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Supplementary methods 
 
Model description  
 
 The actin cytoskeletal meshwork is modeled as a two-dimensional deformable elastic 
material 1–6. This is a simplification of a three-dimensional model since on average the height of 
an adherent cell is much smaller than its in-plane dimensions, and so we neglect any out-of-plane 
deformations. The rheology of the cytoskeleton meshwork has been described as a viscoelastic 
gel with time-evolving material properties due to the turnover of actin and action of molecular 
motors 7–9. There are two possible theoretical descriptions used to capture this rheology: (a) 
elastic elements embedded in a viscous gel 10,11, or (b) viscous elements embedded in an elastic 
gel 4,12,13. The loss of traction force due to an ablation suggests that on timescales of tens of 
seconds the material response is well described by an elastic gel with viscous elements (Figure 
1f). Further, it has been reported that the viscous timescale of the actin gel due to the growth and 
reorganization of actin filaments (order of minutes) is much longer than our observation time 7,9. 
 
 For simplicity, the elastic gel is coarse-grained into a network of nodes interconnected by 
elastic springs, while viscous elements are excluded as their dynamics would only affect the 
transient behavior 4,14. An interconnected network of nodes and elastic links is a general 
theoretical approach used in previously published models to describe the mechanics of the cell 
interior of motile and adherent cells 1,2,4–6. While continuum approaches have been developed 
and successfully used as well 10,12,15, there is a tradition of modeling the cytoskeletal meshwork 
using discrete elements: nodes and springs 16. 
 
 Specifically, in the model, the cell interior is a two-dimensional rectangular network of 
nodes connected by Hookean elastic springs. The endpoints of the rectangular network are 
adhering to the substrate following experimental evidence (Figure 3a). The nodes represent 
material points of the cortical meshwork, while the elastic springs interconnecting the nodes 
model the mechanical response of the actin filament arrays. In the experiments with a dumbbell 
adhesive micropattern, large contractile actomyosin bundles are reported along the cell periphery 
stretching between the adhesive endpoints (Figure 1b). We include these bundles as additional 
nodes placed along a line at the top and bottom interface of the rectangular elastic meshwork. 
The nodes representing the actomyosin bundles are interconnected by Hookean elastic springs 
with an additional tension to mimic the effect of myosin-generated contractility. The nodes are 
also connected to the meshwork via additional linear elastic links. The endpoints of the 
contractile fibers are anchored to the substrate as was done with the endpoints of the elastic 
meshwork. Our theoretical model is similar in spirit to the model reported in 17: in both models, 
the cortical meshwork is discretized into a network of interconnected nodes and deformable 
elements, however our elements are elastic, while in 17, these elements are not Hookean springs, 
but rather ‘cables’ – springs that do not respond to compression.  
 
 



 

 

 At the beginning of the simulation, the initial network of nodes and springs is the result 
of a Delaunay triangulation algorithm applied to a rectangular domain. The nodes are chosen to 
be the vertices of the triangulation and the elastic springs are along the edges of the triangulation. 
All springs are created in an undeformed state. The linear springs in the meshwork are 
characterized by a stiffness 𝑘!, while the additional links representing the actomyosin bundles 
have spring stiffness 𝑘! and tension 𝛾!. The connectors between the contractile fibers and the 
elastic meshwork have the same spring stiffness as the meshwork 𝑘!. 
 
 Given this initial shape, elastic forces are computed at every node in the network. As was 
done previously 1,10, we assume that adhesion complexes generate viscous resistance to the 
deformation of the meshwork. The respective resistive force is given by 𝜉𝑢⃗ where 𝜉 is the 
effective adhesion drag coefficient and 𝑢⃗ is the velocity of the network in the lab coordinate 
system. The adhesion resistive force is balanced by the active elastic stresses: 𝜉𝑢⃗ = 𝐹⃗ at every 
material point. The elastic force at the material point is denoted by 𝐹⃗. At each time step, elastic 
forces are computed in the entire meshwork and the velocity of each node is determined from the 
force balance. At the endpoints of the rectangular network, the velocity is enforced to be zero 
since the cell is adhering to the substrate at these locations. Once the position of the nodes is 
updated in time, elastic forces are re-computed at these new locations and the algorithm proceeds 
as indicated above. Because of the relatively small deformations we never observe instabilities or 
crossovers in the triangulation. When the network achieves mechanical equilibrium, the forces 
exerted by the meshwork on the substrate (i.e., at the endpoints) are recorded as traction forces 
and qualitatively compared with experiments. 
 
 The scope of this theoretical framework is to probe the respective contribution of 
actomyosin bundled stress fibers, the internal cortical meshwork, and their mechanical coupling 
on exerted traction forces. The investigation is achieved by qualitative comparison of model 
predictions of the spatiotemporal distribution of traction forces and experimental measurements 
from adherent cells.  
 
