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I. SAMPLES STUDIED

Figure S1 displays optical images of the devices studied in this work. The fabrication process is de-

scribed in Methods. The thickness of the van der Waals layers and the size of the split-gate gaps are

reported in Table S1.

Sample Top hBN Bottom hBN Graphite Split-gate

thickness (nm) thickness (nm) thickness (nm) gap (nm)

BNGr74 22 18 4 0 / 21 / 20

BNGr64 20 50 148 / 159

BNGr30 25 15 129 / 140

TABLE S1: Samples characteristics. The thickness of the hBN and graphite layers are measured by atomic force

microscopy. The gap size of the split-gate electrodes is measured by scanning electron microscopy.

cba

FIG. S1: Optical images of the devices. a, Sample BNGr74 of the main text. b, Sample BNGr64 described in section

XII. c, Sample BNGr30 described in section XII. Scale bars are 10 µm.

II. PARAMETERS EXTRACTED FROM THE AHARONOV-BOHM INTERFERENCE

Table S2 presents the various parameters extracted from the measurements shown in Figure 3 of the

main text, among which the Aharonov-Bohm period ∆B@14 T, the Thouless energy ETh extracted from

the checkerboard patterns, the energy scale T0 related to the temperature dependence of the resistance
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oscillation, together with the geometrical dimensions (surfaces and lengths between QPCs) of the three

Fabry-Pérot cavities.

Importantly, we stress that the determination of the device geometry relies on optical images of the

graphene flake taken during the van der Waals pick up process, which makes the exact determination of the

graphene edge delicate. We therefore assess the graphene edge position from this image at±150 nm, which

results in the uncertainties of the geometrical area Ageo of the FP cavities and lengths L between QPCs

reported in Table S2.

QH-FP ∆B@14 T AAB Ageo L ETh T0 ETh/4π2kB

(mT) (µm2) (µm2) (µm) (µV ) (mK) (mK)

Small 1.32 3.1 3.1± 0.4 4.3± 0.5 134 43 39

Medium 0.40 10.4 10.7± 1.2 7.2± 0.5 83 20 24

Large 0.27 15.0 13.1± 1.8 9.0± 0.5 57 14 17

TABLE S2: Geometrical and physical parameters corresponding to the measurements of Fig. 3. Aharonov-

Bohm period ∆B@14 T obtained at B = 14 T and resulting Aharonov-Bohm area AAB; geometrical area Ageo of

the FP cavities; geometrical length L between two QPCs of the cavity; Thouless energy ETh extracted from the

checkerboard patterns in Fig. 3c and d; Energy scale T0 extracted from Fig. 3h; ETh/4π2kB, the quantity theoretically

equal to T0 according to ref.1
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III. DESIGN CHARACTERISTIC OF THE QPCS

The presence of the graphite back-gate electrode separated from the graphene by a thin hBN dielectric

layer imposes drastic conditions for the design of the split-gate electrodes. Contrary to devices on Si/SiO2

studied in ref.2,3 in which the split-gate gap of about 150 nm led to a suitable ratio of split-gate capacitance

to QPC capacitance, the very close proximity of the graphite back gate imposes a much smaller split-gate

gap. By performing numerical simulations3, we estimated the split-gate gap that leads to a ratio of split-gate

capacitance to QPC capacitance of the order of 2 to be of the order of few tens of nanometers, depending on

the hBN thicknesses. Figure S2 displays scanning electron micrographs of the three split gates of sample

BNGr74 discussed in the main text. The split-gate gaps of QPC2 and QPC3 are 20 nm, suitable for operating

the split gates as QPCs in the quantum Hall regime. The split-gate electrodes of QPC1 are unintentionally

connected but this short-circuit does not hinder QPC operation (see QPC characterizations in section VI).

QPC1 QPC2 QPC3

a b c

FIG. S2: QPCs geometry. Scanning electron micrograph of the QPCs of BNGr74 device. a, QPC1. b, QPC2. c,

QPC3. The two split-gate electrodes of QPC1 are unintentionally connected. The gaps between the two other split

gates is 20 nm. Scale bar is 100 nm.
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IV. CHARACTERIZATION OF THE SPLIT-GATE CAPACITANCES AT 0 T

In this section, we present the characterization of the back gate and the different split gates at zero

magnetic field for the sample of the main text. Figure S3 shows color-coded maps of the longitudinal

resistance Rxx versus back-gate voltage Vbg and voltage VQPC applied on a split gate (other split gates are

floating). The maps exhibit four quadrants separated by two nearby horizontal lines and a diagonal line.

The most resistive horizontal line, at Vbg = −0.04 V, corresponds to the charge neutrality point in the

bulk of graphene and the diagonal line corresponds to the charge neutrality point below the active split-

gate electrodes, as usual for graphene devices equipped with a local top gate. The two lines intersect at

VQPC ' +0.38 V as a result of the work function difference between the palladium of the gates and the

graphene. The second horizontal line is more unusual and results from the local hole doping of the graphene

beneath the two other split gates that are not active but contribute in series to the measured resistance. The

palladium of these split-gate electrodes shifts the position of the charge neutrality point beneath them to

Vbg = 0.12−0.18 V, yielding a secondary resistance peak, independent of the active split gate and observed

consistently for the three QPC maps. These maps also provide the capacitance ratios Csg/Cbg between the

active split-gate and the back-gate electrodes which are respectively 0.83 for QPC1 and 0.86 for QPC2 and

QPC3. They are important quantities for the analysis of the QPC properties in the QH regime.

2 3 4 5

-2 -1 0 1 2

-2

-1

0

1

2
log(Rxx)

Split-gate voltage VQPC1 (V) 

Ba
ck

-g
at

e 
vo

lta
ge

  V
bg

 (V
)

2 3 4 5

-2 -1 0 1 2

-2

-1

0

1

2
log(Rxx)

Split-gate voltage VQPC2 (V) 

Ba
ck

-g
at

e 
vo

lta
ge

  V
bg

 (V
)

2 3 4 5

-2 -1 0 1 2

-2

-1

0

1

2
log(Rxx)

Split-gate voltage VQPC3 (V) 

Ba
ck

-g
at

e 
vo

lta
ge

  V
bg

 (V
)

a b c

QPC3QPC2QPC1

FIG. S3: Split-gates characterization at 0 T. a, b, c, Longitudinal resistance Rxx versus split-gate voltage VQPC

and back-gate voltage Vbg for the three QPCs of the QH-FP interferometer presented in the main text. The hori-

zontal line at Vbg = −0.04 V corresponds to the charge neutrality point in the bulk graphene, whereas the diagonal

lines correspond to the charge neutrality point in the graphene beneath the active split gate. These lines intersect at

(VQPC,Vbg) ' (+0.38 V,−0.04 V) revealing the significant local hole doping induced by the palladium gates. The

second horizontal line at Vbg = 0.18 V in a and c and Vbg = 0.12 V in b marks the positive back-gate voltage needed

to compensate the hole doping induced by the palladium beneath the non-active split gates.
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V. FAN DIAGRAM OF BULK LANDAU LEVELS

In this section, we present the Landau fan diagram of sample BNGr74. Fig. S4 displays the longitudinal

resistance Rxx as a function of magnetic field B and back-gate voltage Vbg, measured at 0.02 K. This

measurement was performed with a voltage VQPC = +0.3 V applied on each QPC to compensate the hole

doping induced by the palladium split gates and ensure a quasi-homogeneous charge carrier density in the

graphene layer.

