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I. SAMPLES STUDIED

Figure S1 displays optical images of the devices studied in this work. The fabrication process is de-
scribed in Methods. The thickness of the van der Waals layers and the size of the split-gate gaps are

reported in Table S1.

Sample | Top hBN Bottom hBN Graphite | Split-gate

thickness (nm)|thickness (nm) |thickness (nm)| gap (nm)

BNGr74 22 18 4 0/21/20
BNGro64 20 50 148 /159
BNGr30 25 15 129/ 140

TABLE S1: Samples characteristics. The thickness of the hBN and graphite layers are measured by atomic force

microscopy. The gap size of the split-gate electrodes is measured by scanning electron microscopy.

FIG. S1: Optical images of the devices. a, Sample BNGr74 of the main text. b, Sample BNGr64 described in section
XII. ¢, Sample BNGr30 described in section XII. Scale bars are 10 pym.

II. PARAMETERS EXTRACTED FROM THE AHARONOV-BOHM INTERFERENCE

Table S2 presents the various parameters extracted from the measurements shown in Figure 3 of the
main text, among which the Aharonov-Bohm period ABa14T, the Thouless energy Ery extracted from

the checkerboard patterns, the energy scale Ty related to the temperature dependence of the resistance



oscillation, together with the geometrical dimensions (surfaces and lengths between QPCs) of the three
Fabry-Pérot cavities.

Importantly, we stress that the determination of the device geometry relies on optical images of the
graphene flake taken during the van der Waals pick up process, which makes the exact determination of the
graphene edge delicate. We therefore assess the graphene edge position from this image at £150 nm, which

results in the uncertainties of the geometrical area Agq, of the FP cavities and lengths L between QPCs

reported in Table S2.
QH-FP |ABaiaT| Aas Ageo L Em | To |BEm/Am%kp
(mT) |(um?)| (pm?) | (um) [(EV)|[(mK)| (mK)
Small 1.32 3.1 |3.1+04|4.3+0.5| 134 | 43 39
Medium| 0.40 104 |10.7£1.2|7.2+0.5| 83 | 20 24
Large 0.27 15.0 |13.1 £1.8{9.0+0.5| 57 14 17

TABLE S2: Geometrical and physical parameters corresponding to the measurements of Fig. 3. Aharonov-
Bohm period ABai41 obtained at B = 14 T and resulting Aharonov-Bohm area A,p; geometrical area Age, of
the FP cavities; geometrical length L between two QPCs of the cavity; Thouless energy FEr, extracted from the
checkerboard patterns in Fig. 3c and d; Energy scale T} extracted from Fig. 3h; Ey, /472 kg, the quantity theoretically

equal to Ty according to ref.!



III. DESIGN CHARACTERISTIC OF THE QPCS

The presence of the graphite back-gate electrode separated from the graphene by a thin hBN dielectric
layer imposes drastic conditions for the design of the split-gate electrodes. Contrary to devices on Si/SiO»
studied in ref.>? in which the split-gate gap of about 150 nm led to a suitable ratio of split-gate capacitance
to QPC capacitance, the very close proximity of the graphite back gate imposes a much smaller split-gate
gap. By performing numerical simulations®, we estimated the split-gate gap that leads to a ratio of split-gate
capacitance to QPC capacitance of the order of 2 to be of the order of few tens of nanometers, depending on
the hBN thicknesses. Figure S2 displays scanning electron micrographs of the three split gates of sample
BNGr74 discussed in the main text. The split-gate gaps of QPCy and QPCj3 are 20 nm, suitable for operating
the split gates as QPCs in the quantum Hall regime. The split-gate electrodes of QPC; are unintentionally

connected but this short-circuit does not hinder QPC operation (see QPC characterizations in section VI).

FIG. S2: QPCs geometry. Scanning electron micrograph of the QPCs of BNGr74 device. a, QPC;. b, QPCs. ¢,
QPCj3. The two split-gate electrodes of QPC; are unintentionally connected. The gaps between the two other split

gates is 20 nm. Scale bar is 100 nm.



