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Distributions of 16S integer count data for mGWAS taxa 

To evaluate the normality of 16S mGWAS taxa count distribution, we estimated the 

Shapiro’s W-statistic, a measure of normality ranging from 0-1, where one is equal to a 

perfectly normal distribution, for the raw data distribution as well as rank normal transformed 

(RNT) and log2 transformations of the data. The rank normal transformation where first zero-

truncated when the prevalence of 0 counts was greater than 5% in the population and, for the 

log transformation, all zero-values where removed. The average W-statistic for the raw data 

set was 0.488 with a range of 0.027 to 0.99. As seen in Supplementary Figure 1, the rank 

normal transformations in blue performed as expected in normalizing the distributions. 

Despite this, there were some instances where the distributions appeared to be bimodal. This 

is the product of an abundance of zero values below the 5% prevalence threshold we used to 

push a taxa through a hurdle binary (HB) analysis. In these instances, there were many zero 

or other common values in the data distribution that carry the same rank upon rank normal 

transformation. An option worth evaluating in the future is randomly ranking tied values, 

which would eliminate the bimodality of some distributions. However, it is worth considering 

the effect of randomly ranking tied values when the number of tied values is as large as those 

seen in zero-inflated microbiota abundances.   

We chose to rank normal transform each continuous phenotype because it performed better at 

normalizing the distributions than log transformation, as seen in Supplementary Figure 2. In 

fact, in six instances, the log transformation made the distribution less normal than raw 

distribution as determined by a comparison of the W-statistics (Supplementary Table 17). 

Moreover, the decision on how to treat zero values is not straight forward for log 

transformations, as you might remove all zero values or simply add a constant to all 

observations. Regardless, we deemed the performance of log transformations on ecological 

count data, such as microbial 16S data, unsatisfactory for the analysis we aimed to carry out 

and moved forward with rank normal transformations. 

 

Distribution / model choice 

Each of the 139 mGWAS worthy raw abundance traits were tested with the R function 

fitdist() (package fitdistrplus) to find the best negative binomial, gamma, lognormal, and 

Poisson distribution parameters. We then identified the best fitting distribution, for each raw 

abundance distribution with a goodness of fit statistic (function gofstat()). Of the 139 traits, 
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10 were best explained by a gamma distribution, 67 by a lognormal, and 62 with a negative 

binomial. While these distributions may model the raw data the “best” it does not mean it fits 

the data well. At the onset of this study we ran 10 MT GWAS using a negative binomial 

distribution. Six of those 10 MT are “best” explained by a negative binomial (NB) 

distribution. The taxa run through a negative binomial GWAS are (1) C_Actibobacteria 

[genomic inflation or λ =1.709], (2) F_Coriobacteriaceae [λ = 1.679], (3) F_Sutterellaceae [λ 

= 1.092], (4) F_Veillonellaceae [NB; λ = 1.46], (5) G_Alistipes [NB, λ = 1.583], (6) 

G_Anaerostipes [NB; λ = 1.494], (7) G_Blautia [λ = 1.485], G_Clostridium_IV [NB; λ = 

2.2], (9) G_Dorea [NB; λ = 1.167], and (10) F_Bacteroidaceae [NB; λ = 0.9193]. We quickly 

noticed that the NB distribution was insufficient in its ability to fit the raw data distributions 

of the FGFP MT data, specifically the skewness of the distribution tails, as highlighted by 

observed inflated p-values and genomic inflation values (λ), as reported above. Given the 

numerous distributions that may be needed to model all of the MT in this study, the 

insufficiency of the NB distribution to model that data in hand, and the fact that logging the 

data often made distribution less normal than the raw data, we chose to rank normal 

transform all MT and run linear models in this study.  