Broken-symmetry states in electron(hole)-type Landau levels emerge as minima in Rxx above 5 T

(3 T), consistent with the mobility µ = 130 000 cm2.V−1.s−1 obtained for a charge carrier density of

1× 1012 cm−2 from Hall measurements. In addition, an insulating behaviour develops at charge neutrality

with increasing magnetic field. The full-lifting of the degeneracies in the zeroth Landau level occurs above

4 T, allowing to perform interferometry experiments with the inner or outer electron edge channels of the

zeroth Landau level at relatively low magnetic field values (see section XI).

From the position of theRxx minima, we extract a back-gate capacitance Cbg = 1.45 mF/m2 consistent

with the bottom hBN thickness and a hBN dielectric constant εBN
r ≈ 3.
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FIG. S4: Landau fan diagram. Longitudinal resistance Rxx of sample BNGr74 (device of the main text) versus

back-gate voltage Vbg and magnetic field B, measured at 0.02 K.
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VI. CHARACTERIZATION OF THE QPCS IN THE QUANTUM HALL REGIME

QH interferometry experiments require a precise knowledge of the edge-channels configuration in the

bulk of graphene, beneath the split-gate electrodes and in the split-gate constrictions. This section describes

the action of the split-gate electrodes in the QH regime, which allows to determine the gate-voltage set

points for the (partial) QPC pinch-off and tuning of QH edge channel transmissions.

Extended Data Figure 1 displays the diagonal conductance GD as a function of split-gate and back-gate

voltages, VQPC and Vbg, for the three QPCs. The three conductance maps show features similar to those

reported in ref.2 for a QPC operating in the QH regime. At negative split-gate voltages, GD draws diagonal

strips of nearly constant and quantized values. They have a smaller slope than the zero-field diagonal

lines of Fig. S3, indicative of the smaller couplings at the constrictions characterized by capacitance ratios

CQPC/Cbg ' 0.58, 0.31 and 0.36 for QPC1, QPC2 and QPC3, respectively. As demonstrated in ref.2, the

quantized GD values indicate the number of transmitted QH edge channels through the QPC. For a given

bulk filling factor, the QH edge channels can be backscattered by applying a negative split-gate voltage

VQPC. For instance, at Vbg = 0.75 V, the bulk filling factor is ν ' 2, leading to the blue rhombi of

GD = 2e2/h located near VQPC = 0 V in Extended Data Fig. 1. Decreasing VQPC to negative values, the

conductance drops to the dark blue strip of GD = e2/h, and then to GD = 0 at even more negative values.

These conductance changes reflect the successive backscattering of the QH edge channels at the QPC2. The

linecuts of Extended Data Fig. 2 further illustrate such a successive pinch off of the inner and outer edge

channels at ν ' 2.5 (Extended Data Fig. 2a) and the pinch off the outer edge channel at ν ' 1.5 (Extended

Data Fig. 2b).

As discussed in section IV, the hole-doped graphene regions beneath the non active split-gate electrodes

intervene in the transmission of the whole device when studying the properties of a particular split gate.

These hole-doped regions have a lower filling factor than the bulk and can therefore backscatter some bulk

QH edge channels. As a consequence, the QH plateaus as a function of back-gate voltage at VQPC ∼ 0 V in

the QPC maps of Extended Data Fig. 1 are not centered at the integer bulk filling factors indicated on the

right axis and determined by the fan diagram Rxx(Vbg, B) at compensated split-gate voltages (see Fig. S4).

The comparison in Fig. S5 between a QPC map and the transverse Hall resistance Rxy that relates to the

bulk filling factor bears out this observation. The ν = 2 plateau develops at lower back-gate voltage in the

Hall resistance than in the diagonal resistance across the QPCs. Despite the fact that the bulk has two QH

edge channels when 1/Rxy = 2e2
h at, for instance, Vbg = 0.5 V, the non active QPCs that have lower filling

factors backscatter the inner edge channel leading to GD = e2/h in the QPC conductance map.

Furthermore, for the data presented in the main text, we assessed the number of bulk QH edge channels
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through the value of the Hall resistance plateau. For all figures of the main text, we measured 1/Rxy = 2e2
h ,

which indicates that two edge channels propagate in the graphene bulk.
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FIG. S5: QPC map compared to Hall resistance map at 14 T. a, Diagonal conductance GD versus split-gate

voltage, VQPC, and back-gate voltage, Vbg, for QPC3. b, Inverse of the transverse Hall resistance 1/Rxy versus VQPC

and Vbg. The vertical dashed white line indicates the split-gate voltage that compensates the hole doping induced

by the split-gate electrodes (iso-density in the bulk and beneath the active split gate). This voltage is determined in

the zero-field maps of Fig. S3 at the intersection between the diagonal line and the main horizontal line of the bulk

charge neutrality point. The horizontal solid white lines delineate the quantized plateaus in the Hall resistance that are

centered at integer bulk filling factors (indicated on the right axis). The diagonal lines delineate the diagonal strips of

constant GD in the QPC map, that is, conductance plateaus given by the number of transmitted edge channels through

the QPC (see ref.2 for a detailed analysis). For consistency, these diagonal lines meet the horizontal ones of the bulk

Hall resistance right at their intersect with the vertical line.
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VII. AHARONOV-BOHM OSCILLATIONS FOR DIFFERENT CONFIGURATIONS OF MAGNETIC

FIELD AND EDGE CHANNELS

In this section we present plots of the Fourier amplitude of the resistance oscillations with Vpg2 for

experiments performed with different interfering edge channels and magnetic fields. In every cases, the

frequency of the oscillations fpg2 is well defined and shows a clear and continuous decrease while lowering

Vpg2. As expected for the Aharonov-Bohm regime, the frequency of the oscillations increases with the

magnetic field at fixed plunger-gate voltage whereas it does not change with the interfering edge channel.

A significant component oscillating at twice the Aharonov-Bohm frequency is visible on Fig. S6a. In this

case, only the lowest frequency component was used to plot Fig. 2e in the main text.
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FIG. S6: Fourier amplitude of the resistance oscillations. Fourier amplitude of the resistance oscillations observed

in the small interferometer for different configurations of magnetic field and interfering edge channel, as a function of

plunger-gate voltage Vpg2 and frequency fpg2.
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VIII. ELECTROSTATICS OF THE PLUNGER GATE

The potential profile in the graphene below the plunger gate is determined by self-consistent electro-

static simulations in the vertical 2D plane shown in Fig. S7a assuming translational invariance in the third

direction. The simulation is done for the same hBN thicknesses as in the device of the main text, with

dbottom = 18 nm for the bottom layer and dtop = 22 nm for the top layer. The hBN dielectric permittivity

εBN
r ≈ 3 is extracted from the position of quantum Hall plateaus versus back-gate voltage. The graphite

back-gate is treated as a perfect metal. The graphene sheet is modelled by a charge density σ(x) linked to

the electrostatic potential V (x) by the relation:

σ(x) = (−e) sign
(
V (x)

) e2V (x)2

π~2v2
F

where vF = 106 m/s is the Fermi velocity in graphene. The electrostatic problem is solved self-consistently

using a modified version of MaxFEM (http://www.usc.es/en/proxectos/maxfem), an electromagnetic simu-

lation software based on the finite-element method. The mesh grid computed using Gmsh (http://gmsh.info)

extends 1 µm in vertical and 2 µm in horizontal.

The self-consistent solution V (x) can be calculated for a given back-gate voltage Vbg and a series of

plunger-gate voltages Vpg in order to determine the dependence of the pn interface position xpn on the

plunger-gate voltage. Equivalently, the local plunger-gate capacitanceCpg(x) can be extracted from a single

self-consistent simulation (for example at Vbg = 0 and Vpg = −1 V) using the quantum capacitance model4.