IV. CHARACTERIZATION OF THE SPLIT-GATE CAPACITANCES ATO0 T

In this section, we present the characterization of the back gate and the different split gates at zero
magnetic field for the sample of the main text. Figure S3 shows color-coded maps of the longitudinal
resistance Ry, versus back-gate voltage V4, and voltage Vpc applied on a split gate (other split gates are
floating). The maps exhibit four quadrants separated by two nearby horizontal lines and a diagonal line.
The most resistive horizontal line, at V;,, = —0.04 V, corresponds to the charge neutrality point in the
bulk of graphene and the diagonal line corresponds to the charge neutrality point below the active split-
gate electrodes, as usual for graphene devices equipped with a local top gate. The two lines intersect at
Vapc ~ +0.38 V as a result of the work function difference between the palladium of the gates and the
graphene. The second horizontal line is more unusual and results from the local hole doping of the graphene
beneath the two other split gates that are not active but contribute in series to the measured resistance. The
palladium of these split-gate electrodes shifts the position of the charge neutrality point beneath them to
Vbe = 0.12—0.18 V, yielding a secondary resistance peak, independent of the active split gate and observed
consistently for the three QPC maps. These maps also provide the capacitance ratios Cyg /Ch between the
active split-gate and the back-gate electrodes which are respectively 0.83 for QPC; and 0.86 for QPCy and

QPCs. They are important quantities for the analysis of the QPC properties in the QH regime.
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FIG. S3: Split-gates characterization at O T. a, b, ¢, Longitudinal resistance R versus split-gate voltage Vqpc
and back-gate voltage V}, for the three QPCs of the QH-FP interferometer presented in the main text. The hori-
zontal line at V},;, = —0.04 V corresponds to the charge neutrality point in the bulk graphene, whereas the diagonal
lines correspond to the charge neutrality point in the graphene beneath the active split gate. These lines intersect at
(Vapc, Vig) = (4+0.38 V, —0.04 V) revealing the significant local hole doping induced by the palladium gates. The
second horizontal line at V},; = 0.18 Vinaand cand Vi, = 0.12 V in b marks the positive back-gate voltage needed

to compensate the hole doping induced by the palladium beneath the non-active split gates.



V. FAN DIAGRAM OF BULK LANDAU LEVELS

In this section, we present the Landau fan diagram of sample BNGr74. Fig. S4 displays the longitudinal
resistance Rxx as a function of magnetic field B and back-gate voltage Vp,, measured at 0.02 K. This
measurement was performed with a voltage Vopc = +0.3 V applied on each QPC to compensate the hole
doping induced by the palladium split gates and ensure a quasi-homogeneous charge carrier density in the
graphene layer.

Broken-symmetry states in electron(hole)-type Landau levels emerge as minima in Ryx above 5 T
(3 T), consistent with the mobility 1 = 130000cm?.V~!.s~! obtained for a charge carrier density of
1 x 10'2 cm~2 from Hall measurements. In addition, an insulating behaviour develops at charge neutrality
with increasing magnetic field. The full-lifting of the degeneracies in the zeroth Landau level occurs above
4 T, allowing to perform interferometry experiments with the inner or outer electron edge channels of the
zeroth Landau level at relatively low magnetic field values (see section XI).

From the position of the Ry, minima, we extract a back-gate capacitance Cpg = 1.45 mF/ m? consistent

with the bottom hBN thickness and a hBN dielectric constant e2N ~ 3.

Magnetic field B (T)

Back-gate voltage ng(V)

FIG. S4: Landau fan diagram. Longitudinal resistance Ry, of sample BNGr74 (device of the main text) versus

back-gate voltage V4, and magnetic field B, measured at 0.02 K.



VI. CHARACTERIZATION OF THE QPCS IN THE QUANTUM HALL REGIME

QH interferometry experiments require a precise knowledge of the edge-channels configuration in the
bulk of graphene, beneath the split-gate electrodes and in the split-gate constrictions. This section describes
the action of the split-gate electrodes in the QH regime, which allows to determine the gate-voltage set
points for the (partial) QPC pinch-off and tuning of QH edge channel transmissions.