 

Heritability 

Estimates of “chip-based” heritability was carried out as described in Methods, using GCTA; 

however, for the purposes of comparing heritability estimates across studies, we performed 

estimates for not only our RNT but also log2 and box-cox transformations, as used by other 

studies like Goodrich et al2. As seen in Extended Data Fig. 1a and 1b, the choice of data 

transformation (RNT, Box-Cox, or log) can influence on the estimation of heritability, even 

within the same data set, making comparison across studies even more complicated. Yet, we 

compare our FGFP heritability estimates with those published by Goodrich et al. (Extended 

Data Fig. 1c) and Davenport et al. (Extended Data Fig. 1d). As Goodrich et al. used Box-Cox 

transformation we compare their estimates to our box-cox transformed data estimates, and as 

Davenport used quantile-quantile normalizations we chose to compare it to our rank normal 

transformed data. The data used to generate Extended Data Fig. 1 can be found in Table S3. 

Between FGFP box-cox transformed data and Goodrich et al. (2016) four microbial traits 

have estimates of heritability whose confidence intervals do not overlap with zero in both 

datasets (Extended Data Fig. 1c). They are G_Bifidobacterium, G_Roseburia, 
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G_Faecalibacterium, and G_unclassified_ F_Ruminococcaceae. Between FGFP and 

Davenport et al. (2015) the only microbial trait that appears to have an estimate of heritability 

whose confidence intervals do not overlap with zero in both datasets is 

C_Gammaproteobacteria, with an estimate of 0.332 (se = 0.178) in FGFP and an estimate of 

0.373 (se = 0.249) in Davenport et al. (2015).  

 

FGFP sample description 

The current Flemish Gut Flora Project (FGFP) 16S fecal microbiome dataset is composed of 

2482 individuals, collected in the Flanders region of Belgium. Of those, 2259 individuals also 

had genotype data and will be described here. A total of 1347 individuals are genetically 

predicted to be female, 912 as male, with an overall average age, height, weight, and body 

mass index (BMI) of 52.3 years, 170.30 cm, 72.97 kilograms, and 25.09 kg/m2, respectively. 

Average and 95% confidence intervals (CI) for age (years), height (cm), weight (kilograms), 

and BMI (kg/m2) are partitioned sex and presented below in Supplementary Table 6, and 

visually in Supplementary Figure 3. 

 

FGFP 16S microbiome data description 

The V4 region of the 16S rRNA was amplified using the 515F/806R primer pair 

(GTGYCAGCMGCCGCGGTAA and GGACTACNVGGGTWTCTAAT). The DADA2 

pipeline was used to partition rarefaction counts (10,000) into taxonomic units. A total of 499 

taxonomic units were identified in the FGFP dataset, one (G_Syntrophococcus) exhibited no 

variation was removed from further analysis, which was composed of 18 phyla, 35 class, 53 

order, 105 family, and 287 genera. The most abundant phyla, on average, were Firmicutes, 

Bacteroidetes, Proteobacteria, and Actinobacteria, each making up, on average, greater than 

1% of the fecal microbiome.  Extended Data Fig. 4a presents the 18 phyla by the rank order 

of their average abundance. Similarly, the only phyla present in greater than 99% of all 

sampled individuals was Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. The 

rank order of prevalence for all phyla is presented in Extended Data Fig. 4b.  

 

Quality control of microbiome individual-level data was performed by estimating an initial 

non-metric multiple dimension scaling (MDS) using the isoMDS() function and Bray-Curtis 
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distance derived from the vegdist() function of the vegan package in R, and rarefaction 

genera-level data. Two individuals presented extreme microbiome profiles (> 5 standard 

deviation from MDS1 or MDS2 means; Supplementary Figure 4) and were excluded from all 

further analysis.  

α- and β-diversity metric estimates as well as enterotyping was performed using all 

rarefaction genera-level data as described in online methods. In Extended Data Fig. 4c, we 

present the 2-axis inter-individual β-diversity, or specifically the Bray-Curtis non-metric 

multiple dimension scaling (nMDS) estimates in relationship to the enterotype calls derived 

from the Dirichlet multinomial mixtures (DMM) method. The two measures are strongly 

related as illustrated in both the nMDS and the boxplots of each dimension (Extended Data 

Fig. 4c).  

Microbiome genome-wide association studies (mGWAS) taxa, or those taxa we identified for 

carrying forward into association analysis with genotypes, were identified following two 

criteria. Firstly, the taxa needed to be present in at least 15% or 339 of the 2259 sampled 

individuals. Second, the taxa needed to make up a reasonable (5%) proportion of the 

rarefaction counts in at least one of the sampled individuals. Previously, we had defined 

genome-wide association study (GWAS) taxa, called core taxa at the time, as those with an 

average abundance of 40 reads in rarefaction (10,000 reads) data1 (Extended Data Fig. 5a). 

