
Supplementary Note 
Bayesian estimator of variant fitness in FOS-JUN dataset  
The FOS-JUN dataset has a large dynamic range (8.6 log-units), thus many low-fitness 
variants with low input read coverage have very low or no output read counts (per 
replicate ~1/3 of variants have below 3 output counts, ~15% of variants have zero output 
counts), effectively reducing the dynamic range of the assay for low input variants and 
distorting the estimate of the overall fitness distribution (see Supplementary Figure 4d). 
To overcome this, a Bayesian estimator of fitness was implemented. First, for each 
double mutant variant, the 1000 nearest neighbors in single mutant fitness space (i.e. 
those double mutants whose respective single mutant fitness values are similar to the 
single mutant fitness values of the variant under consideration) with sufficient input 
coverage (more than 100 reads in the input library) were identified. From this set of 1000 
nearest neighbors the expected distribution of double mutant fitness values was 
calculated, which served as a prior distribution. For the variant under consideration the 
likelihood distribution of fitness values given its input and output read counts was 
calculated under Poissonian assumptions. Fitness was then estimated as the mean of 
the distribution resulting from the multiplication of prior and likelihood distributions. Error 
of fitness estimate was estimated as the standard deviation of the resulting distribution. 
Estimated fitness from the three replicate experiments were merged by weighted 
averaging.  

 

Restricted epistasis classification close to the measurement 
range of fitness assays 
The subset of variants deemed suitable for positive epistasis classification is limited to 
regions where  

● the 95th percentile fitness surface is below wild-type fitness 
● at least one single mutant fitness value is significantly smaller than wild-type 

fitness at two standard errors 
● the expected fitness (sum of both single mutant fitness values) is not significantly 

higher than wild-type at two standard errors 

The rationale for these criteria is to avoid double mutants from two neutral single 
mutants, because these are dominated by measurement noise of overabundant wild-
type like variants. No restrictions were instead applied to the lower limits of the 
measurement range, because otherwise no/little epistasis quantification would have 
been available for several positions that show very strong detrimental effects for all aa 
mutations as well as because strong positive epistatic effects are observed in these 
regions, despite the dominance of background measurement effects. 

The data subset in which variants were potentially classified as negative epistatic is 
limited to data regions where  

● the 5th percentile fitness surface is above the 95th percentile of the background 
effect distribution; this value is derived from the 95th percentile of double mutant 
fitness distribution of lethal variants (GB1 - doubles with expected log-fitness 



below -8; RRM and WW domains and FOS-JUN interaction - variants with STOP 
codons) 

● both single mutant fitness values are significantly higher than the lower limit of 
the fitness assay measurement range at two standard errors 

● the expected fitness (sum of both single mutant fitness values) is not significantly 
higher than wild-type at two standard errors 

The rationale for criteria 1 and 2 is to avoid background measurement effects that make 
negative epistasis quantification unreliable. 

 

Uncertainty estimates from re-sampling procedure 
A re-sampling approach was used to estimate the uncertainty in interaction score 
estimates (Supplementary Figure 8, step 5, described here for positive epistatic variants, 
but equivalent for negative epistatic variants). In each of 10.000 re-sampling runs:  

● each variant’s fitness was drawn from a normal distribution with the measured 
fitness as mean and the uncertainty due to sequencing coverage as standard 

deviation 𝑓"#
$%&'()* = 𝒩(𝑓"#, 𝜎"#0 + 𝑠"0 ∗ 𝜎"0 + 𝑠#0 ∗ 𝜎#0), with sx as the local slope of 

the median fitness landscape in direction of the respective single mutant (step 
5a) 

● positive epistasis of variants was re-classified given the drawn fitness values 
(also step 5a) 

● each position pair’s fraction of positive epistatic variants was drawn from the 
posterior probability distribution of how likely an underlying true fraction of 
epistatic variants 𝐸678  is to generate the observed fraction of epistatic variants 
given the finite number of overall variants, i.e. e678 	~	p(E678 	|	#	ε678 , #	variants67) 
(step 5b). The posterior probability distribution is the product of a prior probability 
distribution – the kernel density estimate of the expected epistatic fractions 
across all position pairs (calculated using R function density with parameter bw 
set to 0.05) – and the likelihood function for the underlying true fraction of epistatic 
variants given the observed fraction of epistatic variants and the overall number 
of variants under binomial sampling assumptions 

 