 The values of the parameters were not taken from the literature, as there is a great 
variation in mechanical parameters reported in the published data due to significant mechanical 
differences in cell types, states and mechanochemical environments, as well as in experimental 
assays reported in multiple publications. Rather, we obtained model parameters from fits to one 
part of the experimental data, specifically to the measured values of the force loss due to a single 
cut along a stress fiber and of the force loss due to ablation. The rest of the data shows very good 
quantitative agreement with the predicted numerical experiments, without any additional changes 
in the parameter values (the number of parameters is also very small), which is a strong 
argument for the model validity. Moreover, as all measurements deal with the fraction of the 
force/energy loss, rather than with absolute dimensional force/energy values, we do not need the 
dimensional parameter values in the model. Rather, for computations, we normalize the 
parameters so that 𝑘! = 1 for the stiffness of the elastic network and the stiffness of the 
connections between the elastic meshwork and the contractile fibers.  



 

 

 
 For the contractile fibers we choose a larger spring stiffness of 𝑘! = 20 and tension 
𝛾! = 2 relative to the normalized stiffness of the elastic mesh. The value for the spring stiffness 
𝑘! is chosen to qualitatively reproduce the force loss for two consecutive cuts along the same 
fiber; specifically, the difference in the force released between the two cuts would be less 
significant by increasing 𝑘!. In the modified model with a contractile cortical meshwork, we 
found that decreasing 𝑘! results in too much force loss in the region of the cell opposite of the 
injured stress fiber. The value for the tension in the stress fiber, 𝛾!, is arbitrarily chosen – 
numerical experiments have shown that we can reproduce the data by varying 𝛾! in the wide 
range – but its value relative to 𝛾! is important. First, indifferent of our numeric choices for the 
stress fiber parameters, 𝑘! and 𝛾!, in the absence of a tension in the meshwork  (i.e., 𝛾! = 0) 
ablation of the mesh would never produce a force loss (Figure 3g). Second, introducing too large 
of a tension in the meshwork would imply that cuts along the fiber release very little force. To 
introduce cortical tension, we set 𝛾! = 0.5 = 0.25𝛾! to simultaneously reproduce the force loss 
due to a single cut along a stress fiber and force loss due to an ablation of the cortical network. In 
particular, there are two competing effects that limit the choice of 𝛾! — increasing 𝛾! increases 
the force released with ablation since the cortical mesh participates more in generating 
contraction, but increasing 𝛾! decreases the force released with a single cut on the fiber as then, 
the stress fibers contribute more to the force of the entire system. To balance these competing 
effects and match the force loss in ablation and single cut observed in experiments, we fix 𝛾! = 
0.25*𝛾!. Furthermore, we varied each of the two parameters, 𝑘!, 𝛾!, individually, tenfold and 
chosen to match as close as possible the qualitative behavior seen in the experiments. The drag 
coefficient is 0.025 arbitrary force per velocity units (2 orders of magnitude smaller than the 
elastic forces). Because traction forces are computed after the meshwork relaxes to the 
equilibrium, the value of the drag coefficient does not affect our results. The time step is 
𝛥𝑡 = 0.0001 arbitrary time units and is chosen to meet numerical stability constraints. 
 
 At each discretized location in the cortical meshwork, Newton’s second law is the 
governing equation of the system: 

(1)           𝜉𝑢⃗ = 𝐹⃗ 
where 𝜉 is the effective adhesion drag coefficient and 𝑢⃗ is the velocity in the lab coordinate 
system. The elastic force at every discretized location is represented by 𝐹⃗. 
 
 We introduced stochastic noise in the model by assuming that the parameters for tensions 
and elasticity in the network vary randomly in space. Specifically, these parameters (mechanical 
characteristics of each deformable element in the network) are independent random draws from 
standard normal distributions centered around the baseline value with some variance, e.g.  

(2)        𝑓(𝛾!) =
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where 𝛾!! is the baseline value for tension in the interior cytoskeletal mesh, and 𝜎 = 𝛾!!/3 is the 
standard deviation. When this spatial noise is introduced in all parameters (both tensions and 
elasticities) in the entire network, we find that the qualitative trends observed in the deterministic 
model persist. Namely, less force is lost with shaving rather than a cut along a stress fiber, and a 
second consecutive cut along the same stress fibers results in less force loss on average. Similar 
results from simulations when the spatial mechanical noise is introduced only in elastic 
parameters (while contractility is constant), or only in contractile stresses (while elasticity is 
homogeneous). 
 