We effectively expanded upon this single criterion to include more taxa, specifically those 

that may be considered to be prevalent (making up at least 5% of the rarefaction data) in at 

least one individual. The relationship between average abundance in the population, 

prevalence in the population, and proportional composition within an individual is presented 

in Extended Data Fig. 5a. It is worth noting that some taxa are highly prevalent in the 

population but have both a low average abundance and do not make up a substantial 

proportion of reads in any one individual.  

Among all taxon, there are 19 genera, 8 families, 6 orders, 6 classes and 4 phyla that may be 

considered core microbiome, defined as those with a population-level prevalence of at least 

95% (Supplementary Table 15). Among the genera in Supplementary Table 15, only 

G_Intestinimonas (indicated with “**”) was not included in the mGWAS, because it did not 

make up at least 5% of any one individual’s microbiome, consistent with its low mean 

abundance (Supplementary Table 16). 
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Those taxa exhibiting high prevalence, but low abundance, and never making up at least 5% 

of an individual’s microbiome (among those in Extended Data Fig. 5a plotted in red) are 

listed below in Supplementary Table 16. Their high prevalence makes them of interest, but 

their low abundance makes their accuracy and precision of quantification in rarefaction data 

low, as described by Wang et al. 

Among the 139 taxa that met our criteria as mGWAS taxa, there are statistical redundancies 

in the form of taxon from two or more taxonomic levels that were highly correlated. To 

illustrate this, we calculated a correlation distance, defined as 1-Spearman’s rho among all 

139 taxon in a pairwise fashion using the function cor() and flags, method = “sp”, and use = 

“pairwise.complete.obs”, and then generated a clustering dendrogram with the function 

hclust() and flag method = “complete” in R (Extended Data Fig. 5b). We defined statistical 

redundancy across taxa as those pairs with a Pearson’s rho greater than or equal to 0.985. 

This is illustrated with the red horizontal line in Extended Data Fig. 5b at a value of 0.015.  

The level of correlation among the mGWAS taxa is further illustrated in Extended Data Fig. 

5c with a correlation plot of Spearman’s rho created with the corrplot() function from the 

corrplot package for R. To aid in the identification of possible clusters, eight cluster groups 

where drawn in boxes with the corrplot flag “addrect = 8”. The clusters minimize the sum of 

square difference within a cluster and maximize those differences among taxa. Eight clusters 

are illustrated because there are eight phylum (“P_*”) level taxa among the mGWAS taxa.  

The taxa retained for the mGWAS were simply identified by working from the genera-level 

data and going up the taxonomic levels to identify any other taxon that was highly correlated 

to a lower-level taxon. When the correlation coefficient was greater than or equal to 0.985, 

we removed the higher taxa from the list of taxa to include in the mGWAS. 

 

Batch variables influence microbiome variation 

A total of eight batch related variables were available, to evaluate variation in count data that 

may have been introduced during laboratory procedures. Those variables included (1) the 

extraction type, (2) extraction date, (3) who the extraction was performed by, (4) the aliquot 

date, (5) who performed the aliquot, (6) the PCR plate ID, (7) the position in the plate and (8) 

the library production data. In a univariate analysis against each of the 92 RNT mGWAS taxa 

(with zero-truncation when the frequency of zeros in the population exceed 5%) each of these 

variables was associated with abundance variation at a false discovery rate (FDR; Benjamini-
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Hochberg corrected p-value) of 5%. Extraction type influenced 35 taxa, extraction date 9, 

extraction by 11, aliquot date 42, aliquot by 44, PCR plate 42, position 1, and library date 21 

at an FDR of 5% or less. The average variance explained across all 92 abundance traits is 

presented in Supplementary Figure 5.  

Position, and library date had numerous levels containing only one or a few individual 

samples, and the person performing the extraction was strongly structured by extraction date, 

leading us to believe that including these as covariates may be over adjusting the data. As 

such, we chose to include extraction type, extraction date, aliquot date, the person performing 

the aliquot, and the library PCR plate as covariates in all association analysis with genotypes. 