This model is based on the relation between σ(x) and V (x) given above, together with the definition of the

capacitive couplings:

σ(x) = −Cbg
(
Vbg − V (x)

)
− Cpg(x)

(
Vpg − V (x)

)
where Cbg = ε0ε

BN
r /dbottom. This approach based on the determination of the local capacitance Cpg(x)

has the advantage to provide the self-consistent solution for any set of back-gate and plunger-gate voltages

without the need to solve again the full electrostatic problem.

The spatial variation of the potential energy E(x) = −eV (x) below the plunger gate is plotted in

Fig. S7b for a fixed back-gate voltage Vbg = 0.53 V and various negative plunger-gate voltages correspond-

ing to the experiment reported in Fig. 2 of the main text. The position xpn of the pn interface with respect to

the gate edge is plotted in Fig. S7c as a function of the plunger-gate voltage, showing the following behav-

ior: the formation of the pn interface occurs at Vpg = −0.65 V (in the data this happens around ' −0.3 V

instead, due to the hole doping of +0.38 V from the palladium split-gate electrodes, corresponding to the

charge neutrality point below the plunger gate), then the fast displacement of the pn interface corresponds to
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FIG. S7: Plunger-gate electrostatics. a, Schematics of the hBN/graphene/hBN heterostructure deposited on the

graphite back gate and partially covered by the metallic plunger gate used to tune the interfering path length. b, Self-

consistent electrostatic energy profiles E = −eV in the graphene layer for a back-gate voltage Vbg = 0.53 V and

plunger-gate voltages Vpg varying from 0 to −4 V. c, Position of the pn interface with respect to the gate edge as a

function of the plunger-gate voltage. d, Displacement rate of the pn interface calculated as its derivative with respect

to the plunger-gate voltage.

the expulsion of the pn interface from below the plunger gate, and finally the pn interface moves slower and

slower for large negative plunger-gate voltages. The displacement rate dxpn
dVpg

plotted in Fig. S7d is used in the

main text to calculate the non-linear lever arm α = Lpg× dxpn
dVpg

of the plunger gate with contour length Lpg.

This lever arm provides the theoretical conversion between plunger-gate voltage and interferometer area,

which writes ∆A = α∆Vpg, and which is compared in Fig. 2f with the oscillation frequency measured

experimentally. Lpg remains an adjustable parameter because the position of the graphene edges is known

with an uncertainty of ±150 nm. To reproduce the measurement, a plunger-gate contour Lpg = 1.8 µm

is used, in good agreement with the expected lithographic length of 1.5 ± 0.3 µm (the uncertainty of the

graphene edge position contributes twice).



11

IX. AHARONOV-BOHM OSCILLATIONS IN THE MEDIUM INTERFEROMETER

To complement the (δB, Vpg) maps shown in Fig. 3a and b for the small and large interferometers, we

present in Fig. S8 the map obtained for the medium interferometer, in the same conditions, i.e. with the

outer edge state at B = 14 T. The constant resistance lines have a negative slope indicating the Aharonov-

Bohm origin of the oscillations. The field periodicity is 0.40 mT corresponding to an Aharonov-Bohm area

of 10.4 µm2 in good agreement with the expected lithographic area (see Table S2).
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FIG. S8: Aharonov-Bohm oscillations in the medium interferometer. Diagonal resistance as a function of plunger-

gate voltage Vpg2 and magnetic field variation δB in the medium interferometer measured at 14 T with the outer edge

channel interfering. The inset schematic indicates the active QPCs (in red) and plunger gate (in orange).
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X. INTERFEROMETRY EXPERIMENTS WITH INNER EDGE STATE AT 14 T IN THE THREE

INTERFEROMETERS

In this section we present additional interferometry experiments performed with the inner edge channel

of the zeroth Landau level at B = 14 T. Fig. S9a, b and c show the diagonal resistance of the device as a

function of plunger-gate voltages and magnetic field for the small, medium and large interferometers, re-

spectively. The results are virtually identical to those performed with the outer edge channel. The magnetic

field periods extracted from these measurements are respectively of 1.23, 0.39 and 0.27 mT.
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FIG. S9: Aharonov-Bohm oscillations with the inner edge channel. a, b, c, Diagonal resistance versus plunger-

gate voltage Vpg1,2 and magnetic field δB for the small, medium and large interferometers, respectively, with the inner

edge channel interfering at 14 T. The inset schematics indicate the active QPCs (in red) and plunger gates (in orange).
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XI. INTERFERENCES AT LOWER MAGNETIC FIELDS

Here we show that the device BNGr74 presented in the main text can also operate at low magnetic field.

Stable Aharonov-Bohm interference were observed with the outer and inner edge channels respectively

down to 5 T and 4 T as displayed in Fig. S10a and b. The respective Fourier amplitudes of the resistance

oscillations are shown in Fig. S10c and d.
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XII. AHARONOV-BOHM OSCILLATIONS IN OTHER DEVICES

In this section we present the data obtained on two other devices, BNGr64 and BNGr30. They do

not have a graphite back gate, and the silicon substrate serves as the back gate instead. Even without

graphite electrode, we observed for both samples Aharonov-Bohm oscillations, indicating that the absence

of charging effect is not only related to the screening by the graphite gate.

BNGr64 device

We first present the data for the device BNGr64 shown in Fig. S1b. In this device, three out of four

QPCs were operating correctly enabling us to perform experiments with only one of the two interferometers,

whose scanning electron micrograph is displayed in Fig. S11. This device was studied using a larger ac bias-

voltage excitation of 20 µV and using the bottom plunger gate. The large plunger gate was kept grounded

during the measurements.

FIG. S11: QH-FP interferometer in sample BNGr64. False-colored scanning electron micrograph of the device.

Graphene edges are represented by the white dotted line. Contacts, QPCs and plunger gates are color-coded in yellow,

red and orange. Scale bar is 1 µm.

We present interferometry experiments performed with the outer interfering edge channel at 14 T with a

bulk filling factor νb = 1.1. Contrary to the data presented in the main text, there is only one electron-like

edge channel propagating in the interferometer. Fig. S12c shows the evolution of the diagonal resistance

with plunger-gate voltage Vpg. Clear resistance oscillations are observed while decreasing Vpg from 0 to -3.2

V. Contrary to the data presented in Fig. 2c of the main text, the oscillations show many phase shifts as well

as some visibility losses, reflecting the lower degree of stability and coherence of the device. The visibility

of the oscillations is typically about 15% as evidenced in Fig. S12a and b. The Fourier transform amplitude

of the oscillations is presented in Fig. S12d and shows a decrease of the frequency of the oscillations fpg

with the plunger-gate voltage Vpg consistent with that in Fig. 2 of the main text.
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The evolution of the diagonal resistance oscillations with both the plunger-gate voltage and the magnetic

field in this configuration is shown in Fig. S12e. A smooth resistance background for each sweep was sub-

tracted to evidence lines of constant Aharonov-Bohm phase and get rid of average-conductance variations.

