
Can the Brain Do Backpropagation?
— Exact Implementation of Backpropagation in

Predictive Coding Networks

Yuhang Song1, Thomas Lukasiewicz1, Zhenghua Xu2,∗, Rafal Bogacz3
1Department of Computer Science, University of Oxford, UK

2State Key Laboratory of Reliability and Intelligence of Electrical Equipment,
Hebei University of Technology, Tianjin, China

3MRC Brain Network Dynamics Unit, University of Oxford, UK
yuhang.song@some.ox.ac.uk, thomas.lukasiewicz@cs.ox.ac.uk,

zhenghua.xu@hebut.edu.cn, rafal.bogacz@ndcn.ox.ac.uk

A Supplementary Material

A.1 Bias Values as Parameters

We now add bias values as parameters, denoted by vl+1

i and βl+1

i for ANNs and PCNs, respectively.

Formally, in ANNs trained with BP, originally recalled in Section 2.1, Eq. (1) becomes:

yl

i =
∑nl+1

j=1 w
l+1

i,j f(yl+1

j ) + vl+1

i . (10)

Accordingly, we have an update rule for bias parameters (bias update) in addition to the one of the
weight parameters (weight update):

∆vl+1

i,j = −α · ∂E/∂vl+1

i,j = α · δl

i. (11)

Similarly, in PCNs trained with IL, originally recalled in Section 2.2, Eq. (5) becomes:

µl

i,t =
∑nl+1

j=1 θ
l+1

i,j f(xl+1

j,t ) + βl+1

i and εli,t = xl

i,t − µl

i,t. (12)

Accordingly, we have an update rule for bias parameters in addition to the one of the weight
parameters:

∆βl+1

i,j = −α · ∂Ft/∂β
l+1

i,j = α · εli,t. (13)

Otherwise, all equations and conclusions still hold in Section 2.

In Section 3, we only need to add the assumption that the bias parameter for both ANNs and PCNs
are also identical initially. To prove the conclusion of zero divergence of the weights update, the
procedure remains unchanged. To prove the conclusion of zero divergence of the bias update, we
only need Theorem 3.1, as it directly leads to the equivalence of bias update by Eqs. (11) and (13).

A.2 Derivations of Eq. (7)

Before we start, we expand Eq. (6) with the definition of εli,t = xl
i,t − µl

i,t:

Ft =
∑lmax−1

l=0

∑nl

i=1
1
2 (εli,t)

2 =
∑lmax−1

l=0

∑nl

i=1
1
2 (xl

i,t − µl

i,t)
2 . (14)

Inference minimizes Ft by modifying xl
i,t proportionally to the gradient of the objective function Ft.

To calculate the derivative of Ft over xl
i,t, we note that each xl

i,t influences Ft in two ways: (1) it

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



occurs in Eq. (14) explicitly, but (2) it also determines the values of µl−1

k,t via Eq. (5). Thus, the
derivative contains two terms:

∆xl

i,t = −γ · ∂Ft

∂xl
i,t

(15)

= −γ · (
∂ 1

2 (xl
i,t − µl

i,t)
2

∂xl
i,t

+
∂
∑nl−1

k=1
1
2 (xl−1

k,t − µl−1

k,t )2

∂xl
i,t

) (16)

= γ · (−(xl

i,t − µl

i,t) + f ′(xl

i,t)
∑nl−1

k=1 (xl−1

k,t − µl−1

k,t )θl

k,i) (17)

= γ · (−εli,t + f ′(xl

i,t)
∑nl−1

k=1 ε
l−1

k,t θ
l

k,i) . (18)

Considering also the special cases at l = lmax and l = 0, we obtain Eq. (7).