 

Heritability power estimates 

GCTA-GREML (genome wide complex trait analysis – genomic-relatedness-based restricted 

maximum-likelihood) genetic (co)variation power estimates were calculated using scripts 

provided on the GCTA website (http://cnsgenomics.com/software/gcta/#GREML 

powercalculator, Extended Data Fig. 7). When estimating the power of quantitative traits, we 

iterated over sample sizes of 300 to 2300 at steps of 300, with narrow sense heritability set 

from 0.01 to 0.7 at steps of 0.01. As such we modified the parameters “n” and “hsq” in the 

provided R function calcUniQt(). To estimate power for our presence/absence microbial traits 

we used the provided function calcUniCc(), and modified the parameters “cases”, ”controls”, 

”hsq”, ”K”, where cases and controls are the number of individuals where the microbe is 

present and absent, hsq is the heritability estimate and K is the prevalence of the microbial 

trait in the population. As with the quantitative trait we looped over heritability estimates 

from 0.01 to 0.7 at steps of 0.01. Prevalence (K) of the microbial trait ranged from 0.15 to 0.5 

at steps of 0.05. Cases where then defined as our sample size times prevalence in the 

population, or 2300 * K, and the sample size of controls was set as 2300 – cases.  Alpha was 

set to 0.05 for all estimates.  

 

Influence of genotype uncertainty on mGWAS parameter estimates 

To account for genotype uncertainty in the imputed genotype data, we used the score method, 

or missing data likelihood score test, as implemented by SNPTEST3. This method is 

computationally fast and is designed to revert to the em or expectation-maximization method 
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when the score test performs poorly. In checking this, beta estimates derived from the score 

and em methods were highly correlated, with deviations at the tails (Supplementary Figure 

8). We used SNPTEST’s score-based method as an initial screening and ranking of variants 

to carry forward into a targeted meta-analysis in the FoCus and PopGen studies which was 

then based on the slower but more stable em method. This two-step process (designed to 

illustrate the feasibility of host/microbiome GWAS) explains the unusual distribution of p-

values in the meta-analysis results presented in Figure 2c (as this is a targeted meta-analysis). 

 

16S prevalence across cohorts 

In this study, we were able to formalize analytical methods across studies but not laboratory 

protocols. Most importantly, the variable regions targeted between FGFP and the German 

studies varied. The FGFP study targeted V4 of the 16S rRNA locus, while FoCus and 

PopGen targeted V1-V2. As a product of this, there is variability in the microbiome variation 

across cohorts (Supplementary Figure 9). As a product of this, three taxa that were analyzed 

in FGFP mGWAS were not available for analysis in FoCus or PopGen. They are Escherichia 

Shigella, Hespellia, and Methanobrevibacter. 

 

Inter-study Catalog 

Starting with the supplementary material provided by Rothschild et al. (2018), we compiled a 

table of all of the previously reported mGWAS associated variants and their associated 

microbial trait (Table S7). We pruned via clumping all variants associated to the same traits 

but sitting in LD with each other, retaining the association with the smallest p-value. We then 

add to this data table the FGFP effect estimates (snptest: -method score), for the similar 

taxonomic trait or when not available one from a higher taxonomic level.  

Of the 44 reported variants associated with beta-diversity in previous studies, we had 

estimates on 35 of them. However, none of these previously reported associations had a p-

value less than 0.05 in our MANOVA analysis.  

A total of 591 genetic variants have been reported to be associated with microbial abundance 

in previous studies. We identified, in FGFP, estimates for the same SNP - trait pairs (or 

higher order taxon) in 545 instances. These 545 SNP – trait pairs involve 492 unique SNPs 

(rsids). In total 30 SNP – trait pairs exhibit a p-value less than 0.05 in the FGFP (snptest: -
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method score) data set. This represents just 5.5% of the tested pairs, a value similar to the 

randomly expected 5% assuming uniformity in the p-values. However, if we place a 

Bonferroni correction on the number of tests we are making here (0.05/492 = 1.016 x 10-4) 

the only associations that pass our Bonferroni p-value threshold are those between 

Bifidobacterium and variants within the block of LD around the MCM6 (LCT) selected locus. 