Constant resistance values form lines with a negative slope in the δB–Vpg plane which shows that this de-

vice operates in the Aharonov-Bohm regime. From these measurements, we extract a magnetic field period

of 0.42 mT corresponding to an enclosed area of 9.9 µm2 in agreement with the geometrical surface of 11.5

µm2.
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FIG. S12: Resistance oscillations in sample BNGr64. a, b, c, Resistance oscillations induced by change of the

plunger-gate voltage Vpg in interferometry experiments with the inner edge channel at 14 T. Clear resistance oscilla-

tions are visible lowering Vpg, on top of a continuous increase of the mean resistance of the device evidenced in c.

a and b show zooms on smaller Vpg2 ranges of the resistance oscillations converted in visibility (R − R̄)/R̄, where

R̄ is the resistance background. d, Amplitude of the Fourier transform of resistance oscillations presented in c with

respect to the plunger-gate voltage Vpg and the frequency fpg. A continuous decrease of the oscillations frequency is

observed while decreasing Vpg. e, Evolution of the resistance oscillations as function of the plunger-gate voltage Vpg

and the magnetic field variation δB after subtraction of a resistance background for each plunger-gate voltage sweep.

Constant δRD lines have a negative slope characteristic of oscillations induced by Aharonov-Bohm effect.
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BNGr30 device

Here we present the data for the device BNGr30, displayed in Fig. S1c. Contrary to the two previous

samples, before the deposition of the metallic contacts and of the gates, the heterostructure was etched and

shaped using a hard-mask of HSQ resist to uncover the graphene edges at determined positions. After a

second e-beam lithography steps, both the contacts and the split gates were made by depositing a Cr/Au

bilayer. In this device, the plunger gates cover nearly all the graphene edges between the two QPCs. A

scanning electron micrograph of the device is shown in Fig. S13.

FIG. S13: QH-FP interferometer in sample BNGr30. False-colored scanning electron micrograph of the device.

Graphene edges are represented by the white dotted line. Contacts, QPCs and plunger gates are color-coded in yellow,

red and orange, respectively. Scale bar is 1 µm.

Interferometry experiments performed in this device with the inner edge channel at bulk filling factor

νb = 2.3 and 14 T are presented in Fig. S14. Resistance oscillations induced by a change of the top plunger-

gate voltage Vpg are shown in Fig. S14a-c. They appear on the entire range of Vpg voltage even though the

stability of the QPC is affected by the value of Vpg. These oscillations have a small visibility typically

varying between 2 and 5 % as shown in Fig. S14a and b. The Fourier transform analysis of the oscillations,

shown in Fig. S14d reveals a similar lowering of the frequency fpg of the oscillations with the plunger-gate

voltage (the absence of well-defined frequency for the oscillations at Vpg ' −1.2 V arises from the rapid

drop of the resistance background).

In Fig. S14e, we show the evolution of resistance oscillations with both the magnetic field and the

plunger-gate voltage. The constant phase lines have a negative slope evidencing that the oscillations result

from the Aharonov-Bohm effect. We can extract a magnetic field period of 0.37 mT corresponding to an

area enclosed by the interfering edge state of 11.2 µm2 in good agreement with geometric area of 10.1 µm2.
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FIG. S14: Resistance oscillations in sample BNGr30. a, b, c, Resistance oscillations induced by a change of the

plunger-gate voltage Vpg in interferometry experiments with the inner edge state at 14 T. The abrupt change in c of

the mean resistance value at Vpg ≈ −1.2 V and Vpg ≈ −0.2 V might originate from instability of the QPCs. a and

b show zooms on smaller Vpg ranges of the resistance oscillations converted in visibility (R − R̄)/R̄, where R̄ is the

resistance background. d, Amplitude of the Fourier transform of resistance oscillations presented in c with respect to

the plunger-gate voltage Vpg and the corresponding voltage frequency fpg. A continuous decrease of the oscillations

frequency is observed while decreasing Vpg. The divergence at Vpg ≈ −1.2 V is an artefact arising from the rapid

change of the mean resistance value at this plunger-gate voltage. e, Evolution of the resistance oscillations with both

the plunger-gate voltage Vpg and the magnetic field variation δB after subtraction of a resistance background for each

plunger-gate voltage sweep. Constant δRD lines have a negative slope characteristic of oscillations induced by the

Aharonov-Bohm effect.
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XIII. ABSENCE OF CHARGING EFFECT

Here we discuss the absence of Coulomb blockade in graphene FP interferometers. We follow the ap-

proach proposed in ref.5,6 and estimate the relevant capacitances describing the electrostatics of the system.

We use the notations of ref.6, make approximate calculations for the small interferometer with a graphite

back gate and discuss the case of the devices without graphite back gate. These calculations allow us

to evaluate the parameter ξ = Ceb
Cb+Ceb

, where Cb is the bulk-to-gate capacitance and Ceb the edge-to-bulk

capacitance, which defines according to Ref.5 if the device is operating in the Aharonov-Bohm or Coulomb-

dominated regime.

Bulk capacitance Cb

The bulk capacitance Cb refers to the capacitance of the electrons located in the central part of the cavity

and spatially separated from the conducting edge channels. These bulk electrons belong to the last partially-

occupied Landau level and form an isolated island capacitively coupled to the gate electrodes7 (back gate,

plunger gates, and split-gates) . The electrostatic coupling of the bulk to the interfering edge channel is

considered separately in another capacitance term Ceb discussed later.

For our device with a graphite back gate, the bulk capacitance is mostly given by Cb = CbgAgeo where

Cbg = 1.45 mF/m2 is the effective back-gate capacitance andAgeo is the geometrical area. For our small FP

cavity, we obtainCb = 4.5×10−15 F. The corresponding bulk charging energy is thusEC = e2

2Cb
= 18 µeV

comparable to that reported for devices in GaAs heterostructures8 in which AB oscillations with fractional

edge channels were reported.

For our devices without graphite back gate, the 285 nm thick SiO2 layer gives Cbg = 0.12 mF/m2. Thus

for devices having similar sizes, Cb is approximately decreased by a factor 10 with respect to devices with

graphite back gate. For the two devices presented in section XII, BNGr64 and BNGr30, which respectively

have geometrical surfaces of 11.5 and 10.1 µm2, we obtain respectively Cb = 1.4 and 1.2× 10−15 F.

On top of this bulk-to-back-gate capacitance, one needs to add the contribution of the plunger-gate

and split-gate electrodes resting atop the 20 nm thick capping hBN. This contribution is difficult to evaluate

because the top gates are not located directly above the bulk island. However, they still provide an additional

parallel capacitive coupling leading to an increase ofCbg and a reduction of the overall bulk charging energy.

We note that this effect may play a significant role in devices on silicon substrate and may become the main

contribution to the bulk capacitance.
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Interfering edge channel capacitance Ce

Similarly, the interfering edge channel is capacitively coupled to gates electrodes and one can define a

edge-to-gates capacitance Ce. For a sake of completeness, we also evaluate it though it does not appear in

the expression of ξ. Ce is the sum of two contributions : the edge-to-top-gates capacitance Ce/tg and the

edge-to-back-gate capacitance Ce/bg.

The latter can be evaluated following a similar approach as above. In this case, Ce/bg = 2LwCbg where

2L is the FP cavity perimeter and w is the width of the compressible stripe corresponding to the QH edge

channel. Assuming w = lB the magnetic length (≈ 7 nm at 14 T), we obtain Ce/bg = 8.6× 10−17 F. This

contribution is likely to be increased by edge-channel reconstruction9, which could occurs along the smooth

potential of the pn-junctions.