A.3 Derivations of Eq. (9)

The weights update minimizes Ft by modifying θl+1

i,j proportionally to the gradient of the objective
function Ft. To compute the derivative of the objective function Ft over θl+1

i,j , we note that θl+1

i,j affects
the value of the function Ft of Eq. (14) by influencing µl

i,t via Eq. (5), hence,

∆θl+1

i,j = −α · ∂Ft/∂θ
l+1

i,j (19)

= −α ·
∂ 1

2 (xl
i,t − µl

i,t)
2

∂θl+1

i,j

(20)

= α · εli,tf(xl+1

j,t ) . (21)

A.4 Proof of Theorems 3.1 and 3.2

Theorem 3.1. Let M be a PCN, M ′ be its corresponding ANN (with the same initial weights as M ),
and let s be a datapoint. Then, every prediction error εli,t at t= l, l ∈ {0, . . . , lmax−1}, in M trained
with IL on s under C1 and C3 is equal to the error term δl

i in M ′ trained with BP on s.

Proof. We first note that εli,t under C2 is εli,l. We give a proof by induction on the depth l of the
PCNs and ANNs. For PCNs, as t = l, it is also inducing on the inference moments.

♦ Base Case: If l = 0,

putting C1 µl

i,0 = yl

i into Eq. (8), and by comparison with the first case in Eq. (4): εli,l = δl

i.

♦ Induction Step: For l ∈ {1, . . . , lmax − 1},

εli,l = f ′(µl

i,0)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, by Lemma A.4;

δl

i = f ′(yl

i)
∑nl−1

k=1 δ
l−1

k wl

k,i, by the second case in Eq. (4);

µl

i,0 = yl

i, by C1;

wl

i,j = θl

i,j , as corresponding initial weights in both models are assumed to be identical;

εli,l = δl

i, if εl−1

k,l−1 = δl−1

k .

Theorem 3.2. Let M be a PCN, M ′ be its corresponding ANN (with the same initial weights as M ),
and let s be a datapoint. Then, every update ∆θl+1

i,j at t= l, l ∈ {0, . . . , lmax−1}, in M trained with
IL on s under C1 and C3 is equal to the update ∆wl+1

i,j in M ′ trained with BP on s.

2



Proof. Looking at how ∂Ft/∂θ
l+1

i,j and ∂E/∂wl+1

i,j can be computed via Eqs. (9) and (3), and putting
C2 t = l into the equation,

∆θl+1

i,j = α · εli,lf(xl+1

j,l ), (22)

∆wl+1

i,j = α · δl

if(yl+1

j ). (23)

We notice that one of the terms in both equations are equivalent according to Theorem 3.1: εli,l = δl
i.

Thus, in the following, we focus on proving that the other terms in both equations are identical:
f(xl+1

j,l ) = f(yl+1

j ). First, C1 provides the base to start, which is the equivalence of the initial state
between IL and BP under C1, C2, and C3: xl+1

j,0 = µl+1

j,0 = yl+1

j . Then, Lemma A.3 links later
inference moments of IL under C1, C2, and C3 to its initial state: xl+1

j,l = xl+1

j,0 . Thus, we have
f(xl+1

j,l ) = f(yl+1

j ).

Lemma A.3. Under C1, so that a variable at a specific layer may diverge from its corresponding
initial stable states, it needs specific inference steps related to the layer that the variable belongs to.
Formally,

xl

t<l = xl

0, ε
l

t<l = εl0 = 0, µl−1

t<l = µl−1

0 , for l ∈ {1, . . . , lmax − 1} , i.e.,

∆xl

t<l−1 = 0,∆εlt<l−1 = 0,∆µl−1

t<l−1 = 0, for l ∈ {1, . . . , lmax − 1} .

Proof. Starting from the inference moment t = 0, x0

0 is dragged away from µ0

0 and fixed to sout,
i.e., ε00 turns into nonzero from zero. Since x in each layer is updated only on the basis of ε in the
same and previous adjacent layer, as indicated by Eq. (7), also considering C1, ε is initially zero
for all layers but the output layer, it will take l time steps to modify xl

t at layer l from the initial
state. Hence, xl

t will remain in that initial state xl

0 for all t < l, i.e., xl

t<l = xl

0. Furthermore, any
change in xl

t causes a change in εlt and µl−1

t instantly via Eq. (5) (otherwise εlt and µl−1

t remain in
their corresponding initial states). Thus, we know εlt<l = εl0 and µl−1

t<l = µl−1

0 . Also, according to C1,
εlt<l = εl0 = 0. Equivalently, we have ∆xl

t<l−1 = 0, ∆εlt<l−1 = 0, and ∆µl−1

t<l−1 = 0.

