression levels, the residual CV (Sigalova et al., 2020). The residual CV

uses the residuals from a locally weighed regression (LOESS) of the CV on median expression, and it is highly correlated with other

measures of expression variation that take into account expression levels (Sigalova et al., 2020). Using all threemeasures, we consis-

tently found that in the brain and testis, genes with trajectory differences tend to show less variation in gene expression than genes

with similar trajectories, whereas no differences are observed in the other organs. It is unclear why there is a difference for the brain

and testis. The values for CV and residual CV shown in Figure S6E are from Sigalova and colleagues (Sigalova et al., 2020) based on

GTEx samples for the cortex (matched to our brain samples), cerebellum, left ventricle (matched to our heart samples, similar results

using the atrial appendage samples), liver and testis.
e3 Cell Reports 33, 108308, October 27, 2020
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We compared genes with similar and different organ trajectories using two different metrics of functional constraint: 1) the residual

variation intolerance score (RVIS), and 2) the probability of being intolerant to loss-of-function mutations (pLI score). Both metrics

were applied to data from the Exome Aggregation Consortium (ExAC) (Lek et al., 2016). We obtained the pLI and RVIS scores

from the work of Dickinson and colleagues (Dickinson et al., 2016). The RVIS and pLI scores give similar results. We used the

copy-number variation (CNV) intolerance score as applied to the ExAC data from the work of Ruderfer and colleagues (Ruderfer

et al., 2016).

The animal and organ silhouettes used in the figures were originally published by Cardoso-Moreira and colleagues (Cardoso-Mor-

eira et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses and plots were done in R (3.3.2) (R Core Team, 2014). Plots were created using the R packages ggplot2 (2.2.1)

(Wickham, 2009), gridExtra (2.2.1) (Auguie, 2016), reshape2 (1.4.2) (Wickham, 2007), plyr (1.8.4) (Wickham, 2011), factoextra (1.0.4)

(Kassambara and Mundt, 2017), and tidyverse (1.2.1) (Wickham, 2017).

The statistical details of our analyses are reported in the figure legends, figures, Results and STAR Methods. These include the

statistical tests used, the exact numbers of genes tested and the multiple-test corrections performed.
Cell Reports 33, 108308, October 27, 2020 e4
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Figure S1. Human weighted gene co-expression network, Related to Figure 1 (A) Organ developmental profiles for each 
module; shown is the module’s eigengene. (B) There is a strong positive correlation between the fraction of developmentally 
dynamic lncRNAs in a module and the fraction of poorly studied protein-coding genes. Poorly studied genes are those with 3 
or fewer publications (left) or those with 8 or fewer publications (right). Data on the number of publications are from Stoeger
and colleagues (Stoeger et al., 2018). Shaded area corresponds to the 95% confidence interval.
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Figure S2. Spatiotemporal profiles of disease genes, Related to Figure 2. (A) Organ- and time-specificity (median across 
organs) for genes in different classes of phenotypic severity (P-values from Wilcoxon rank sum test, two-sided). The box 
plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile range. The number of genes in 
each class is provided in Figure 2A. (B) Distribution of genes associated with heart disease among the 6 heart clusters. The 
developmental profiles of the 6 clusters are shown on the left. The y-axis shows standardized expression levels (Methods). 
The profile of each gene in the cluster is shown in red; the white line shows the cluster center. Cluster 1 is enriched for heart 
disease-associated genes both when using all genes associated with a heart phenotype (50 out of 230 genes) and when 
restricting the set to those exclusively associated with the heart (19 out of 46 genes) (P-values from binomial tests after 
Bonferroni correction). (C) Distribution of genes associated with metabolic diseases among the 6 liver clusters. The 
developmental profiles of the 6 clusters are shown on the left. The y-axis shows standardized expression levels (Methods). 
The profile of each gene in the cluster is shown in red; the white line shows the cluster centre. Cluster 5 is enriched for 
metabolic disease-associated genes both when using all genes associated with a metabolic phenotype (174 out of 379 genes) 
and when restricting the set to those exclusively associated with metabolism (70 out of 103 genes) (P-values from binomial 
tests after Bonferroni correction). (D) Number of organs where genes have dynamic temporal profiles as a function of the 
number of organs where they are known to cause disease. Number of genes in each disease class in parenthesis. (E) Time-
specificity in different organs for genes associated exclusively with nervous system phenotypes (n = 196 genes). In (D) and 
(E) the box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile range.
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Figure S3: Recently originated genes tend to be poorly studied, Related to Figure 3. The proportion of poorly studied 
genes (i.e., those with 3 or fewer publications (black) or those with 8 or fewer publications (grey)) increases for genes of 
successively younger evolutionary ages (i.e. with more recent origins). In this analysis, the youngest genes are those that are 
human-specific (top) and the oldest are those shared across vertebrates (bottom). In parenthesis are the number of genes in 
each age class. Data on the evolutionary age of genes are from GenTree (Shao et al., 2019) and data on the number of 
publications are from Stoeger and colleagues (Stoeger et al., 2018). The dataset of Stoeger and colleagues does not include 
data for most recently originated genes (those originated along the primate lineage), so the estimates provided are 
conservative (i.e., current knowledge on these genes is even more limited). 
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Figure S4: Breadth of spatiotemporal expression of human genes and their orthologs in mouse, rat, rabbit and rhesus, 
Related to Figure 4. Relationship between human expression pleiotropy and those of the other species. The blue dots denote 
disease-associated genes and the orange dots denote disease-associated genes expressed in at least 50% of the samples in one 
species but in less than 10% of the samples in the other. Note that the rhesus macaque time series is shorter, not covering the 
period of embryonic development sampled in the other species.
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Figure S4