On the other hand, Ce/tg = Ce/sg + Ce/pg is the sum of the capacitance Ce/sg between the split-gates

and the interfering edge channel and the capacitance Ce/pg between the plunger gate and the interfering

edge channel. The latter can be extracted from the plunger-gate voltage period ∆Vpg of AB oscillations, as

an oscillation corresponds to the addition/removal of one flux quantum inside the area enclosed by the edge

channel and thus of an electron in the corresponding Landau level. Then, Ce/pg = e
∆Vpg

= 1.6 × 10−17 F

for a typical voltage period ∆Vpg = 10 mV. Note that Ce/pg scales as the perimeter Lpg of the plunger

gate (geometrically 1.5 µm). From this evaluation, we can also estimate Ce/sg by making the reasonable

assumption that the electrostatics is the same for the split-gates and for the plunger gate. Thus Ce/sg =
Lsg
Lpg

Ce/pg = 4.7 × 10−17 F with Lsg = 4.4 µm is the total length of the split-gate electrodes defining the

cavity. The total edge capacitance is thus about Ce = 1.5× 10−16 F.

In devices with silicon back gate, we expect Ce to be lower due to a smaller Cbg, but still of the same

order of magnitude.

Edge-to-bulk capacitive coupling Ceb

The capacitive coupling between the edge and the bulk is the most difficult contribution to evaluate. We

base our estimation on ref.10, which proposes a model to describe the transport in a quantum dot in the

QH regime composed of a conducting island enclosed and coupled to a conducting ring. Equation (19) in

ref.10 allows to evaluate Ceb based on the charge distribution induced by a potential difference between the

interfering edge channel and the bulk compressible island separated by a distance a. For simplicity, we

assume this distance to be of the order of lB in graphene by analogy with GaAs heterostructures (see eq.

(38) of ref.9 giving the width of innermost incompressible stripe). The calculation of the capacitance also
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requires to set a characteristic length scale d over which the influence of the potential difference is screened

by nearby gate electrodes. For our device with a graphite back-gate electrode, this length scale is imposed

by the thickness of the bottom hBN such that d ' 20 nm. In these conditions, we can write:

Ceb = 2LεBNε0
2π2 ln

(4d
a

)
, (S1)

which leads to Ceb = 2.8× 10−17 F.

We expect that Ceb remains of the same order of magnitude for devices with silicon back gate because

the various top gates around the FP cavity are also 20 nm away from the graphene flake and, hence, set

the cutoff length d. More specifically, for our devices BNGr64 and BNGr30, which respectively have

perimeters 2L = 15.1 and 13.3 µm, we obtain Ceb = 5.0 × 10−17 and 4.4 × 10−17 F. Alternatively, if we

take d = 285 nm, we get Ceb = 10.4× 10−17 and 9.1× 10−17 F.

Discussion

From these calculations, we can estimate the parameter ξ = Ceb
Cb+Ceb

. We obtain ξ = 0.006 for our 3.1

µm2 device with graphite back gate, confirming that oscillations should arise from pure Aharonov-Bohm

effect5,6. Similarly, for our devices with silicon back gate, we obtain ξ = 0.03 − 0.07 � 1 also consistent

with the observation of oscillations in the AB regime. This analysis is fully consistent with the absence of

charging effect in our graphene devices.
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XIV. AHARONOV-BOHM OSCILLATIONS VERSUS DC VOLTAGE BIAS: ASYMMETRY AND DECAY

In this section, we discuss the oscillations induced by the application of a dc voltage bias and explain

the origin of the tilted checkerboard pattern. We also analyze the decay of the oscillations amplitude with

the voltage bias related to an energy relaxation or dephasing process.

Theoretical model for asymmetric potential drop

Here, we derive the formula for the transmission of a QH-FP interferometer as a function of magnetic

field and voltage bias using the same formalism as in ref.1, but we take into account a possible asymmetric

potential drop at the two QPCs.

The transmission of a non-interacting QH Fabry-Pérot interferometer reads:

t(ε,Φ) = t1t2e
iπ Φ

Φ0
+iLε~v

1− r′1r2e
2iπ Φ

Φ0
+i 2Lε

~v
, (S2)

where 2π Φ
Φ0

is the Aharonov-Bohm phase, 2Lε
~v the dynamical phase accumulated by electrons after one

winding in the cavity of length 2L, t1 and t2 the transmission amplitudes of QPC1 and QPC2 for right

moving particles, r′1 the reflection amplitude for left-movers at QPC1 and r2 the reflection amplitude for

right-movers at QPC2.

The transmission probability is:

T (ε,Φ) = | t1 |2| t2 |2

1+ | r′1r2 |2 −2 | r′1r2 | cos(2π Φ
Φ0

+ 2Lε
~v + ϕ)

, (S3)

where ϕ is a constant phase factor which depends on the scattering phase of the QPCs. Given that | r1,2 |2 =

| r′1,2 |
2 = R1,2 and | t1,2 |2 = T1,2, we can rewrite (S3) as

T (ε,Φ) = T1T2

1 +R1R2 − 2
√
R1R2 cos(2π Φ

Φ0
+ 2Lε

~v + ϕ)
. (S4)

In the weak backscattering limit, Ri � 1, and omitting the constant phase term ϕ, we obtain at first

order:

T (ε,Φ) = 1−R1 −R2 + 2
√
R1R2 cos

(
2π Φ

Φ0
+ 2Lε

~v

)
(S5)

We then consider a finite dc voltage bias V applied between source and drain contacts. We note q =

−e < 0 the electron charge. Depending on the energy relaxation processes consecutive to the current

flow, and on the electrostatic coupling between the cavity, the back gate, the source and the drain, the

electrochemical potential in the cavity will adjust itself at a value intermediate between that of the source
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and that of the drain. The right-movers coming from the source contact have an energy qV + = qV (1
2 +x) =

qV β with respect to the chemical potential within FP cavity and the left-movers coming from the drain have

an energy qV − = −qV (1
2 − x) = −qV β. In these expressions, x ∈ [−1

2 ,
1
2 ] is the voltage bias asymmetry

factor. x = 0 corresponds to a symmetric biasing with V + = V
2 and V − = −V

2 , meaning that the

potential drop is the same across both QPCs. When x = 1
2 (or equivalently x = −1

2 ) the bias is completely

asymmetric, V + = V and V − = 0 (or equivalently V + = 0 and V − = −V ), the potential drop only occurs

at one QPC while the FP cavity is at the same potential as one of the two contacts.

At zero temperature, the current through the device is given by I = q
h

� qV +

qV − T (ε,Φ)dε. In the weak

backscattering limit, it writes:

I = q

h

� qV +

qV −

[
1−R1 −R2 + 2

√
R1R2 cos

(
2π Φ

Φ0
+ 2Lε

~v

)]
dε = I0 + Iosc, (S6)

where I0 = e2

h (1−R1−R2)V is the constant part of the current and Iosc is the oscillating part of the current

which writes:

Iosc = e2

h
2
√
R1R2

~v
2Lq

[
sin
(

2π Φ
Φ0

+ 2L
~v
qV β

)
− sin

(
2π Φ

Φ0
− 2L

~v
qV β

)]
. (S7)

The corresponding differential conductance is then:

dIosc

dV
= gosc

[
β cos

(
2π Φ

Φ0
− 2L

~v
eV β

)
+ β cos

(
2π Φ

Φ0
+ 2L

~v
eV β

)]
, (S8)

with gosc = e2

h 2
√
R1R2 and restoring q = −e.

When the potential drop at the constrictions is symmetrical, that is, V + = V/2 and V − = −V/2, we

have β = β = 1
2 (x = 0) and then:

dIosc

dV
= gosc cos

(
2π Φ

Φ0

)
cos

(
2π L
hv
eV

)
, (S9)

leading to a checkerboard pattern with a period versus bias voltage which is equal to the ballistic Thouless

energy : e∆V = hv/L = ETh.