Lemma A.4. The prediction error of IL εli,t at t = l (i.e., εli,l) under C1 and C3 can be derived from
itself at previous inference moments in the previous layer: εl−1

k,t at t = l − 1 (i.e., εl−1

i,l−1). Formally,

εli,l = f ′(µl

i,0)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, for l ∈ {1, . . . , lmax − 1} . (24)

Proof. We first write a dynamic version of εli,t = xl
i,t − µl

i,t:

εli,t = εli,t−1 + (∆xl

i,t−1 −∆µl

i,t−1) , (25)

where ∆µl
i,t−1 = µl

i,t − µl
i,t−1. Then, we expand εli,l with the above equation and simplify it with

Lemma A.3, i.e., εli,t<l = 0 and ∆µl−1

i,t<l−1 = 0:

εli,l = εli,l−1 + (∆xl

i,l−1 −∆µl

i,l−1) = ∆xl

i,l−1, for l ∈ {1, . . . , lmax − 1} . (26)

We further investigate ∆xl

i,l−1 expanded with the inference dynamic Eq. (7) and simplify it with
Lemma A.3, i.e., εli,t<l = 0,

∆xl

i,l−1 = γ(−εli,l−1 + f ′(xl

i,l−1))
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i = γf ′(xl

i,l−1)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, for l ∈ {1, . . . , lmax − 1}.
(27)

Putting Eq. (27) into Eq. (26), we obtain:

εli,l = γf ′(xl

i,l−1)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, for l ∈ {1, . . . , lmax − 1} . (28)

With Lemma A.3, xl

i,l−1 can be replaced with xl
i,0. With C1, we can further replace xl

i,0 with µl
i,0.

Thus, the above equation becomes:

εli,l = γf ′(µl

i,0)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, for l ∈ {1, . . . , lmax − 1} . (29)

Then, put C3, γ = 1, into the above equation.

3



A.5 Solely Relaxing C3

Solely relaxing C3 will result in the conclusion of Lemma A.4, i.e., Eq. (24) changing to:

εli,l = γf ′(µl

i,0)
∑nl−1

k=1 ε
l−1

k,l−1θ
l

k,i, for l ∈ {1, . . . , lmax − 1} , (30)

since the derivation of Lemma A.4 terminates at Eq. (29). It further causes the conclusion of
Theorem 3.1 changing from εli,t = δl

i to εli,t = γlδl
i at t = l, the proof of which is the same as

that of the original Theorem 3.1 but using the new Lemma A.4. The change in the conclusion of
Theorem 3.1 immediately changes the conclusion of Theorem 3.2 from ∂Ft/∂θ

l+1

i,j = ∂E/∂wl+1

i,j to
∂Ft/∂θ

l+1

i,j = γl∂E/∂wl+1

i,j , where t = l. Thus, solely relaxing the condition γ = 1, i.e., relaxing C3
while keeping C1 and C2 satisfied, results in BP with a different learning rate for different layers,
where γ is the decay factor of this learning rate along layers.

A.6 Schematic Algorithms

Algorithm 1 Learning one training pair (sin, sout) (presented for the duration T ) with IL

Require: xlmax
0 is fixed to sin, x0

0 is fixed to sout.
1: for t = 0 to T do // presenting a training pair
2: for each neuron i in each level l do // in parallel in the brain
3: Update xl

i,t to minimize Ft via Eq. (7) // inference
4: if t = tc then // external control signal
5: Update each θl+1

i,j to minimize Ft via Eq. (9)
6: return // the brain rests
7: end if
8: end for
9: end for

Algorithm 2 Learning one training pair (sin, sout) (presented for the duration T ) with Z-IL

Require: xlmax
0 is fixed to sin, x0

0 is fixed to sout.
Require: xl

i,0 = µl
i,0 for l ∈ {1, . . . , lmax − 1} (C1), and γ = 1 (C3).