This includes the variant (rs6730157) within RAB3GAP1 (FGFP: beta = 0.145, se = 0.032, p-

value = 6.91 x 10-6), the variant with the strongest signal at this locus in Goodrich et al. 

(rs1446585) and sitting within R3HDM1 (FGFP: beta = 0.120, se = 0.032, p-value = 5.60 x 

10-5), and the presumed lactase-persistent variant (rs4988235; FGFP: beta = -0.147, se = 

0.033, p-value = 7.86 x 10-6), reported by both Goodrich et al. (2015) and Bonder et al. 

(2016) (Supplementary Figure 10). Finally, we note that the associations reported by 

Blekham et al. (2015), using exonic variants within LCT and the neighbouring gene UBXN4 

were not replicate in FGFP (Tables S7-S9).  

Interestingly, an association reported by Davenport et al. (2015) between the chromosome 

nine variant rs7868228 and family_Succinivibrionaceae in a winter sampling (Davenport: 

beta = -0.958, se = 0.195, p-value = 3.85 x 10-6) fell just below our Bonferroni p-value 

threshold in a higher taxonomic level, C_Gammaproteobacteria, in FGFP (beta = -0.142, se = 

0.042, p-value = 7.76 x 10-4). However, given that the direction of effect was also consistent 

we thought it worth noting here.  

As performed by Goodrich et al. (2016), in their Figure 3b, rather than attempting to compare 

the exact SNP-trait associated pair, they queried for the strongest association among all tested 

traits for each previously reported SNP. Effectively asking if previously reported variants 

associate with any microbial trait available in the new data set. We repeated this procedure 

here (Supplementary Figure 11) creating a table of 522 unique SNP – top microbiota traits 

(Tables S8). Using a Bonferroni corrected p-value threshold of 9.578 x 10-5 we once again 

identified Bifidobacterium for the LCT locus, an exact SNP-trait match as reported above, but 

also two other loci. The first, reported by Bonder et al. (2016) between genera Lactococcus 

and variant rs2294239, on chromosome 22 within the gene ZNRF3 (beta = -0.186, p-value = 

2.92 x 10-6) - is associated with G_unclassified_P_Bacteroidetes_RNT in the FGFP (-

method score) data set with estimates: beta = 0.225, se = 0.057, p-value = 7.11 x 10-5. This 

variant has also been previously reported in a GWAS for interaction between physical 

activity and adiposity in a multi-ethnic meta-analysis (Graff et al., 2017). The second, 

reported by Goodrich et al. (2016) between Anaerostipes and the SNP rs10233359 which is 
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an intergenic SNP on chromosome 7 (beta = -0.211, se = 0.036, p-value = 4.94 x 10-9) near 

the gene FOXP2 and GPR85. In the FGFP (-method score) data set this SNP is associated 

with another genera in the Lachnospiraceae family, Roseburia (beta = -0.224, se = 0.056, p-

value = 5.84 x 10-5). 
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Supplementary Tables 
 
 
 
sex N Age Height Weight BMI W/H LDL 

Female 1347 
50.54 165.86 67.41 24.48 0.87 119.04 

(23.21-71.00) (153.00-180.00) (49.00-97.73 (18.08-34.68) (0.70-1.12) (62.0-193.0) 

Male 912 
54.89 176.43 81.02 26.03 0.95 120.53 

(26.54-74.55) (162.00-190.00) 58.00-114.00 (19.37-35.31) (0.78-1.11) (65.0-188.35) 

 

Supplementary Table 6: FGFP cohort description. Average and 95% confidence intervals 
for age, height, weight, body mass index (BMI), waist-hip ratio (W/H) and LDL cholesterol, 
partitioned by genotype predicted sex in the FGFP cohort. 
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P_Actinobacteria P_Bacteroidetes P_Firmicutes P_Proteobacteria 