If the bias is completely asymmetrical, for example when V + = V and V − = 0 with β = 1 and β = 0

(x = 1
2 ), we obtain:

dIosc

dV
= gosc cos

(
2π Φ

Φ0
− 2π2L

hv
eV

)
(S10)

that draws a diagonal strip pattern with a period versus bias voltage (at fixed magnetic field) which is equal to

half the Thouless energy. Any intermediate value of x leads to a mixed pattern, that is, a tilted checkerboard
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as observed in our experiment. Note that the measured diagonal resistance δRD = −dIosc
dV ( h

e2 )2 shows

exactly the same oscillatory features as the conductance in the weak backscattering limit.

In Fig. S15, we gather the results obtained in the three different interferometers as a function of voltage

bias (Fig. S15a, c, d and f are respectively identical to Fig. 3c, d, e and f). The checkerboard patterns are

tilted for our small (a) and medium interferometers (b), whereas the tilt is hardly visible for the largest inter-

ferometer (c). Using eq. (S8), we can quantitatively reproduce in Fig. S15d, e and f the three experimental

checkerboards with asymmetry parameters x = 0.2, 0.1 and 0.02, respectively.

In our experiment, we apply a dc voltage to the source contact while the drain contact is kept grounded.

The electrostatic coupling of the cavity to the back-gate electrode results in an asymmetric potential drop

which could explain why the checkerboard patterns of our two smallest interferometers are tilted. On the

other hand, the fact that the checkerboard pattern is nearly symmetric for the largest interferometer, indicates

that energy relaxation processes equilibrate the chemical potential for sufficiently large interferometers,

leading to a symmetric potential drop. Interestingly, tilted checkerboards in QH-FP interferometers has

never been reported for GaAs QH-FP devices of the same size as our small interferometer, possibly due to

the larger back-gate coupling in our graphene device equipped with a graphite back gate, or because the

chemical potential equilibration is less effective in graphene.

Decay of the oscillations at finite bias

For an asymmetric potential drop characterized by an asymmetry factor x, the amplitude of the flux-

periodic oscillations given by eq. (S8) oscillates versus bias voltage with the following dependence:

A (V,ETh/e) =
√

cos2
(

2π eV
ETh

)
+ 4x2 sin2

(
2π eV
ETh

)
(S11)

Note that the period of this function is always the Thouless energyETh = hv/Lwhatever the asymmetry

factor x, whereas the period of the conductance oscillations versus bias voltage at fixed magnetic field varies

with the value of x (see for example eq. (S9) and eq. (S10) ).

In Fig. S15a, b and c, however, we observe that the oscillations amplitude decays rapidly with the

bias voltage and vanishes typically after one voltage period. Such a fast decay is much faster than the

1/∆V dependence predicted in ref.1 and was already reported by McClure and coworkers11 in GaAs QH-

FP interferometers. These authors found that an exponential decay of the oscillations amplitude with the

bias describes correctly the data. Theoretical investigations12 confirmed that Coulomb interactions can lead

to an approximate exponential decay. Following this approach, we fitted the oscillations in our data with:

A(V,∆Vexpo) exp
(
−2πχ |V |

∆Vexpo

)
, (S12)
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where χ is a phenomenological parameter that describes how fast the oscillations vanish with voltage, and

∆Vexpo is the period of the resistance oscillations for this exponential decay. The amplitude of the oscil-

lations is obtained by computing the Fourier amplitude of the resistance oscillations as a function of the

plunger-gate voltage at fixed bias voltage. This leads to the lobe structure shown in Extended Data Fig 4a,

b and c. A good agreement between the model and the data is found for the three interferometers. The

extracted voltage periods ∆Vexpo and damping factors χ are reported in Table S3. It is worth noticing, how-

ever, that this phenomenological model does not capture the absence of secondary lobes in the experiments,

suggesting that the decay of the oscillations is faster than exponential.

We therefore consider a second model with a Gaussian decay of the bias-induced oscillations. Investi-

gations in Mach-Zehnder interferometers revealed that a Gaussian decay may arise from phase fluctuations

of the interfering edge channel due to Coulomb interactions or the electric noise in the non-interfering edge

channels13–16. Within this approach, we fitted our data with:

A(V,∆Vgauss) exp
(
− V 2

2V0
2

)
, (S13)

where V0 is the voltage scale characterizing the width of the Gaussian envelope, and ∆Vgauss the period

of the resistance oscillation for this Gaussian decay. The fits of the experimental data with this expression

are displayed in Extended Data Fig. 4a, b and c (orange lines). This second model also describes well

the data. The extracted voltage periods ∆Vgauss, reported in Table S3, are close to those obtained with the

exponential decay model. The extracted V0 values scale linearly with the inverse interfering path length

1/L as mentioned in ref.16 and is typically one third of ∆Vgauss.

The qualitative difference between the exponential and Gaussian decays is that the exponential decay

fits better the amplitude of the first lobe but fails to reproduce the vanishing of the second ones, whereas the

Gaussian model is less accurate for the first lobe but shows a suppressed second lobe.

QH-FP ∆Vexpo (µV) χ ∆Vgauss (µV) V0 (µV)

Small 134 0.42 128 40

Medium 83 0.42 81 25

Large 57 0.35 61 21

TABLE S3: Fitting parameters for the different models of bias-induced oscillation decay. Voltage period ∆Vexpo

for the exponential decay model; χ damping rate for the exponential decay model; voltage period ∆Vgauss for the

Gaussian decay model; V0 width of the Gaussian envelope.
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FIG. S15: Bias dependence of Aharonov-Bohm oscillations. a, b, c, Differential diagonal resistance variations

δRD, after background subtraction, versus dc diagonal voltage V dc
D and plunger-gate voltage Vpg1,2 for the small,

medium and large interferometer respectively in a, b and c. Interferences are obtained with the outer edge channel

at 14 T. d, e, f, Numerical simulations of resistance oscillations induced by voltage bias and plunger-gate voltage

that reproduce the data presented in a, b and c, respectively. The simulations incorporate an asymmetric potential

drop at the two QPCs and an out-of-equilibrium decoherence factor. The voltage bias asymmetry factors of x = 0.2

and x = 0.1, respectively for the small d and medium interferometer e, are significant, indicating a limited chemical

potential equilibration as opposed to the large interferometer f, which has a very small asymmetry term x = 0.02.
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XV. TEMPERATURE DEPENDENCE OF THE AHARONOV-BOHM OSCILLATIONS: THERMAL

AVERAGING

The effect of temperature on the visibility of the Aharonov-Bohm oscillations has been calculated in

ref.1 in the limit of weak backscattering and at finite bias voltage for a symmetric potential drop at the

two constrictions. This calculation considers only the thermal averaging of the interference and does not

introduce decoherence by inelastic scattering or energy relaxation at finite bias.