1: for t = 0 to T do // presenting a training pair
2: for each neuron i in each level l do // in parallel in the brain
3: Update xl

i,t to minimize Ft via Eq. (7) // inference
4: if t = l then // external control signal
5: Update each θl+1

i,j to minimize Ft via Eq. (9)
6: end if
7: if t = lmax then
8: return // the brain rests
9: end if

10: end for
11: end for

Algorithm 3 Learning one training pair (sin, sout) (presented for the duration T ) with Fa-Z-IL

Require: xlmax
0 is fixed to sin, x0

0 is fixed to sout.
Require: xl

i,0 = µl
i,0 for l ∈ {1, . . . , lmax − 1} (C1), and γ = 1 (C3).

1: for t = 0 to T do // presenting a training pair
2: for each neuron i in each level l do // in parallel in the brain
3: Update xl

i,t to minimize Ft via Eq. (7) // inference
4: Update each θl+1

i,j to minimize Ft via Eq. (9) with learning rate α · φ(εli,t)
5: end for
6: end for

Schematic algorithms of IL, Z-IL, and Fa-Z-IL are provided in Algorithms 1, 2, and 3 for comparison,
respectively, the two of which, IL and Fa-Z-IL are already provided in the paper.

4



Table 1: Unscaled data in Fig. 2.

σ 0 0.0001 0.001 0.01 0.1 1 10 100

Divergence of
test error 0 4.23×10−3 1.77×10−2 6.05×10−2 6.15×10−1 3.73×101 4.17×101 4.26×101

Divergence of
final weights 2.37×10−13 2.40×10−2 9.94×10−1 3.36×100 1.43×101 1.08×102 1.12×103 1.22×104

Table 2: Test error of different σ.

σ 0 10−4 10−3 10−2 10−1 1 101 102

Test error 1.0546×10−1 1.0548×10−1 1.0557×10−1 1.0596×10−1 1.1507×10−1 6.8915×10−1 7.5753×10−1 7.7116×10−1

A.7 Large Figures

Larger versions (with numbers as annotations) of the subfigures in Fig. 3 are given in Figs. 1 and 2.
Note that the divergence of final weights is not exactly zero but very small (< 10−12), due to rounding
errors.

A.8 Why Put t = l Between t = lmax − 2 and t = lmax − 1

We put Z-IL (t = l) between t = lmax − 2 and t = lmax − 1 for models with different lmax. This is
due to the fact that Z-IL (t = l) is doing inference at a degree between t = lmax − 2 and t = lmax − 1.
Specifically, Z-IL (t = l) uses Flmax−1 to update θlmax

i,j , which is a result from doing inference at
t = lmax − 2, however, Z-IL did not use Flmax−1 for weights update in all layers, instead it uses
Fl<lmax−1 at previous inference moments to update weights θl

i,j in other layers l < lmax. Thus, we
consider that Z-IL (t = l) lies between t = lmax − 2 and t = lmax − 1 from the perspective how much
inference is conducted. For example, for lmax = 3, we present the result as t = {0, 1, l, 2, . . .}.

