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A Supplementary Material

A.1 Bias Values as Parameters

We now add bias values as parameters, denoted by v;*" and 8;*" for ANNs and PCNs, respectively.

Formally, in ANNs trained with BP, originally recalled in Section[2.1] Eq. (I) becomes:

I+1
= S W ) + i (10)

Accordingly, we have an update rule for bias parameters (bias update) in addition to the one of the
weight parameters (weight update):

Avitt = —a - OE/Ovt! = a - 5. (11

4] »J

Similarly, in PCNs trained with IL, originally recalled in Section [2.2] Eq. (3) becomes:

1+1
T n 1+1 I+1 I+1 T 1
i = Zj:l ei,j (xj,t ) + B and it = Tyt — M- (12)

Accordingly, we have an update rule for bias parameters in addition to the one of the weight
parameters:

AR = —a - OF /OB = a gy (13)
Otherwise, all equations and conclusions still hold in Section@

In Section[3] we only need to add the assumption that the bias parameter for both ANNs and PCNs
are also identical initially. To prove the conclusion of zero divergence of the weights update, the
procedure remains unchanged. To prove the conclusion of zero divergence of the bias update, we
only need Theorem [3.1] as it directly leads to the equivalence of bias update by Egs. (TT) and (T3).

A.2 Derivations of Eq.

Before we start, we expand Eq. (6) with the definition of ¢} , = =} , — i},

_oodme—Iont 10 V2 eIt 10 1 \2
Fy =, Zi:1 §(€i,t) = 2.1=0 Zi:1§(xi,t - /U'i,t) . (14)
Inference minimizes F; by modifying x; , proportionally to the gradient of the objective function F}.
To calculate the derivative of F; over z; ;, we note that each z; , influences F; in two ways: (1) it
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occurs in Eq. (T4) explicitly, but (2) it also determines the values of x_; via Eq. (8). Thus, the
derivative contains two terms:

Azl =—y- gi; (15)
Okl )P O, ek - )
=7 o, out,, ) (16)
=y (=, — )+ @) (@) — )0 (17)
=y (el ) e k) - (18)

Considering also the special cases at [ = I,y and [ = 0, we obtain Eq. ({7).

A.3 Derivations of Eq. (9)

The weights update minimizes F; by modifying 92’*]-1 proportionally to the gradient of the objective
function . To compute the derivative of the objective function F} over 0;", we note that 0;"" affects

the value of the function F; of Eq. (T4) by influencing y} , via Eq. (5), hence,

NG = —a - OF, /00 (19)
04 (z%, — )
= —Q - 2 a’telfrvl it (20)
0]
=a-e, f(@). (21)

A.4 Proof of Theorems 3.1 and

Theorem Let M be a PCN, M’ be its corresponding ANN (with the same initial weights as M),
and let s be a datapoint. Then, every prediction error €; , att =1, | € {0,..., Luax—1}, in M trained

with IL on s under l)and (B|is equal to the error term 6. in M’ trained with BP on s.

Proof. We first note that ; , under (2)is ¢; ;. We give a proof by induction on the depth [ of the
PCNs and ANNs. For PCNs, as t = [, it is also inducing on the inference moments.

{ Base Case: If | = 0,
putting Q1| i1; o = y; into Eq. (), and by comparison with the first case in Eq. @): £} ; = 9.

O Induction Step: Forl € {1,... lnx — 1},
i1 = f/(Mé,o)zzl:_115;;zl—19;c,i’ by Lemma

o = f’(yé)zzl:_f 8;, 'wy, ;» by the second case in Eq. @);

1ti 0 = Yi» bY

w; . = 0 ., as corresponding initial weights in both models are assumed to be identical;

4] 0,5°

I gl oie I—1 _ gl—1
€1 = 2N 1f5k,z—1 =0, .
O

Theorem Let M be a PCN, M’ be its corresponding ANN (with the same initial weights as M),
and let s be a datapoint. Then, every update AG;? att=1,1€{0,...,Lux—1}, in M trained with

IL on s under and is equal to the update Aw;"}' in M trained with BP on s.



Proof. Looking at how 0F; /00, and OE/0w;”;" can be computed via Egs. (9) and (3), and putting
2]¢ = [ into the equation,

A0;5 = ey f (@), (22)
At = a8 F (). (23)

We notice that one of the terms in both equations are equivalent according to Theorem £i1 = 0;.

Thus, in the following, we focus on proving that the other terms in both equations are identical:

f(a3h) = fy;™). First, provides the base to start, which is the equivalence of the initial state

between IL and BP under qu’ G2} and zity = wjly =y;"'. Then, Lemma links later
and C

inference moments of IL under ., to its initial state: x;J’ll = z;“ Thus we have
@) = fly;). O

Lemma A.3. Under (1] so that a variable at a specific layer may diverge from its corresponding
initial stable states, it needs specific inference steps related to the layer that the variable belongs to.
Formally,

Ti€<l:fi)7glt<l:gi):0ﬁit<ll_u0 ,fOl’lE{l . max 1},16
ATy =0, Ag; 1 =0, A,ut<l 1—0 forle{l . max—l}.

