

Supporting Information

for *Adv. Sci.*, DOI: 10.1002/advs.201903260 **Carbon Microtube Textile with MoS² Nanosheets Grown on Both Outer and Inner Walls as Multifunctional Interlayer for Lithium-Sulfur Batteries**

*Jiaye Yang, Lihong Yu, Bangbei Zheng, Narui Li***,** *Jingyu Xi and Xinping Qiu*

This file includes: Figure S1-S16, Table S1-S2 and references.

Figure S1. Macro-morphology evolution. (a) Photograph of CC, CMT and $MoS₂@CMT$, (b-c) flexible feature of CMT and $MoS_2@CMT$.

Figure S2. Micro-morphology evolution. Surface (left) and cross-sectional (right) SEM images of (a) CC, (b) CMT, and (c) $MoS₂@CMT$.

Figure S3. SEM images of CMT. (a) Low- magnification, (b) outside surface, (c) internal surface, (d) cross-section.

Figure S4. SEM image of $MoS_2@CMT$ with high magnification.

Figure S5. High-resolution XPS spectrum of $MoS₂@CMT$. (a) C 1s, (b) O 1s.

Figure S6. Electrolyte contact angle of (a) PP, (b) CMT, and (c) MoS₂@CMT.

Figure S7. Photographs of the resistance measurement of (a) CMT and (b) $MoS_2@CMT$.

Figure S8. The images of the adsorption capability of CMT and $MoS_2@CMT$ towards Li_2S_6 .

Figure S9. Comparison of the S 2p XPS peaks of $MoS_2@CMT$ before and after Li_2S_6 adsorption.

Figure S10. Charge/discharge profiles of (a) CMT and (b) $MoS₂@CMT$ without sulfur loading.

Pure lithium foil and Celgard 2400 separator were used as the anode and separator, respectively. The CMT or $MoS₂@CMT$ interlayer (with a diameter of 19 mm) was used as the cathode. 1 M LiTFSI and 1 wt. % LiNO₃ in DOL and DME solution (1:1 by volume) was used as the electrolyte. The volume of the electrolyte used in each battery was 80 μL. Galvanostatic charge/discharge was carried out in the voltage window of 1.7-2.8 V at a current density of 0.5 C (corresponding to the current of LSB with 1 mg cm⁻² of S loading).

Figure S11. The cyclability of the Li-S batteries with MoS₂@CMT interlayer at 2 and 3 C rates.

Figure S12. Charge/discharge profiles of the Li-S batteries employing (a) PP separator, (b) CMT interlayer, and (c) $MoS₂@CMT$ interlayer at different rates.

Figure S13. The rate performances of PP separator, CMT interlayer and $MoS_2@CMT$ interlayer under the sulfur loading of 2 mg $cm⁻²$.

Figure S14. The cyclability of the Li-S battery with $MoS₂@CMT$ interlayer at 0.5 C with a high sulfur loading of 4.5 mg $cm⁻²$.

Figure S15. Cyclic voltammetry curves and the linear relationship of the peak current (i_p) vs. the square root of the scan rate $(v^{1/2})$ for PP separator (a, d), CMT interlayer (b, e) and MoS₂@CMT (c, f) interlayer at various scanning rates between 1.7 and 2.8 V.

The peak current (I_p) and the square root of the scan rate $(v^{0.5})$ exhibit a linear relationship, which reflects a diffusion-controlled process. PP-, CMT- and $MoS₂@CMT-based LSBs$ are tested under the same conditions for comparison. The anodic peak (α) refers to the reaction from Li₂S₂/Li₂S to high-order Li₂S_x (4≤x≤8) and, finally, to S₈. On the other hand, the cathodic peak (γ), located at ~2.35 V, is related to the reduction from S_8 to soluble Li₂S_x (4≤x≤8). The other cathodic peak (β) is located at ~2.05 V, which is associated with a further reduction of high-order polysulfide to Li_2S_2/Li_2S .

Table S1. The comparison of electrochemical performance and relevant parameters of this work with other similar reports in the literatures about the interlayers at 0.5C rate for 100 cycles.

Table S2. Li⁺ diffusion coefficients (D_{Li+}) of batteries with different configurations calculated from the Randles-Sevcik equation.

\mathbf{Li}^+ diffusion coefficient ($D_{\mathbf{Li}+}$):

 $D_{\text{Li+}}$ was calculated through the Randles-Sevcik equation:

$$
i_{\rm p} = 2.69 \times 10^5 n^{3/2} A D^{1/2} v^{1/2} \Delta C_0
$$

in which i_p is the peak current (mA), *n* is the number of electrons transferred in the reaction (for Li-S batteries, $n=2$), *A* is the electrode area (cm²), *D* is the Li⁺ diffusion coefficient (cm²) s⁻¹), ΔC_0 is the change of Li⁺ concentration (mol cm⁻³), and v is the scan rate.

Figure S16. The analysis of the batteries after cycling at 0.5 C for 500 cycles. Surface SEM images of the cathodes removed from the Li-S batteries using: (a) PP separator, (b) CMT interlayer, and (c) $MoS₂@CMT$ interlayer. (d) Photograph of the corresponding PP separators.

References

[1] J. Y. Wu, X. W. Li, H. X. Zeng, Y. Xue, F. Y. Chen, Z. G. Xue, Y. S. Ye, X. L. Xie, *J. Mater. Chem. A* **2019**, *7*, 7897.

[2] J. Y. Wu, H. X. Zeng, X. W. Li, H. J. Pei, Z. G. Xue, Y. S. Ye, X. L. Xie, *ACS Appl. Energy. Mater* **2019**, *2*, 1702.

[3] E. T. Kim, J. Park, C. Kim, A. G. Simmonds, Y. E. Sung, J. Pyun, K. Char, *ACS Macro. Lett.* **2016**, *5*, 471.

[4] J. Y. Wu, N. You, X. W. Li, H. X. Zeng, S. Li, Z. G. Xue, Y. S. Ye, X. L. Xie, *J. Mater. Chem. A* **2019**, *7*, 7644.

[5] Z. X. Cao, J. Zhang, Y. M. Ding, Y. L. Li, M. J. Shi, H. Y. Yue, Y. Qiao, Y. H. Yin, S. T. Yang, *J. Mater. Chem. A* **2016**, *4*, 8636.

[6] T. Liu, S. M. Sun, J. L. Hao, W. Song, Q. H. Niu, X. L. Sun, Y. Wu, D. P. Song, J. F. Wu, *ACS Appl. Mater. Interfaces* **2019**, *11*, 15607.

[7] B. B. Zheng, N. R. Li, J. Y. Yang, J. Y. Xi, *Chem. Commun*. **2019**, *55*, 2289.