 
 
 
 
  



 

 

Cryo-electron tomography  
 
Wedge preparation by cryo-focused ion beam (cryo-FIB) milling was performed on a dedicated 
Aquilos dual-beam microscope (ThermoFisher Scientific, Brno, Czech Republic) as described in 
18. Appropriate positions for FIB preparations were identified and recorded in the MAPS 3.3 
software (ThermoFisher Scientific, Brno, Czech Republic), and the eucentric height refined per 
position. Wedges were prepared using Gallium ion beam at 30 kV and stage tilt angles of 12°-
13°, and conducted in a stepwise manner, starting 5 µm away from the area of interest with 
currents of 1 nA, gradually reduced to a current of 50 pA for the final cleaning steps. The grids 
were sputter coated after wedge preparation with platinum (10 mA, 3 s). Cryo-electron 
microscopy data were collected on a Titan Krios microscope operated at 300 kV (ThermoFisher 
Scientific, Eindhoven, Netherlands) equipped with a field-emission gun, a Quantum post-column 
energy filter (Gatan, Pleasanton, CA, USA), a K2 Summit direct detector camera (Gatan) and a 
Volta phase plate (VPP; ThermoFisher Scientific, Eindhoven, Netherlands). Data were recorded 
in dose-fractionation mode using acquisition procedures in SerialEM software v3.7.2 19. Prior to 
the acquisition of tilt-series, montages of the wedges were acquired at ~2 nm/pix. Tilt-series 
using a dose symmetric scheme 20 were collected in nano-probe mode, EFTEM magnification 
42,000x corresponding to pixel size at the specimen level of 3.37 Å, 3-4 µm defocus, tilt 
increment 2° with constant dose of 2 e−/Å2 for all tilts, with a Volta Phase Plate.  
Seven tomograms acquired from 2 wedges are presented, equivalent to 2 cells grown on 
dumbbell-shape micropatterns. The thickness of each tomogram (max./min.) was: P1: ~200/40 
nm (Figure 5 and Extended Data 5 c, f); P2: ~200/80 nm (Extended Data 5 d, g); P3: ~190/70 nm 
(Fig. S5 e, h); P4: 320/285 nm (Fig. S5 b inset); in the second wedge was (Extended Data 5 j, k): 
~200/160nm. Tomograms were reconstructed using the IMOD software package v 4.9.0 19 as per 
18, and filtered with an anisotropic nonlinear diffusion denoising algorithm (K value of 1, and 10 
iterations). 
Filament tracing was performed on tomograms binned to 13.48 Å pixel size, with the Amira 
software Amira XTracing Extension 6.7.0 (Thermo Fisher Scientific) as previously reported 21,22. 
To reduce false positives, segmented actin structures with lengths below 70 nm were filtered out 
23.  
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Supplementary Videos 
 
Video 1 
Illustrations of stress fiber ablation (showed with white arrow heads) in nine cells plated on 
dumbbell-shaped micropatterns on poly-acrylamide gels. Scale bar is 10 µm. 
 
Video 2 
Illustration of stress fiber ablation and the measurement of the corresponding traction force field 
relaxation in a cells plated on dumbbell-shaped micropatterns on poly-acrylamide gel. Scale bar 
is 10 µm. 
 
Video 3 
Illustration of stress fiber shaving (in between the two tilted arrow heads) and the measurement 
of the corresponding traction force field relaxation in a cells plated on dumbbell-shaped 
micropatterns on poly-acrylamide gel. Scale bar is 10 µm. 
 
Video 4 
Illustrations of stress fiber shaving (in between the two tilted arrow heads) followed by stress 
fiber ablation (single vertical arrow head) and the measurement of the corresponding traction 
force field relaxation in a cells plated on dumbbell-shaped micropatterns on poly-acrylamide gel. 
Scale bar is 10 µm. 
 
Video 5 
Cryo-electron tomography of a stress fiber of a cryo-FIB-treated cell grown on a dumbbell-shape 
micropattern. Tomographic volume of a cryo-FIB generated wedge of an RPE1 cell grown on a 
dumbbell-shape pattern. Each slice is 6.8 nm thick. Video related to Figure 5b and Extended 
Data 5c and f wedge 1, position 1 (P1). 
 
Video 6 
Live imaging of RPE1-LifeAct-GFP cells on tripod-shaped micropattern showing the global and 
permanent remodelling of network architecture, suggestive of a complex interplay of 
longitudinal and lateral forces on cytoplasmic bundles. Time is indicated in hours and minutes. 
Scale bar = 20 µm. 
 
Video 7 
Live imaging of RPE1-LifeAct-GFP cells on tripod-shaped micropattern highlighting network 
reconfiguration by lateral translocation of cytoplasmic bundles in the absence of anchorage 
displacement (red arrows). Time is indicated in hours and minutes. Scale bar = 20 µm.  
 
Video 8 



 

 

Live imaging of RPE1-LifeAct-GFP cells on tripod-shaped micropattern revealing the 
emergence of cytoplasmic bundles from the cortical meshwork (in between red arrows) and the 
lateral expansion of a bundle, its splaying into a wider structure (orange arrows) and its re-
coalescence into several adjacent bundles (magenta arrows). Time is indicated in hours and 
minutes. Scale bar = 20 µm.  
 
 