C_Actinobacteria C_Bacteroidia C_Betaproteobacteria C_Clostridia 

C_Erysipelotrichia C_Negativicutes O_Bacteroidales O_Burkholderiales 

O_Clostridiales O_Coriobacteriales O_Erysipelotrichales O_Selenomonadales 

F_Bacteroidaceae F_Coriobacteriaceae F_Erysipelotrichaceae F_Lachnospiraceae 

F_Porphyromonadaceae F_Rikenellaceae F_Ruminococcaceae F_u_O_Clostridiales 

G_Alistipes G_Anaerostipes G_Bacteroides G_Blautia 

G_Butyricicoccus G_Clostridium_IV G_Clostridium_XlVa G_Clostridium_XVIII 

G_Dorea G_Faecalibacterium G_Fusicatenibacter G_Intestinimonas** 

G_Oscillibacter G_Parabacteroides G_Roseburia G_Ruminococcus2 

G_u_F_Lachnospiraceae G_u_F_Ruminococcaceae G_u_O_Clostridiales  

 

Supplementary Table 15: Core microbial taxa. A table of taxon that may be defined as 
core taxa, given a prevalence value of 95%, or being present in 95% of all individuals 
sampled in FGFP. Colors represent taxonomic ranks (genus in blue, family in orange, order 
in yellow, class in green and phylum in grey). 
 

  



 

 13 

 
taxon Avg. Abundance log10(AvgAb) Prevalence 

G_Intestinimonas 18.599468 1.2695005 0.9525919 
G_Clostridium_XlVb 19.887461 1.2985793 0.8825875 

F_Clostridiales_Incertae_Sedis_XIII 14.54763 1.1627922 0.8475853 
G_Butyricimonas 14.49136 1.1611092 0.8028356 

G_Bilophila 13.810811 1.1402192 0.7970758 
G_Romboutsia 17.263181 1.2371208 0.7620735 

G_Flavonifractor 12.002658 1.0792774 0.7603013 
G_u_F_Clostridiales_Incertae_Sedis_XIII 7.396101 0.8690028 0.6951706 

G_Adlercreutzia 10.73992 1.0310011 0.6597253 
G_Mogibacterium 6.733274 0.8282263 0.5897209 

 

Supplementary Table 16: Prevalent but low abundant taxa. Taxa with prevalence over 
50%, but average abundance levels below 40, a value previously shown to indicate poor 
replicability in rarefaction data. 
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Supplementary Figures 
 

 
 

Supplementary Figure 1. Raw and RNT data distributions. Density plots of each taxa used 

in the mGWAS. Each plot illustrates the raw (red) and rank normal transformed (blue) data 

distributions. Data used to generate these plots can be found in Table S2. 
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Supplementary Figure 2: RNT and log2 W-statistic estimates. Density plot of the Shapiro 

W-statistics for rank normal transformed (blue) and log2 transformed (green) abundance data 

for all taxa used in the mGWAS. The Shapiro W-statistic ranges from 0, uniform, to 1, 

perfectly normal. The log2 data deviates more strongly from normality. Data used to generate 

this plot can be found in Table S17. 
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Supplementary Figure 3: Boxplot illustration of FGFP cohort. Boxplots illustrating the 

distribution of age, height, weight, body mass index, waist-hip ratio and LDL cholesterol in 

FGFP cohort, partitioned by genotype predicted sex. There are n = 1347 females and n = 912 

males in the study cohort. Each box plot presents the mean, first and third quantiles, and 95% 

confidence intervals of the data distribution. Individual level data used to generate this plot 

can be accessed upon request from Dr. Jeroen Raes. 
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Supplementary Figure 4: nMDS quality control plot identifying outliers. Individual level 

β-diversity, or non-metric multiple dimension scaling plot of FGFP individuals. The two 

individuals in red, where identified as outliers and removed from all subsequent analysis. 

Dashed grey lines indicate five standard deviation from mean estimates on dimension 1 

(vertical) and dimension 2 (horizontal). These are the thresholds for identifying spurious 

outliers. Data used to generate this plot can be found in Table S2. 
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Supplementary Figure 5: Average variation explained by batch variables. Bar-plot for 

the average variation explained (eta-squared on y-axis), across abundance mGWAS microbial 

traits, by each batch variable. The variable across the x-axis are extraction type, extraction 

performed by, aliquot performed by, PCR plate, aliquot date, extraction date, position on 

PCR plate, and library construction date.  
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Supplementary Figure 6: FGFP and 1000 Genomes population principal components. 