Secondary structure prediction via two-dimensional kernels 
The alpha kernel takes on a sinusoidal profile perpendicular to the diagonal to weight 
interactions according to whether the position pair considered should have congruent 
side-chain orientations (see diagonal and perpendicular profiles in Figure 3b). The kernel 

was defined as 𝑘I 𝑑, 𝑝 = 	 cos 𝑝 ∗ 0N
O.Q

+ 1 3 ∗ 𝑒U
VW

XW , with 𝑑 = 2𝑥 − 𝑖 − 𝑗   as the 
diagonal distance of the interaction ij (off the diagonal) to the reference position x (on the 
diagonal) and 𝑝 = 𝑖 − 𝑗  as the perpendicular distance of the interaction off the diagonal. 
The kernel weight for positions with p > 5 was set to 0, thus only including interactions 
across little more than the first helical turn. Finally, 𝑐 = 4 is the integration scale for the 
Gaussian kernel along the diagonal. While smaller integration scales do yield nosier 
results and longer integration scales can lead to non-detection of shorter secondary 



structure stretches, we found that in practice our whole approach (including the actual 
detection algorithm described below) is robust to alterations of the integration length. 

The kernel smoothed alpha value for a given position x on the diagonal is then calculated 
as the sum over all interaction scores times their kernel weights 𝐾I,6 = 𝑘I 𝑑, 𝑝 ∗#"

𝑆"#, where 𝑆"# is one of the interaction scores (enrichment, correlation or combined score) 
at position pair ij. 

The beta kernel takes an alternating profile perpendicular to the diagonal to weight 
interactions according to alternating side-chain orientations in a beta strand and was 

defined as 𝑘b 𝑑, 𝑝 = 	 𝑝 + 1 	𝑚𝑜𝑑	2 − 1 3 ∗ 𝑒U
VW

XW , with 𝑐 = 4. Only interactions with 
perpendicular distances equal or smaller than two (i.e. 𝑘b 𝑑, 𝑝 > 3 = 0)  were included.  

To calculate whether kernel-weighted interaction scores of a specific position are larger 
than expected, they were compared to kernel-weighted scores obtained from 104 
randomly permutated control datasets. Randomization was performed by shuffling all 
interaction scores, while preserving matrix symmetry, and kernel-weighted interaction 
scores from permutated control datasets were calculated for each position independently 
to control for possible boundary effects in positions close to the borders of the protein 
chain. A p-value for each position was calculated as the fraction of permutated controls 
with kernel smoothed values above that of the real data. 

Secondary structure elements were identified by searching for continuous stretches of 
positions with high propensities to belong to either alpha helices or beta strands. The 
following workflow was implemented: 

1. calculate a combined p-value for seeds of length 3 by combining position-wise p-
values using Fisher’s method for both alpha and beta kernel smoothed interaction 
scores 

2. separate positions according to whether combined p-values of seeds from alpha or 
beta kernels are more significant, i.e.  
2.1. for alpha helical propensity calculations only consider stretches of at least 5 

consecutive positions for which the combined p-value of seeds for alpha kernel 
smoothing is smaller than that from beta kernel smoothing (thus setting the lower 
size limit of alpha helical elements to five) 

2.2. for beta strand propensity calculations only consider stretches of at least 3 
consecutive positions for which the combined p-value of seeds for beta kernel 
smoothing is smaller than that from alpha kernel smoothing (thus setting the 
lower size limit of beta strands to three) 

For alpha helices and beta strands separately and while combined p-values of seeds <
	0.05 

3. select the most significant seed 
4. test whether extension to any side yields lower combined p-value 

4.1. if yes: extend seed in this direction and repeat step 4 
4.2. else: repeat step 4 once to see whether further extension in same direction yields 

lower combined p-value 
4.2.1. if yes: extend and repeat step 4 
4.2.2. else: proceed to step 5 



5. fix as secondary structure element and delete all ‘used’ p-values (and combined seed 
p-values), such that other elements cannot incorporate them 

6. check whether other already fixed elements are adjacent or at most one position 
away 
6.1. if yes: merge both elements and update p-value 

7. repeat steps 3-6 until no more seeds with combined p-value < 0.05 are left 
This yields a list of predicted locations of secondary structure elements. We note that the 
secondary structure elements predicted from deep mutational scanning data could be 
compared to and combined with predictions derived from other tools, such as PSIPRED1, 
to further improve reliability. 