Proof. Starting from the inference moment ¢ = 0, T is dragged away from f) and fixed to 5°,
i.e., €) turns into nonzero from zero. Since T in each layer is updated only on the basis of € in the
same and previous adjacent layer, as indicated by Eq. (7), also considering ([I] £ is initially zero
for all layers but the output layer it will take [ time steps to modify ft at layer [ from the initial
state. Hence ¢ will remain in that initial state Zj, for all ¢t < [,i.e., T, ; = xo Furthermore any
change in = causes a change in g} and 7z; " mstantly via Eq. @) (otherw1se g, and ;' remain m
their correspondmg initial states). Thus, we know &} _; = & and [z, _ <l =T . Also, according to

Eic; = Ep = 0. Equivalently, we have AZ; _; |, =0, Ag,_,_; =0,and A7, _, = 0. D

Lemma A.4. The prediction error of IL €; ; att =1 (i.e., &; l) under and can be derived from
itself at previous inference moments in the previous layer: €k Lart= l —1(ie., ;" ). Formally,

nl
= f/(Mi,o)Zk 1 Ekl 19k o Jorle {1, .. lpax — 1} (24)

1 3 3 l — Al Lo
Proof. We first write a dynamic version of &; , = x; , — p; 4

Eip=Eip 1+ (A — Dpiy ), (25)
where Ay, 1 = pi — H; - Then, we expand ¢; ; with the above equation and simplify it with
LemmaA.3lie., €}, 7OandA,uLt<l 1 =0

g1 =61+ Az — Apyyq) = Az q, forl € {1, lnax — 1} (26)

We further investigate Az} ; ; expanded with the inference dynamic Eq. (7) and simplify it with
LemmalA3|ie., &, , =0,

nl
Az, =(= €1 1+ f(z) Tii— 1))Zk 15kz 105, = V(@ 1) 2= 15kz 195.i5 forl € {1,... Imax — 1}
27

Putting Eq. (27) into Eq. (26), we obtain:
e =1 (), 1)Zk 15kl 16k,i> forl e {1, lmax — 1} (28)

With Lemma|A.3| z; , ; can be replaced with z; ,. With we can further replace z; o with 1 (.
Thus, the above equation becomes:

nl
Ei,l = ’Vf/(:“i,o)Zk 1 Ekl 10k i forle {1, .. lmax — 1}. (29

Then, put 3] v = 1, into the above equation. O



A.5 Solely Relaxing

Solely relaxing (3 will result in the conclusion of Lemmal[A.4] i.e., Eq. (24) changing to:

l—
Eél = Wf/(:“; O)ZZ 1 EIcl 19k i forl e {1, . lmax — 1}, (30)

since the derivation of Lemma [Ef] terminates at Eq. (29). It further causes the conclusion of
Theorem [3.1| changing from ¢; , = §; to &; , = It at t = [, the proof of which is the same as
that of the original Theorem@] but using the new Lemma IA.4] The change in the conclusion of
Theoremﬂimmediately changes the conclusion of Theore from 0F,;/00," = OE/0w; "} to

OF; /00, = Y OE /0w '}, where t = [. Thus, solely relaxing the condition v = 1 ie., relaxmg l
while keeplng dT]and satlsﬁed results in BP with a different learning rate for different layers,
where 7 is the decay factor of this learning rate along layers.

A.6 Schematic Algorithms

Algorithm 1 Learning one training pair (5, °”‘) (presented for the duration 7T") with IL

Requlre T is fixed to 50 70 o 1s fixed to 3°"
:fort =0to7 do /I presenting a training pair
2: for each neuron ¢ in each level [ do // in parallel in the brain
3: Update z! , to minimize F; via Eq. (7) // inference
4: if t = t. then / external control signal
5: Update each ;"' to minimize F; via Eq. (9)
6: return // the brain rests
7: end if
8:  end for
9: end for

Algorithm 2 Learning one tralmng pair (3" *’”t) (presented for the duration T") with Z-IL

Require: fé)"““ is fixed to 3", 7Y is ﬁxed to 5"

Require: ), = pj o forl e {1,..., I — 1} (dI), and v = 1 ().
1: fort = (to T do // presenting a training pair
2:  for each neuron i in each level [ do / in parallel in the brain
3: Update x} , to minimize F; via Eq. (7) /I inference
4: ift =1 then /I external control signal
5: Update each ;"' to minimize F; via Eq. ()
6: end if
7: if t = [.x then
8: return // the brain rests
9: end if

10:  end for

11: end for

Algorithm 3 Learning one trammg pair (3, 3°") (presented for the duration T") with Fa-Z-IL

Require: mg“‘“ is fixed to 31, T is ﬁxed to 3%

Require: =} = pi} o forl € {1,... lnx — 1} (), and v = 1 ().