Extended Data Figure 1 displays the diagonal conductance Gp as a function of split-gate and back-gate
voltages, Vopc and Vi, for the three QPCs. The three conductance maps show features similar to those
reported in ref. for a QPC operating in the QH regime. At negative split-gate voltages, Gp draws diagonal
strips of nearly constant and quantized values. They have a smaller slope than the zero-field diagonal
lines of Fig. S3, indicative of the smaller couplings at the constrictions characterized by capacitance ratios
Cqrc/Chg >~ 0.58, 0.31 and 0.36 for QPC;, QPC; and QPCs3, respectively. As demonstrated in ref.2, the
quantized Gp values indicate the number of transmitted QH edge channels through the QPC. For a given
bulk filling factor, the QH edge channels can be backscattered by applying a negative split-gate voltage
Vopc. For instance, at V,, = 0.75 'V, the bulk filling factor is v ~ 2, leading to the blue rhombi of
Gp = 2¢%/h located near Vgpc = 0 V in Extended Data Fig. 1. Decreasing Vopc to negative values, the
conductance drops to the dark blue strip of Gp = e?/h, and then to Gp = 0 at even more negative values.
These conductance changes reflect the successive backscattering of the QH edge channels at the QPC?. The
linecuts of Extended Data Fig. 2 further illustrate such a successive pinch off of the inner and outer edge
channels at v ~ 2.5 (Extended Data Fig. 2a) and the pinch off the outer edge channel at v ~ 1.5 (Extended
Data Fig. 2b).

As discussed in section IV, the hole-doped graphene regions beneath the non active split-gate electrodes
intervene in the transmission of the whole device when studying the properties of a particular split gate.
These hole-doped regions have a lower filling factor than the bulk and can therefore backscatter some bulk
QH edge channels. As a consequence, the QH plateaus as a function of back-gate voltage at Vopc ~ 0 V in
the QPC maps of Extended Data Fig. 1 are not centered at the integer bulk filling factors indicated on the
right axis and determined by the fan diagram R (V4,, B) at compensated split-gate voltages (see Fig. S4).

The comparison in Fig. S5 between a QPC map and the transverse Hall resistance Ryy that relates to the
bulk filling factor bears out this observation. The v = 2 plateau develops at lower back-gate voltage in the
Hall resistance than in the diagonal resistance across the QPCs. Despite the fact that the bulk has two QH
edge channels when 1/ Ryy = % at, for instance, V¢ = 0.5V, the non active QPCs that have lower filling
factors backscatter the inner edge channel leading to Gp = e?/h in the QPC conductance map.

Furthermore, for the data presented in the main text, we assessed the number of bulk QH edge channels



through the value of the Hall resistance plateau. For all figures of the main text, we measured 1/ R,y = %,

which indicates that two edge channels propagate in the graphene bulk.
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FIG. S5: QPC map compared to Hall resistance map at 14 T. a, Diagonal conductance G versus split-gate
voltage, Vopc, and back-gate voltage, Vi, for QPCs. b, Inverse of the transverse Hall resistance 1/ Ry, versus Vopc
and Vi,. The vertical dashed white line indicates the split-gate voltage that compensates the hole doping induced
by the split-gate electrodes (iso-density in the bulk and beneath the active split gate). This voltage is determined in
the zero-field maps of Fig. S3 at the intersection between the diagonal line and the main horizontal line of the bulk
charge neutrality point. The horizontal solid white lines delineate the quantized plateaus in the Hall resistance that are
centered at integer bulk filling factors (indicated on the right axis). The diagonal lines delineate the diagonal strips of
constant Gp in the QPC map, that is, conductance plateaus given by the number of transmitted edge channels through
the QPC (see ref.? for a detailed analysis). For consistency, these diagonal lines meet the horizontal ones of the bulk

Hall resistance right at their intersect with the vertical line.



VII. AHARONOV-BOHM OSCILLATIONS FOR DIFFERENT CONFIGURATIONS OF MAGNETIC
FIELD AND EDGE CHANNELS

In this section we present plots of the Fourier amplitude of the resistance oscillations with V> for
experiments performed with different interfering edge channels and magnetic fields. In every cases, the
frequency of the oscillations fpe is well defined and shows a clear and continuous decrease while lowering
Vpe2. As expected for the Aharonov-Bohm regime, the frequency of the oscillations increases with the
magnetic field at fixed plunger-gate voltage whereas it does not change with the interfering edge channel.
A significant component oscillating at twice the Aharonov-Bohm frequency is visible on Fig. S6a. In this
case, only the lowest frequency component was used to plot Fig. 2e in the main text.
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FIG. S6: Fourier amplitude of the resistance oscillations. Fourier amplitude of the resistance oscillations observed
in the small interferometer for different configurations of magnetic field and interfering edge channel, as a function of

plunger-gate voltage V;,.» and frequency fie.