Here we explain in details the calculation in the symmetric case and then extend the result to the case

of an asymmetric potential drop as observed in our device. In the following, we use the expression of the

transmission coefficient obtained in the previous section in the limit of weak backscattering:

T (E,Φ) = 1−R1 −R2 +
√
R1R2

(
ei2πΦ/Φ0eiE2L/~v + e−i2πΦ/Φ0e−iE2L/~v

)
(S14)

Symmetric potential drop

Assuming a symmetric potential drop at the two constrictions as in ref.1, the current at finite temperature

T and finite voltage V is given by:

I(Φ, V, T ) = q

h

� +∞

−∞
T (E,Φ)

(
1

1 + e(E− qV2 )/kBT
− 1

1 + e(E+ qV
2 )/kBT

)
dE, (S15)

where q < 0 is the electron charge. Using the expression of the transmission coefficient in the limit of weak

back-scattering, the current writes:

I(Φ, V, T ) = q2

h
(1−R1 −R2)V − q

h

√
R1R2

(
ei2πΦ/Φ0H(V, T ) + e−i2πΦ/Φ0H(V, T )∗

)
, (S16)

where we introduce the function:

H(V, T ) =
� +∞

−∞
eiE2L/~v

(
1

1 + e(E− qV2 )/kBT
− 1

1 + e(E+ qV
2 )/kBT

)
dE. (S17)

By changing the variable in the integral, it becomes:

H(V, T ) =
(
ei
qV
2 2L/~v − e−i

qV
2 2L/~v

)� +∞

−∞
eiE2L/~v 1

1 + eE/kBT
dE, (S18)

where the choice of a symmetric potential drop influences only the term in the parenthesis. The calculation

of the integral gives:

� +∞

−∞
eiE2L/~v 1

1 + eE/kBT
dE = −i2πkBT

+∞∑
n=0

e−ωn2L/~v = −i2πkBT

2 sinh(πkBT2L/~v) , (S19)
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where ωn = (2n+1)πkBT are the Matsubara frequencies, with n ∈ Z. In this case of a symmetric potential

drop, the function H(V, T ) is real and writes:

H(V, T ) = sin(qV L/~v) 2πkBT

sinh(πkBT2L/~v) . (S20)

The current finally writes:

I(Φ, V, T ) = G0V −
q

h

√
R1R2 2 cos(2πΦ/Φ0) sin(qV L/~v) 2πkBT

sinh(πkBT2L/~v) , (S21)

which is equivalent to equations (16) and (18) in ref.1. The differential conductance writes:

G(Φ, V, T ) = G0 −
q2

h

√
R1R2 2 cos(2πΦ/Φ0) cos(qV L/~v) πkBT2L/~v

sinh(πkBT2L/~v) , (S22)

which forms a checkerboard pattern as a function of field and voltage. At high temperature, the visibility of

these oscillations decreases exponentially with a dependence of the form:

e−πkBT2L/~v = e−4π2kBT/ETh = e−T/T0 , (S23)

whereETh = hv/L is the ballistic Thouless energy which corresponds to the oscillation period q∆V versus

bias voltage, and T0 is the fitting parameter of the exponential temperature dependence which is related to

the Thouless energy by:

4π2kBT0 = ETh = q∆V. (S24)

Asymmetric potential drop

In case of an asymmetric potential drop at the two constrictions (see section XIV), the potential energy

is qV + = βqV at the source contact and qV − = −β̄qV at the drain contact, with β = 1
2 +x and β̄ = 1

2 −x

with the parameter x ∈ [−1
2 ,

1
2 ] characterizing the asymmetry of the potential drop. The current at finite

temperature T and finite voltage V is then given by:

I(Φ, V, T ) = q

h

� +∞

−∞
T (E,Φ)

( 1
1 + e(E−βqV )/kBT

− 1
1 + e(E+β̄qV )/kBT

)
dE (S25)

Following the same calculations as above now gives the function:

H(V, T ) = eixqV 2L/~v sin(qV L/~v) 2πkBT

sinh(πkBT2L/~v) (S26)

which contains a complex phase factor. The current writes:

I(Φ, V, T ) = G0V −
q

h

√
R1R2 2 cos(2πΦ/Φ0 +xqV 2L/~v) sin(qV L/~v) 2πkBT

sinh(πkBT2L/~v) (S27)
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which is modified only by the term xqV 2L/~v in the cosine function. The differential conductance writes:

G(Φ, V, T ) = G0 −
q2

h

√
R1R2 2 g(Φ, V ) πkBT2L/~v

sinh(πkBT2L/~v) (S28)

where the oscillation term:

g(Φ, V ) = cos(2πΦ/Φ0 + xqV 2L/~v) cos(qV L/~v)− 2x sin(2πΦ/Φ0 + xqV 2L/~v) sin(qV L/~v)

(S29)

gives a titled checkerboard pattern as a function of field and voltage for x 6= 0. It is interesting to note

that the temperature dependence is not affected by the asymmetry of the potential drop at the constrictions.

The fitting parameter T0 of the exponential temperature dependence is still related to the ballistic Thouless

energy by 4π2kBT0 = ETh.
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XVI. EVALUATION OF THE PHASE COHERENCE LENGTH Lφ

To estimate the phase coherence length Lφ in our graphene QH-FP interferometers, we assume that the

visibility V of coherent oscillations scales as:

V = V0
2L/LT

sinh(2L/LT ) exp
(
− 2L
Lφ(T )

)
(S30)

where LT = hv
2π2kBT

is the characteristic length associated with the decay of the visibility due to thermal

averaging at temperature T (see eq. (S22) in previous section), Lφ(T ) is the phase coherence length asso-

ciated with extrinsic effects (that can depend on temperature), 2L is the the perimeter of the FP cavity and

V0 is the asymptotic limit reached by the visibility when L tends to zero. In this expression, both thermal

broadening (that acts as an internal phase decoherence between the different spectral components of the

thermal electron wave packet) and extrinsic dephasing mechanisms add up and result in an effective de-

coherence length given by 1/L∗φ(T ) = 1/LT + 1/Lφ for the limit of long interfering path lengths. Note

that the exponential decrease due to the finite coherence length is only valid for 2L above Lφ and should

saturate to a particular visibility below unity for smaller perimeters.

Fitting the evolution of V with 2L at fixed temperature with eq. (S30) provides a direct estimate of

Lφ. As visibility depends on the QPC transmissions, we performed this length-dependence analysis by

considering our best visibility data obtained for the three sizes of interferometers. We evaluate the electron

temperature at our base fridge temperature to be T ' 20 mK, which corresponds to the temperature below

which the T -dependence of the visibility saturates. For experiments with the inner edge channel, we ex-

tracted the visibility through Gmax−Gmin
(Gmax−e2/h)+(Gmin−e2/h) , which subtracts the conductance contribution of the

fully transmitted outer edge channel.

Extended Data Figure 5 shows the evolution of these visibilities V with the perimeter of the interferom-

eters 2L. For comparison, the decrease of the visibility induced by the thermal broadening at 20 mK is also

shown with the solid red line (eq. (S30) with Lφ(T ) infinite and a edge state velocity of 1.4× 105 m/s, giv-

ing LT = 17 µm). For both experiments with the outer and the inner edge channel, a fast decrease of V with

2L is observed which cannot be explained by the effect of thermal broadening. The best visibilities for both

interfering edge channels are virtually the same except for data in the large interferometer with the inner

edge channel, which shows a significant drop compared to the data with the outer one. It probably reflects

that the tuning of the QPC could have been improved. We thus discard it for our quantitative analysis.

By fitting the visibility decay, we extract a phase coherence length Lφ ≈ 10 µm at 20 mK. We estimate

the electron temperature as the temperature below which the visibility does not increase anymore, which is

about 20 mK. The obtained value of 10 µm is smaller or comparable to the perimeter length, which justifies
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the exponential decrease used in eq. (S30) (the saturation would appear for smaller perimeters as the ones

studied here). This value is also consistent with the observation of coherent Aharonov-Bohm oscillations in

the double FP cavity at base temperature.
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XVII. ANALYSIS OF THE DOUBLE-CAVITY INTERFEROMETER

In this section we discuss the experiments performed in the coherently-coupled double FP cavity. We

first derive the theoretical expression for the transmission for a double cavity and then compare it with our

data to show that electron transport remains coherent in the overall device.