1: for t = 0 to T do /I presenting a training pair
2:  for each neuron i in each level [ do // in parallel in the brain

3 Update z} , to minimize F} via Eq. // inference

4: Update each ¢; /' to minimize F; via Eq. () with learning rate o - ¢(e; ;)

5:  end for

6: end for

Schematic algorithms of IL, Z-IL, and Fa-Z-IL are provided in Algorithms[I} 2] and [3|for comparison,
respectively, the two of which, IL and Fa-Z-IL are already provided in the paper.



Table 1: Unscaled data in Fig.

o 0 0.0001 0.001 0.01 0.1 1 10 100
Divergence of
test error 0 4.23x1073 1.77x1072 6.05x1072 6.15x10~" 3.73x10" 4.17x10" 4.26x10"

Divergence of
final weights 2.37x10713 2.40x1072 9.94x10~! 3.36x10° 1.43x10' 1.08x102 1.12x103 1.22x10%

Table 2: Test error of different o.

o 0 1074 1073 1072 1071 1 10! 102
Test error 1.0546x10~1 1.0548x10~! 1.0557x10~! 1.0596x10~" 1.1507x10~" 6.8915x10~" 7.5753x10~" 7.7116x10~!

A.7 Large Figures

Larger versions (with numbers as annotations) of the subfigures in Fig. [3|are given in Figs.[T|and 2]
Note that the divergence of final weights is not exactly zero but very small (< 10~2), due to rounding
errors.

A.8 WhyPutt=1[Betweent =[x —2and t = ljpax — 1

We put Z-IL (¢ = ) between t = I, — 2 and ¢ = [y — 1 for models with different .. This is
due to the fact that Z-IL (¢ = ) is doing inference at a degree between t = ln.x — 2 and £ = [pax — 1.
Specifically, Z-IL (¢t = ) uses Fj_ .1 to update 9;; which is a result from doing inference at
t = lmax — 2, however, Z-IL did not use F;___; for weights update in all layers, instead it uses

max

Fi«,,.—1 at previous inference moments to update weights 9%7 j in other layers | < lj.x. Thus, we
consider that Z-IL (t = [) lies between ¢ = l,x — 2 and ¢ = [,x — 1 from the perspective how much

inference is conducted. For example, for l,x = 3, we present the result as t = {0,1,1,2,...}.

A.9 Detailed Setup of Experiments on ImageNet

Experiments are conducted on 2 GPUs of Nvidia GeForce GTX 1080Ti, and 8 CPUs of Intel Core i7,
with 32 GB RAM. The batch size is set to 1 to test the running time. The input size of the image is
224 x 224 gray scale, we only implemented fully connected layers: the hidden layers are of size 4096,
2048, and 1024, respectively. The size of the output layer is 27, corresponding to the 27 high-level
categories in ImageNet. All dependencies and their versions are specified as follows:

torchvision==0.4.2
setproctitle==1.1.10
psutil ==5.6.3
requests ==2.22.0

pillow==6.1
pandas==0.24.2
matplotlib==3.1.0
seaborn==0.9.0

numpy==1.16.4
tensorflow==1.15
pyinquirer==1.0.3
torch==1.3.1

ray==0.7.4

pprint==0.1

tabulate ==0.8.7
opencv—python==4.2.0.34
PyInquirer==1.0.3

A.10 Test error of all situations

Note that in all our experiments, Fa-Z-IL produces the same test error as Z-IL, thus, no separated
tables or figures for Fa-Z-IL are provided. Table [2| shows the test error of different o.
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Figure 1: Larger versions (with numbers as annotations) of the subfigures in Fig. 3]
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Figure 2: Larger versions (with numbers as annotations) of the subfigures in Fig. 3] For visualization,
the divergence of test error has been normalized to [0, 1] by a logarithmic scale and then clipped to
[0, 1]; the divergence of the final weights has been normalized linearly to [0, 1] from min of 0 and
max of 50, values larger than 50 have been clipped to 50. The unscaled data are given in Table [T}
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Figure 3: Test error of different ¢ and +y.



A.11 Differences of learning rules between [46] and Z-IL

The energy function of [40] is closely related to the Hopfield net (but with latent variables) or with
the Boltzmann machine energy function (but with continuous nonlinearities inserted), best expressed
with notations and setup in this paper as:

By =35(s0)° - %E#jm,jf(si)f(sj) =D ibif(si), (31)

where the support of s; is given by all the value nodes in the neural network, 7; ; is the synapse
weight from node j to node i, b; is the bias term, and f is the nonlinear activation function. While
the energy function of Z-IL is simply the energy of the error nodes:

Fy = éia?) 121':1%(5%)2‘ (32)

The other learning rules thus diverge significantly from there. We leave the discussion of how the two
works could be related regardless of such huge differences as future research.
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