A modified beta strand kernel was used to detect beta sheet interactions. In contrast to 
beta strand detection, the beta sheet interaction kernel is centered on each off-diagonal 
position. For beta sheet kernels diagonal and perpendicular distances are therefore 
modified as 𝑑 = 𝑥 + 𝑦 − 𝑖 − 𝑗   and 𝑝 = 𝑥 − 𝑖 − (𝑦 − 𝑗) . The kernels to detect parallel 
and anti-parallel beta sheets differ in which is their ‘diagonal’ direction, i.e. the direction 
at which consecutive position pairs interact in the beta sheet (Supplementary Figure 3b). 
Therefore, parameters d and p were swapped for the anti-parallel beta sheet kernel. 
Also, because diagonal positions (p = 0) can be deemed the most crucial for deciding 
whether a position participates in a beta sheet interaction or not, their kernel weights 

were multiplied by a factor of two, i.e. 𝐾b 𝑑, 0 = 	4/3 ∗ 𝑒U
VW

XW .  

Beta sheet interactions were identified by searching for the most significant stretches of 
parallel and anti-parallel interactions (similar to workflow for alpha helices and beta 
strands), then identifying the set of most significant interactions that is consistent with 
previously predicted secondary structure elements. 

In particular, step 1 & 3-7 from the above-described workflow were performed for the 
parallel beta sheet kernel on each sub-diagonal (parallel to the main diagonal) of the 
interaction score matrix separately; and for the anti-parallel beta sheet kernel on each 
perpendicular diagonal of the interaction score matrix separately. 

The steps were modified as follows: 

● for anti-parallel beta sheet interactions, only positions with a distance greater 
than 1 from the main diagonal were used to calculate seed p-values (assuming 
anti-parallel beta sheet interactions need a turn of at least length two to be 
connected) 

● for parallel beta sheet interactions, only sub-diagonals with a distance greater 
than 4 from the main diagonal were considered (assuming parallel beta sheet 
interactions of two adjacent beta strands need a linker region) 

The workflow was extended with the following steps to predict beta sheet interactions 
within the protein domain: 

8. compute association of seeds with known beta strands (e.g. seed positions overlap 
strand 1 on one side and coincide with strand 3 on the other side) 

9. while there are seeds with p < 0.05: pick most significant seed from either the parallel 
or anti-parallel sheet subset 

10. check consistency with secondary structure elements 
10.1. discard the seed and jump back to step 9 if 



10.1.1. it is overlapping or too close to an alpha helix or the linker region between 
two beta strands that interact (minimal distance smaller one) 

10.1.2. at least one of the two strands it is associated with already has two other 
beta sheet interactions or the total number of beta sheet interactions 
exceeds 2*(#beta strands – 1) 

10.2. modify secondary structure elements and start anew from step 3 if  
10.2.1. one side of the seed is not associated to a known beta strand: create this 

beta strand 
10.2.2. if both sides of the seed are associated with the same known strand: split 

the strand and create a linker region in-between the strands 
10.3. else fix the beta sheet interaction and delete all other interactions that are 

associated with the same strands and haven’t been fixed yet, jump back to step 
9 

11. if no more seeds with p<0.001, finish 
12. update beta strands: keep only those positions that are part of a beta sheet 

interaction 

For beta sheet pairing detection in the GB1 domain (as reported in Figure 3d and 
Supplementary Figures 3b-d and 9) secondary structure element predictions derived 
from the deep mutational scanning data were used as input (as shown in Figure 3a-c 
and Supplementary Figure 3a). For the RRM and WW domains, PSIPRED1 (v3.3) 
predicted secondary structure elements were used as input, due to the insufficient signal 
from secondary structure element predictions from deep mutational scanning data. 

 
Protein structure prediction 
Protein structures were modeled ab initio with structural restraints derived from the deep 
mutational scanning data using simulated annealing molecular dynamics (XPLOR-NIH 
modeling suite2).  

Distance restraints from top L predicted contacts (position pairs with highest interaction 
scores and linear chain separation greater than 5 positions, L - mutated length of protein) 
were implemented as NOE (nuclear Overhausser effect) potential by setting Cb-Cb atom 
distances (Ca in case of Glycine) between positions to range between 0 and 8Å and 
weighting the restraints according to their relative interaction score (interaction score 
divided by mean interaction score of all predicted contacts used). NOE potential type 
was set to “soft” for stages 1 and 2 and “hard” for the final simulation stage. Using fewer 
or more predicted tertiary contacts to derive restraints yielded similar, albeit mostly 
slightly worse structural models (Supplementary Figure 3f). 

Restrains from secondary structures elements were implemented as dihedral angle 
restraints (CDIH potential). Dihedral angles of both beta strands and alpha helices were 
set to range between values commonly observed in crystal structures3, for alpha helices 
ΦI = −63.5°	 ± 4.5° and ΨI = −41.5° ± 5° and for beta strands Φb = −118°	 ± 10.7° and 
Ψb = 134° ± 8.6°. 