A.9 Detailed Setup of Experiments on ImageNet

Experiments are conducted on 2 GPUs of Nvidia GeForce GTX 1080Ti, and 8 CPUs of Intel Core i7,
with 32 GB RAM. The batch size is set to 1 to test the running time. The input size of the image is
224×224 gray scale, we only implemented fully connected layers: the hidden layers are of size 4096,
2048, and 1024, respectively. The size of the output layer is 27, corresponding to the 27 high-level
categories in ImageNet. All dependencies and their versions are specified as follows:

t o r c h v i s i o n = = 0 . 4 . 2
s e t p r o c t i t l e = = 1 . 1 . 1 0
p s u t i l = = 5 . 6 . 3
r e q u e s t s = = 2 . 2 2 . 0
p i l l o w ==6.1
pandas = = 0 . 2 4 . 2
m a t p l o t l i b = = 3 . 1 . 0
s e a b o r n = = 0 . 9 . 0
numpy = = 1 . 1 6 . 4
t e n s o r f l o w ==1.15
p y i n q u i r e r = = 1 . 0 . 3
t o r c h = = 1 . 3 . 1
r a y = = 0 . 7 . 4
p p r i n t ==0.1
t a b u l a t e = = 0 . 8 . 7
opencv−py thon = = 4 . 2 . 0 . 3 4
P y I n q u i r e r = = 1 . 0 . 3

A.10 Test error of all situations

Note that in all our experiments, Fa-Z-IL produces the same test error as Z-IL, thus, no separated
tables or figures for Fa-Z-IL are provided. Table 2 shows the test error of different σ.

5



0 l 1 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ
1.3e+01 9.5e+00 9.5e+00 8.1e+00 7.1e+00 6.5e+00 3.0e+00 1.3e+00

1.3e+01 3.9e+00 3.9e+00 2.7e+00 2.3e+00 1.8e+00 2.2e-01 2.7e-01

1.3e+01 1.2e+00 1.3e+00 4.1e-01 1.5e-01 1.7e-01 2.8e-01 2.8e-01

1.3e+01 0.0e+00 5.1e-01 6.1e-01 1.6e-01 1.6e-01 1.8e-01 2.1e-01

1.3e+01 1.1e+00 8.5e-01 5.0e+01 1.4e+01 5.0e+01 3.8e+01 3.8e+01

1.3e+01 1.2e+00 1.0e+00 5.0e+01 5.0e+01 4.7e+01 4.1e+01 4.1e+01

(a) divergence of test error (lmax = 2)

0 l 1 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

1.9e+01 1.9e+01 1.9e+01 1.9e+01 1.8e+01 1.8e+01 1.6e+01 1.0e+01

1.9e+01 1.7e+01 1.7e+01 1.6e+01 1.4e+01 1.1e+01 7.9e+00 1.1e+01

1.9e+01 1.1e+01 9.7e+00 1.1e+01 7.8e+00 1.2e+01 1.1e+01 1.1e+01

1.9e+01 2.8e-13 1.6e+01 1.7e+01 1.5e+01 1.5e+01 1.3e+01 1.5e+01

1.9e+01 2.0e+01 2.2e+01 3.3e+01 6.7e+01 2.0e+02 3.1e+09 2.4e+38

1.9e+01 3.0e+01 3.1e+01 6.6e+01 4.5e+02 4.1e+03 1.2e+15 7.3e+60

(b) divergence of final weights (lmax = 2)

0 1 l 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

1.9e+01 1.9e+01 1.8e+01 1.8e+01 1.8e+01 1.8e+01 1.3e+01 4.1e+00

1.9e+01 1.8e+01 1.3e+01 1.3e+01 9.2e+00 7.2e+00 1.6e+00 1.1e+00

1.9e+01 1.7e+01 2.5e+00 2.6e+00 1.4e+00 1.3e+00 1.3e+00 9.2e-01

1.9e+01 1.7e+01 0.0e+00 1.5e+00 5.1e+01 2.5e+00 1.1e+01 8.9e+00

1.9e+01 1.2e+01 1.2e+00 5.0e+01 5.1e+01 5.1e+01 5.1e+01 5.1e+01

1.9e+01 1.1e+01 8.4e+00 5.0e+01 5.1e+01 5.1e+01 5.1e+01 5.1e+01

(c) divergence of test error (lmax = 3)

0 1 l 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ
2.2e+01 2.2e+01 2.2e+01 2.2e+01 2.2e+01 2.2e+01 2.0e+01 1.8e+01