Development

Ex
pr

es
si

on
 le

ve
ls

1,519 / 7,132 
genes (21%)

Cerebellum

Liver

Testis

1,528 / 5,741 
genes (27%)

2,796 / 8,666 
genes (32%)

Figure S5: Developmental trajectory differences between human and mouse in cerebellum, liver and testis, Related to 
Figure 5. We used soft clustering to group human genes and their mouse orthologs according to their temporal expression in 
each organ. The genes for which the human and mouse ortholog were assigned to a different cluster are shown on top. Each 
line represents a pair of human-mouse orthologs and shows the cluster assignment in human (top) and mouse (bottom). The 
lines are colored according to the human cluster assignment. The clusters identified in each organ are shown below (grey 
lines correspond to individual genes and the colored lines to the cluster center, which is akin to the median expression of the 
cluster). The y-axis shows the log normalized expression levels and the x-axis shows the samples ordered from early to late 
development. In liver and testis, only the profiles of the first 9 clusters are shown. This panel complements Figure 5 which 
shows the same analysis for brain, heart and kidney.
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Figure S6: Developmental trajectory differences between human and the other species, Related to Figure 6. (A) If a
gene has a similar trajectory between mouse and rat, then the human-mouse comparison is expected to give a similar result to
the human-rat comparison. The panel on the left shows that most genes (96% across organs) called as having a similar
trajectory between mouse and rat and between human and mouse, are also called as having a similar trajectory between
human and rat (as expected). The panel on the right shows that most genes (70% across organs) called as having a similar
trajectory between mouse and rat and a different trajectory between human and mouse, are also called as having a different
trajectory between human and rat. (B) The PsychENCODE consortium compared gene expression profiles between human
and rhesus macaque for 11 regions of the neocortex and for 3 developmental periods (i.e., prenatal, postnatal, and adult), for a
total of 33 comparisons. We compared the genes that we identified as having similar or different brain developmental
trajectories between human and rhesus macaque in terms of the number of comparisons that the PsychENCODE dataset
called as differentially expressed. The PsychENCODE dataset provided comparisons for 234 of the 399 genes that we
identified as having trajectory differences and for 2,327 of the 5,615 genes that we identified as having similar trajectories.
The P-value is from a Wilcoxon rank sum test. The box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5
times the interquartile range. (C) Percentage of genes in each organ that have different trajectories between human and
mouse, rat and rabbit. This analysis is similar to that in Figure 6A except that the set of genes tested for trajectory differences
is the same for all species (i.e., 5287 1:1 orthologous genes across the four species tested in the brain, 3786 in the cerebellum,
2608 in the heart, 3767 in the kidney, 3430 in the liver and 4500 in the testis). (D) Proportion of genes with different
trajectories between human (H) and mouse (M), rat (R), rabbit (Rab) and Rhesus (Rhe) using different thresholds of
k2.variance.fix (k = 1, k = 0.7 and k = 0.5). The set of genes identified using k=0.7 includes the set of genes identified using
k=1; the set of genes identified using k=0.5 includes the sets of genes identified using k=1 and k=0.7. (E) Differences in gene
expression variation among humans (GTEx dataset) between genes identified as having different or similar trajectories in the
human-mouse comparison. The top row shows the variation of gene expression estimated as the coefficient of variation (CV;
standard deviation divided by the mean) and the bottom row shows a derived measure of the coefficient of variation, residual
CV, which also takes into consideration differences in gene expression levels (Methods). All P-values are from Wilcoxon
rank sum tests after Bonferroni correction. The box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times
the interquartile range.



Figure S7
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Figure S7: Developmental trajectory differences between human and other species, Related to Figure 6. (A) Intolerance
to functional mutations (probability that a gene is intolerant to a loss-of-function mutation, known as ‘pLI’ score) for genes
with different or similar trajectories between human and mouse. Low values on the y-axis means low tolerance to functional
mutations. (B) Intolerance to copy-number variants (probability that a gene is intolerant duplication and/or deletion
polymorphisms) for genes with different or similar trajectories between human and mouse. Low values on the y-axis means
high tolerance to copy-number variants. (C) Percentage of genes in brain, heart and liver that differ in trajectories between
human and rabbit. Bonferroni-corrected P-values for comparisons between disease and non-disease genes are from Fisher’s
exact tests and Bonferroni-corrected P-values for comparisons of disease genes with different ages of onset are from binomial
tests. (D) Spearman correlation of the temporal expression of human genes and their orthologs in mouse (top), rabbit (middle)
and rat (bottom) for genes called as having different trajectories using different values of k2.variance.fix (k = 1, k = 0.7 and k
= 0.5) and for genes called as having the same trajectory. Correlations for unrelated (non-orthologous) pairs of genes are also
shown (“shuffled”) as reference.
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