Restraints for beta sheet interactions were implemented by setting H-N:O=C hydrogen 
bond distances between interacting positions to range between 1.8 and 2.1Å (Ref. 3), 
with weight one. Predictions of beta sheet interactions derived from deep mutational 
scanning data yield a string of interacting positions, but hydrogen bonding in beta sheets 



occurs in specific non-continuous patterns between position pairs (between alternating 
positions off the interaction diagonal in parallel beta sheets and between every second 
set of position pairs in anti-parallel beta sheets). Specifically, for each set of interacting 
positions there are two alternative patterns of hydrogen bonding possible. These 
alternative possibilities of pairing were implemented as mutually exclusive selection pairs 
with the “assign … or” syntax in Xplor-NIH.  

Simulations were performed in three stages, in each of which 500 structural models were 
generated. Stages 1 and 2 served to identify inconsistencies among defined structural 
restraints, and simulations in both stages were started from an extended chain 
configuration. Stage 3 served to refine a final set of best models, here simulations were 
started from the average structure of the best 10% of models obtained at the end of 
stage 2. 

After simulation stages 1 and 2, restraints were checked for their consistency with 
predicted structural models and were down-weighted if they were violated in too many 
of the best structural models. First, structural models were clustered based on whether 
they fulfill or violate similar sets of the given distance and dihedral angle restraints (k-
means clustering, k = 4). Then the top cluster was identified by the mean total XPLOR 
energy (from all energy potentials used) of its 50 models with lowest total energy. These 
50 models with the lowest total energy from the top-ranked cluster was used to identify 
which restraints are commonly violated. For the subsequent simulation stage, distance 
restraints were down-weighted according to the fraction of top structural models that 
violated them, 𝑤6," = 𝑤6,"Us ∗ 1 − 𝑓6 0, and distance restraints with a weight below 0.1 
were discarded. There is no option to weight dihedral angle restraints, thus instead 
dihedral angle restraints that accumulated down-weighting to below 1/3 were discarded 
for the subsequent simulation stages. 

The top 5% structural models, as judged by total XPLOR energy, from simulation stage 
3 were evaluated against the reference structure; results are robust to the cut-off used 
(Supplementary Figure 3g). The TM-score program (update 2016/03/23) was used to 
calculate the Ca root mean squared deviation and the template modeling score4. 

Several types of control simulations were performed to judge the predictive power of 
restraints derived from deep mutational scanning data. As a negative control we 
performed simulations without restraints from predicted contacts and beta sheet 
interactions, but with restraints from secondary structure elements predicted by 
PSIPRED1 (version 3.3). As a positive control we performed simulations with restraints 
derived from the reference structure. Here, L true contacts of position pairs with linear 
chain distance greater than 5 amino acids were randomly sampled and beta sheet 
hydrogen bonding were determined using PyMOL5. These simulations serve as a 
positive control and give the maximally achievable accuracy of our Xplor-NIH workflow. 

For the WW domain, simulations on the full mutated 33aa section gave mediocre results, 
both when using combined scores with PSIPRED predicted secondary structure (5.8Å 
Ca-RMSD), as well as when using perfect information from the reference structure (4.1Å 
Ca-RMSD). Upon inspection, this seemed to be an issue of the unstructured tail regions. 
We thus conducted structural simulations for a truncated version of the WW domain 
using only mutated positions 6-29 (the core region including the three beta strands).  



For structural simulations of down-sampled GB1 datasets (and DeepContact 
transformed versions thereof) we used distance restraints derived from top predicted 
contacts and secondary structure restraints derived from PSIPRED predictions, but no 
restraints for beta sheet pairing. This was done to avoid skewed results due to the fact 
that especially beta sheet pairing predictions are often false in low quality datasets 
(Supplementary Figure 9). For structural simulations from DeepContact-transformed 
predictions, we found that using more tertiary contacts resulted in better models. We 
conclude that this is because the deep learning algorithm focuses many strong 
predictions in few structural features (such as interactions of secondary structure 
elements), which are therefore the top contacts. Restraints in other regions of the protein 
are therefore only included if more predicted contacts are used for restraint calculations, 
therefore improving structural predictions. Because of this, when comparing structural 
simulations from scores derived before and after deep learning, we compare the top 5% 
of structural models derived with the top L predicted contacts from original scores with 
those derived with the top 1.5*L predicted contacts from DeepContact transformed 
scores. 
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