VIII. ELECTROSTATICS OF THE PLUNGER GATE

The potential profile in the graphene below the plunger gate is determined by self-consistent electro-
static simulations in the vertical 2D plane shown in Fig. S7a assuming translational invariance in the third
direction. The simulation is done for the same hBN thicknesses as in the device of the main text, with
dpottom = 18 nm for the bottom layer and dio, = 22 nm for the top layer. The hBN dielectric permittivity
BN~ 3 is extracted from the position of quantum Hall plateaus versus back-gate voltage. The graphite
back-gate is treated as a perfect metal. The graphene sheet is modelled by a charge density o(z) linked to
the electrostatic potential V' (x) by the relation:

2 2
o(a) = (=€) sienlV (0) i
where vp = 10% m/s is the Fermi velocity in graphene. The electrostatic problem is solved self-consistently
using a modified version of MaxFEM (http://www.usc.es/en/proxectos/maxfem), an electromagnetic simu-
lation software based on the finite-element method. The mesh grid computed using Gmsh (http://gmsh.info)
extends 1 pum in vertical and 2 pm in horizontal.

The self-consistent solution V' (x) can be calculated for a given back-gate voltage Vi, and a series of
plunger-gate voltages V), in order to determine the dependence of the pn interface position zp, on the
plunger-gate voltage. Equivalently, the local plunger-gate capacitance Cpg () can be extracted from a single
self-consistent simulation (for example at V;,; = 0 and V,; = —1 V) using the quantum capacitance model*.

This model is based on the relation between o (z) and V' (x) given above, together with the definition of the

capacitive couplings:
o(x) = —Chyg (ng = V(2)) = Cpg() (Vog — V(2))

where Chg = eoef’N /dpottom- This approach based on the determination of the local capacitance Cpg(x)
has the advantage to provide the self-consistent solution for any set of back-gate and plunger-gate voltages
without the need to solve again the full electrostatic problem.

The spatial variation of the potential energy F(z) = —eV (z) below the plunger gate is plotted in
Fig. S7b for a fixed back-gate voltage V},; = 0.53 V and various negative plunger-gate voltages correspond-
ing to the experiment reported in Fig. 2 of the main text. The position ', of the pn interface with respect to
the gate edge is plotted in Fig. S7c as a function of the plunger-gate voltage, showing the following behav-
ior: the formation of the pn interface occurs at Vj,, = —0.65 V (in the data this happens around ~ —0.3 V
instead, due to the hole doping of +0.38 V from the palladium split-gate electrodes, corresponding to the

charge neutrality point below the plunger gate), then the fast displacement of the pn interface corresponds to
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FIG. S7: Plunger-gate electrostatics. a, Schematics of the hBN/graphene/hBN heterostructure deposited on the
graphite back gate and partially covered by the metallic plunger gate used to tune the interfering path length. b, Self-
consistent electrostatic energy profiles £/ = —eV’ in the graphene layer for a back-gate voltage V},, = 0.53 V and
plunger-gate voltages V,,, varying from 0 to —4 V. ¢, Position of the pn interface with respect to the gate edge as a
function of the plunger-gate voltage. d, Displacement rate of the pn interface calculated as its derivative with respect

to the plunger-gate voltage.

the expulsion of the pn interface from below the plunger gate, and finally the pn interface moves slower and

slower for large negative plunger-gate voltages. The displacement rate if/iz plotted in Fig. S7d is used in the
main text to calculate the non-linear lever arm o = Ly,¢ X % of the plunger gate with contour length L.
This lever arm provides the theoretical conversion between plunger-gate voltage and interferometer area,
which writes AA = o AV}, and which is compared in Fig. 2f with the oscillation frequency measured
experimentally. L, remains an adjustable parameter because the position of the graphene edges is known
with an uncertainty of +-150 nm. To reproduce the measurement, a plunger-gate contour L, = 1.8 yum
is used, in good agreement with the expected lithographic length of 1.5 £ 0.3 pm (the uncertainty of the

graphene edge position contributes twice).
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IX. AHARONOV-BOHM OSCILLATIONS IN THE MEDIUM INTERFEROMETER