2.2e+01 2.1e+01 2.0e+01 2.0e+01 1.9e+01 1.9e+01 1.7e+01 1.8e+01

2.2e+01 2.3e+01 1.7e+01 2.1e+01 1.7e+01 1.8e+01 2.0e+01 1.9e+01

2.2e+01 2.5e+01 2.0e-13 2.2e+01 4.7e+01 2.7e+01 2.6e+01 2.8e+01

2.2e+01 3.1e+01 4.3e+01 3.6e+01 8.6e+01 3.1e+02 5.5e+09 4.3e+38

2.2e+01 4.0e+01 8.9e+01 8.2e+01 7.6e+02 6.6e+03 1.9e+15 1.2e+61

(d) divergence of final weights (lmax = 3)

0 1 2 l 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

2.5e+01 2.4e+01 2.4e+01 2.4e+01 2.4e+01 2.4e+01 2.2e+01 1.2e+01

2.5e+01 2.4e+01 2.3e+01 2.2e+01 2.1e+01 1.8e+01 4.8e+00 2.3e+00

2.5e+01 2.3e+01 1.8e+01 5.6e+00 4.3e+00 3.8e+00 1.7e+00 2.3e+00

2.5e+01 2.1e+01 1.7e+01 0.0e+00 4.7e+01 3.7e+01 5.0e+01 5.0e+01

2.5e+01 1.8e+01 5.0e+01 6.3e+00 5.1e+01 5.1e+01 5.1e+01 5.1e+01

2.5e+01 1.7e+01 5.1e+01 3.9e+01 5.1e+01 5.1e+01 5.1e+01 5.1e+01

(e) divergence of test error (lmax = 4)

0 1 2 l 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

2.1e+01 2.1e+01 2.1e+01 2.1e+01 2.1e+01 2.1e+01 2.0e+01 2.2e+01

2.1e+01 2.0e+01 2.0e+01 2.0e+01 2.1e+01 2.2e+01 2.0e+01 2.0e+01

2.1e+01 2.3e+01 3.0e+01 1.6e+01 1.9e+01 2.1e+01 2.2e+01 2.4e+01

2.1e+01 2.3e+01 3.1e+01 2.3e-13 3.5e+02 3.9e+01 3.1e+02 2.2e+02

2.1e+01 3.3e+01 4.4e+01 9.1e+01 7.0e+01 2.9e+02 4.9e+09 3.9e+38

2.1e+01 4.4e+01 6.0e+01 3.7e+02 6.0e+02 5.6e+03 1.6e+15 1.0e+61

(f) divergence of final weights (lmax = 4)

Figure 1: Larger versions (with numbers as annotations) of the subfigures in Fig. 3.

6



−∞ −4 −3 −2 −1 0 1 2

log(σ)

d
iv

er
ge

n
ce

of
te

st
er

ro
r

0.00

0.15

0.28

0.39

0.61

0.99 1.00 1.00

−∞ −4 −3 −2 −1 0 1 2

log(σ)

d
iv

er
ge

n
ce

of
te

st
er

ro
r

0.00 0.00 0.02
0.07

0.29

1.00 1.00 1.00

Figure 2: Larger versions (with numbers as annotations) of the subfigures in Fig. 3. For visualization,
the divergence of test error has been normalized to [0, 1] by a logarithmic scale and then clipped to
[0, 1]; the divergence of the final weights has been normalized linearly to [0, 1] from min of 0 and
max of 50, values larger than 50 have been clipped to 50. The unscaled data are given in Table 1.