The transmission and reflection amplitudes of a Fabry-Pérot interferometer reads:

tFP(ϕ) = t1t2e
iϕ

1− r′1r2ei2ϕ
, (S31)

t′FP(ϕ) = t′1t
′
2e
iϕ

1− r′1r2ei2ϕ
, (S32)

rFP(ϕ) = r1 + r2t1t
′
1e
i2ϕ

1− r′1r2ei2ϕ
, (S33)

r′FP(ϕ) = r′2 + r′1t
′
2t2e

i2ϕ

1− r′1r2ei2ϕ
, (S34)

where 2ϕ is the Aharonov-Bohm phase accumulated by electrons after one winding in the cavity, ti (t′i) the

transmission amplitude, and ri (r′i) the reflection amplitude of QPCi for right (left) moving particles.

The total transmission amplitude ttot of two coupled FP cavities can be calculated using the transmission

and reflection amplitudes of one FP cavity and the transmission and reflection amplitudes of a third QPC.

Thus, using the previous expressions, we have:

ttot(ϕ1, ϕ2) = tFP(ϕ1)t3eiϕ2

1− r′FP(ϕ1)r3ei2ϕ2
, (S35)

where 2ϕ1 and 2ϕ2 are the Aharonov-Bohm phase accumulated by electrons after one winding in the cavity

between QPC1 and QPC2 and between QPC2 and QPC3, respectively.

Using |ti|2 = |t′i|2 = Ti, |ri|2 = |r′i|2 = Ri and the relation r′i = −r̄it′i/t̄i (the overline indicates

complex conjugate), we can express the transmission as:

Ttot(φ1, φ2) = T1T2T3
|1−
√
R1R2eiφ1 −

√
R2R3eiφ2 +

√
R1R3ei(φ1+φ2)|2

= T1T2T3
D

, (S36)

where φ1 and φ2 are the Aharonov-Bohm phases acquired when quasiparticles wind into the medium and

small cavities respectively (including the phase factor from the reflection amplitudes of the QPCs). The

denominator D can be written as:

D = 1 +R1R2 +R3R2 +R1R3 − 2(1 +R3)
√
R1R2 cos(φ1)− 2(1 +R1)

√
R2R3 cos(φ2)

+ 2
√
R1R3 cos(φ1 + φ2) + 2R2

√
R1R3 cos(φ1 − φ2).

(S37)
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In this expression, four oscillation frequencies emerge, namely, φ1, φ2, φ3 = φ1 +φ2 and φ4 = φ1−φ2.

The terms in φ3 and φ4 in eq. (S37), which result from coherent interferences through the two interferom-

eters, does not have the same prefactor : the amplitude of the φ3 oscillations is larger than the amplitude

of the φ4 oscillations which is even negligible in the weak backscattering limit. In contrast, in a situation

where the transport through the double cavity would be incoherent, one could expect the appearance of term

in the form of cos(φ1)× cos(φ2) = 1
2 [cos(φ3) + cos(φ4)] which would lead to equal amplitudes of φ3 and

φ4 oscillating components.

Relating this model to our device geometry, we can ascribe to each of these four Aharonov-Bohm fluxes

a coupling to the relevant plunger gates:

φ1 '
2π
Φ0

(δA1B +A1δB) = 2π
Φ0

(α1Vpg1B +A1δB), (S38)

φ2 '
2π
Φ0

(δA2B +A2δB) = 2π
Φ0

(α2Vpg2B +A2δB), (S39)

φ3 '
2π
Φ0

[(δA1 + δA2)B + (A1 +A1)δB] = 2π
Φ0

[
(α1Vpg1 + α2Vpg2)B + (A1 +A2)δB

]
, (S40)

φ4 '
2π
Φ0

[(δA1 − δA2)B + (A1 −A2)δB] = 2π
Φ0

[
(α1Vpg1 − α2Vpg2)B + (A1 −A2)δB

]
, (S41)

whereA1 andA2 are the area of the medium and small cavities, respectively, Vpg1 and Vpg2 the plunger-gate

voltages that tune these areas and α1 and α2 their lever arms.

In Figure S16 we show the expected frequencies in Fourier space for a coherently-coupled double QH-

FP interferometer upon varying both plunger gates (Fig. S16a), or one plunger gate and the magnetic field

(Fig. S16b and c). For the former case, the plunger-gate frequencies corresponding to the small and medium

interferometers are located on the x and y axis, reflecting the terms φ1 and φ2 in eq. (S37), whereas the

double interferometer terms φ3 and φ4 that depend on both plunger gates are located on the diagonals. For

latter configurations, the frequency of the interferometer without the active plunger gate depends only on

B and is thus located at zero plunger-gate frequency on the horizontal axis (φ1 in b and φ2 in c), whereas

the frequency of the other interferometer with the active plunger gate, as well as the coupled interferometer

frequencies, are located at finite plunger gate frequency.

In Figure S17 we reproduce the data shown in Fig. 4 for the coherently-coupled QH-FP interferometer

and add the configuration with Vpg1 active and magnetic field (Fig. S17c), which provides another confir-

mation of the presence of the φ3 contribution. The four quadrants of the Fourier amplitudes are shown in

order to check the presence of the φ4 = φ1 − φ2 frequency. The φ4 frequency, whose expected location is
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FIG. S16: Fourier analysis of double QH-FP interferometer. a, b, c, Positions in reciprocal space of the oscillation

frequencies for three different configurations of interferometry experiments (assuming A1 = 3A2). Each peak is

labelled with its Aharonov-Bohm phase. Top schematics depict the active QPCs (red) and plunger gates (orange)

in each experiments. The parameters used to tune the Aharonov-Bohm phases in each case are indicated above the

corresponding schematic.

indicated by the red circle in Fig. S17d-f, is clearly present in the configuration of Fig. S17e. Its amplitude

is smaller than the amplitude of the φ3 contribution as expected in eq. (S37). For the two other configura-

tions, this φ4 frequency is hardly visible. This detailed analysis provides compelling evidence for coherent

transport through the three QPCs.

We can furthermore simulate the data by a simplified model that neglects terms in R2 in eq. (S37):

δR = δR1 cos(φ1) + δR2 cos(φ2) + δR3 cos(φ3). (S42)

Using the experimental Fourier amplitudes for the parameters δR1, δR2 and δR3 we obtain the resistance

maps shown in Fig. S17g-i that reproduce the experimental maps in Fig. S17a-c with excellent fidelity.
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FIG. S17: Coherently-coupled double QH-FP interferometer. a, Diagonal resistance versus plunger-gate voltages

Vpg1 and Vpg2 (outer edge channel interfering, B = 14 T). b, Diagonal resistance versus magnetic field variation δB

and plunger-gate voltage Vpg2 (inner edge channel interfering, B = 14 T). c, Diagonal resistance versus magnetic field

variation δB and plunger-gate voltage Vpg1 (outer edge channel interfering, B = 14 T). The inset schematics in a, b

and c indicate the active QPCs (in red) and plunger gates (in orange) for the respective measurements. a and b are

identical to the Fig. 4c and 4d of the main text. d, e, f, Four-quadrant Fourier amplitude of the resistance oscillations

displayed respectively in a, b and c in their respective reciprocal space. The peaks corresponding to the different

Aharonov-Bohm phases are identified in each case. g, h, i, Numerical simulations reproducing the experiments

shown respectively in a, b and c with eq. (S42). The parameters (δR1, δR2, δR3) are (0.66, 1, 0.18) in g, (0.64, 1,

0.22) in h, and (0.19, 1, 0.11) in i.
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