To complement the (6B, V},s) maps shown in Fig. 3a and b for the small and large interferometers, we
present in Fig. S8 the map obtained for the medium interferometer, in the same conditions, i.e. with the
outer edge state at B = 14 T. The constant resistance lines have a negative slope indicating the Aharonov-
Bohm origin of the oscillations. The field periodicity is 0.40 mT corresponding to an Aharonov-Bohm area

of 10.4 ym? in good agreement with the expected lithographic area (see Table S2).
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FIG. S8: Aharonov-Bohm oscillations in the medium interferometer. Diagonal resistance as a function of plunger-
gate voltage V},,» and magnetic field variation 0 B in the medium interferometer measured at 14 T with the outer edge

channel interfering. The inset schematic indicates the active QPCs (in red) and plunger gate (in orange).
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X. INTERFEROMETRY EXPERIMENTS WITH INNER EDGE STATE AT 14 T IN THE THREE
INTERFEROMETERS

In this section we present additional interferometry experiments performed with the inner edge channel
of the zeroth Landau level at B = 14 T. Fig. S9a, b and c show the diagonal resistance of the device as a
function of plunger-gate voltages and magnetic field for the small, medium and large interferometers, re-
spectively. The results are virtually identical to those performed with the outer edge channel. The magnetic

field periods extracted from these measurements are respectively of 1.23, 0.39 and 0.27 mT.
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FIG. S9: Aharonov-Bohm oscillations with the inner edge channel. a, b, ¢, Diagonal resistance versus plunger-
gate voltage Vjg » and magnetic field 6 B for the small, medium and large interferometers, respectively, with the inner

edge channel interfering at 14 T. The inset schematics indicate the active QPCs (in red) and plunger gates (in orange).
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XI. INTERFERENCES AT LOWER MAGNETIC FIELDS

Here we show that the device BNGr74 presented in the main text can also operate at low magnetic field.
Stable Aharonov-Bohm interference were observed with the outer and inner edge channels respectively
down to 5 T and 4 T as displayed in Fig. S10a and b. The respective Fourier amplitudes of the resistance

oscillations are shown in Fig. S10c and d.
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FIG. S10: Resistance oscillations at low magnetic fields. a, b, Resistance oscillations as a function of plunger-gate
voltage V}¢» measured in the small interferometer at 5 T with the outer edge channel, and 4 T with the inner edge

channel, respectively. ¢, d, Fourier amplitude of the resistance oscillations in a and b.
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XII. AHARONOV-BOHM OSCILLATIONS IN OTHER DEVICES

In this section we present the data obtained on two other devices, BNGr64 and BNGr30. They do
not have a graphite back gate, and the silicon substrate serves as the back gate instead. Even without
graphite electrode, we observed for both samples Aharonov-Bohm oscillations, indicating that the absence

of charging effect is not only related to the screening by the graphite gate.

BNGré64 device

We first present the data for the device BNGr64 shown in Fig. S1b. In this device, three out of four
QPCs were operating correctly enabling us to perform experiments with only one of the two interferometers,
whose scanning electron micrograph is displayed in Fig. S11. This device was studied using a larger ac bias-
voltage excitation of 20 ¢V and using the bottom plunger gate. The large plunger gate was kept grounded

during the measurements.

FIG. S11: QH-FP interferometer in sample BNGr64. False-colored scanning electron micrograph of the device.
Graphene edges are represented by the white dotted line. Contacts, QPCs and plunger gates are color-coded in yellow,

red and orange. Scale bar is 1 pm.