0 l 1 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

3.2e-01 2.6e-01 2.6e-01 2.4e-01 2.2e-01 2.1e-01 1.6e-01 1.3e-01

3.2e-01 1.7e-01 1.7e-01 1.5e-01 1.5e-01 1.4e-01 1.1e-01 1.1e-01

3.2e-01 1.3e-01 1.3e-01 1.2e-01 1.1e-01 1.1e-01 1.1e-01 1.1e-01

3.2e-01 1.1e-01 1.2e-01 1.0e-01 1.1e-01 1.1e-01 1.1e-01 1.1e-01

3.2e-01 9.2e-02 9.7e-02 8.9e-01 3.3e-01 9.0e-01 7.0e-01 7.0e-01

3.2e-01 9.2e-02 9.4e-02 8.9e-01 9.0e-01 8.5e-01 7.5e-01 7.5e-01

1.5× 10−1

3× 10−1

4.5× 10−1

6× 10−1

(a) lmax = 2

0 1 l 2 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

4.0e-01 4.0e-01 4.0e-01 3.9e-01 3.9e-01 3.9e-01 3.1e-01 1.7e-01

4.0e-01 3.9e-01 3.2e-01 3.2e-01 2.5e-01 2.2e-01 1.3e-01 1.3e-01

4.0e-01 3.8e-01 1.5e-01 1.5e-01 1.3e-01 1.3e-01 1.3e-01 1.2e-01

4.0e-01 3.7e-01 1.1e-01 1.3e-01 9.0e-01 1.5e-01 2.8e-01 2.5e-01

4.0e-01 3.0e-01 9.0e-02 8.9e-01 9.0e-01 9.0e-01 9.0e-01 9.0e-01

4.0e-01 2.9e-01 2.4e-01 9.0e-01 9.0e-01 9.0e-01 9.0e-01 9.0e-01

1.5× 10−1

3× 10−1

4.5× 10−1

6× 10−1

(b) lmax = 3

0 1 2 l 3 4 16 64

t

0.01

0.1

0.5

1.0

5.0

10.0

γ

4.8e-01 4.8e-01 4.8e-01 4.8e-01 4.8e-01 4.8e-01 4.5e-01 2.9e-01

4.8e-01 4.7e-01 4.6e-01 4.5e-01 4.2e-01 3.8e-01 1.7e-01 1.3e-01

4.8e-01 4.5e-01 3.8e-01 1.8e-01 1.7e-01 1.6e-01 1.2e-01 1.3e-01

4.8e-01 4.3e-01 3.6e-01 9.8e-02 8.4e-01 6.8e-01 8.7e-01 8.8e-01

4.8e-01 3.8e-01 8.7e-01 2.0e-01 9.0e-01 9.0e-01 9.0e-01 9.0e-01

4.8e-01 3.7e-01 9.0e-01 7.0e-01 9.0e-01 9.0e-01 9.0e-01 9.0e-01

1.5× 10−1

3× 10−1

4.5× 10−1

6× 10−1

(c) lmax = 4

Figure 3: Test error of different t and γ.

7



A.11 Differences of learning rules between [46] and Z-IL

The energy function of [46] is closely related to the Hopfield net (but with latent variables) or with
the Boltzmann machine energy function (but with continuous nonlinearities inserted), best expressed
with notations and setup in this paper as:

Et =
∑

i
1
2 (si)

2 − 1
2

∑
i6=jηi,jf(si)f(sj)−

∑
ibif(si), (31)

where the support of si is given by all the value nodes in the neural network, ηi,j is the synapse
weight from node j to node i, bi is the bias term, and f is the nonlinear activation function. While
the energy function of Z-IL is simply the energy of the error nodes:

Ft =
∑lmax−1

l=0

∑nl

i=1
1
2 (εli,t)

2 . (32)

The other learning rules thus diverge significantly from there. We leave the discussion of how the two
works could be related regardless of such huge differences as future research.

8


	Supplementary Material
	Bias Values as Parameters
	Derivations of Eq. (7)
	Derivations of Eq. (9)
	Proof of Theorems 3.1 and 3.2
	Solely Relaxing C3
	Schematic Algorithms
	Large Figures
	Why Put t=l Between t=lmax-2 and t=lmax-1
	Detailed Setup of Experiments on ImageNet
	Test error of all situations
	Differences of learning rules between bengio2017stdp and Z-IL