Principal component analysis results of array genotype data from (N = 2646) FGFP 

individuals (red) merged and plotted with the (N = 2504) 1000 genomes data set. The plot on 

the left illustrates all data points, while the plot on the right is a zoom, of the upper left corner 

square in the plot on the left, in on the FGFP cohort samples relative to other continental 

Europe (EUR) samples. Labels are FGFP (FGF), African (AFR), East Asia (EAS), Europe 

(EUR), and South Asia (SAS). The numerical values on x- and y-axis labels are the 

proportion of variance explained by that axis. Dashed lines represent PC1 (vertical) and PC2 

(horizontal) boundaries for individuals of Western Europe ancestry in the 1000 Genomes data 

set and where used to identify individuals in the FGFP cohort that were excluded from the 

GWAS for population structure. 
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Supplementary Figure 7: FGFP mGWAS principal components. Principal component 

analysis of the quality controlled (N = 2257) FGFP cohort samples. The numerical values on 

x- and y-axis labels are the proportion of variance explained by that axis. 
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Supplementary Figure 8: Comparison of FGFP beta estimates derived from em and 

score methods. Scatter plot illustrating the relationship between effect estimates (beta) 

derived from em (x-axis) and score (y-axis) based methods used to account for genotype 

uncertainty in imputed data. The size of each point is an indication of (n) the sample size for 

that SNP-microbial trait analysis, and the color of the dot indicates if it is an abundance (AB), 

presence/absence (PA) or alpha-diversity microbial trait. All specific microbial trait sample 

sizes can be found in Table S3. The purple line is a loess curve fit through the data. The grey 

dashed line has a slope of one and a y-intercept of 0. An estimate of the Spearman’s rho 

correlation coefficient is in the subtitle of the plot.  
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Supplementary Figure 9. Correlation of prevalence across the three study populations. 

Scatter plot of taxa prevalence between FGFP (n = 2257) and FoCus (n = 950) (top left), 

FGFP (n = 2257) and PopGen (n = 717) (top right), and PopGen (n = 717) and FoCus (n = 

950) (bottom left). The size and color of each dot is an indication of mean abundance. The 

grey dashed line is a line with a slope of one and a y-intercept of 0.  Data used to generate 

this plot can be found in Table S18. 
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Supplementary Figure 10: Locus Zoom plot of the MCM6, LCT and RAB3GAP1 region. 

A locus zoom plot (http://locuszoom.org) of two-sided F-test association p-value with 

Bifidobacterium abundance (n = 1975) on chromosome 2 at the RAB3GAP1/LCT/MCM6 

locus. Along the x-axis is the -log10 p-values and the y-axis is the base position along 

chromosome 2. Gene models are below the scatter plot aligning genes to the p-value 

estimates above. The color coding in the scatter plot indicates the LD (r2) estimates relative to 

the tagged variant (rs4988235) in purple. Note however that the variant with the smallest p-

value is within the RAB3GAP1 locus. 
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Supplementary Figure 11: Previously reported mGWAS SNPs and the most strongly 

associated MT in FGFP. Scatter plot of negative log10 (two-sided) p-values (F-test for AB 

traits, chi-squared for P/A traits) for the most associated MT, for each of the previously 

reported mGWAS associated SNPs. SNPs are ordered by their chromosomal and base 

position along the x-axis. The smallest p-value observed for each SNP, in the FGFP 

mGWAS, is indicated by the y-axis The horizontal red line is the Bonferroni corrected p-

value threshold given that we extracted estimates for 522 unique SNPs. The vertical blue, 

dashed line marks the MCM6/LCT region on chromosome 2. All of the blue dots above the 

red line and directly adjacent to the blue line are Bifidobacterium associations with the 

MCM6 region. All other SNP-MT trait associations observed above the Bonferroni threshold 

are annotated with their FGFP MT and SNP.  Sample sizes for each microbial trait and data 

used to generate this plot can be found in Table S8. 
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