We present interferometry experiments performed with the outer interfering edge channel at 14 T with a
bulk filling factor v, = 1.1. Contrary to the data presented in the main text, there is only one electron-like
edge channel propagating in the interferometer. Fig. S12c shows the evolution of the diagonal resistance
with plunger-gate voltage V},,. Clear resistance oscillations are observed while decreasing V), from 0 to -3.2
V. Contrary to the data presented in Fig. 2¢ of the main text, the oscillations show many phase shifts as well
as some visibility losses, reflecting the lower degree of stability and coherence of the device. The visibility
of the oscillations is typically about 15% as evidenced in Fig. S12a and b. The Fourier transform amplitude
of the oscillations is presented in Fig. S12d and shows a decrease of the frequency of the oscillations fp,

with the plunger-gate voltage V),; consistent with that in Fig. 2 of the main text.
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The evolution of the diagonal resistance oscillations with both the plunger-gate voltage and the magnetic
field in this configuration is shown in Fig. S12e. A smooth resistance background for each sweep was sub-
tracted to evidence lines of constant Aharonov-Bohm phase and get rid of average-conductance variations.
Constant resistance values form lines with a negative slope in the  B-V,,; plane which shows that this de-
vice operates in the Aharonov-Bohm regime. From these measurements, we extract a magnetic field period

of 0.42 mT corresponding to an enclosed area of 9.9 m? in agreement with the geometrical surface of 11.5
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FIG. S12: Resistance oscillations in sample BNGr64. a, b, ¢, Resistance oscillations induced by change of the
plunger-gate voltage V,, in interferometry experiments with the inner edge channel at 14 T. Clear resistance oscilla-
tions are visible lowering Vs, on top of a continuous increase of the mean resistance of the device evidenced in c.
a and b show zooms on smaller V},, ranges of the resistance oscillations converted in visibility (R — R)/R, where
R is the resistance background. d, Amplitude of the Fourier transform of resistance oscillations presented in ¢ with
respect to the plunger-gate voltage V}, and the frequency f,,. A continuous decrease of the oscillations frequency is
observed while decreasing V.. €, Evolution of the resistance oscillations as function of the plunger-gate voltage V,,
and the magnetic field variation J B after subtraction of a resistance background for each plunger-gate voltage sweep.

Constant d Rp lines have a negative slope characteristic of oscillations induced by Aharonov-Bohm effect.
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BNGr30 device

Here we present the data for the device BNGr30, displayed in Fig. S1c. Contrary to the two previous
samples, before the deposition of the metallic contacts and of the gates, the heterostructure was etched and
shaped using a hard-mask of HSQ resist to uncover the graphene edges at determined positions. After a
second e-beam lithography steps, both the contacts and the split gates were made by depositing a Cr/Au
bilayer. In this device, the plunger gates cover nearly all the graphene edges between the two QPCs. A

scanning electron micrograph of the device is shown in Fig. S13.

FIG. S13: QH-FP interferometer in sample BNGr30. False-colored scanning electron micrograph of the device.
Graphene edges are represented by the white dotted line. Contacts, QPCs and plunger gates are color-coded in yellow,

red and orange, respectively. Scale bar is 1 ym.

Interferometry experiments performed in this device with the inner edge channel at bulk filling factor
v, = 2.3 and 14 T are presented in Fig. S14. Resistance oscillations induced by a change of the top plunger-
gate voltage V), are shown in Fig. S14a-c. They appear on the entire range of V),, voltage even though the
stability of the QPC is affected by the value of V},;. These oscillations have a small visibility typically
varying between 2 and 5 % as shown in Fig. S14a and b. The Fourier transform analysis of the oscillations,
shown in Fig. S14d reveals a similar lowering of the frequency f, of the oscillations with the plunger-gate
voltage (the absence of well-defined frequency for the oscillations at V,; ~ —1.2 V arises from the rapid
drop of the resistance background).

In Fig. S14e, we show the evolution of resistance oscillations with both the magnetic field and the
plunger-gate voltage. The constant phase lines have a negative slope evidencing that the oscillations result
from the Aharonov-Bohm effect. We can extract a magnetic field period of 0.37 mT corresponding to an

area enclosed by the interfering edge state of 11.2 ym? in good agreement with geometric area of 10.1 zm?.
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FIG. S14: Resistance oscillations in sample BNGr30. a, b, ¢, Resistance oscillations induced by a change of the
plunger-gate voltage V,,, in interferometry experiments with the inner edge state at 14 T. The abrupt change in ¢ of
the mean resistance value at Vj,; =~ —1.2 V and V,; & —0.2 V might originate from instability of the QPCs. a and
b show zooms on smaller V;, ranges of the resistance oscillations converted in visibility (R — R)/R, where R is the
resistance background. d, Amplitude of the Fourier transform of resistance oscillations presented in ¢ with respect to
the plunger-gate voltage V), and the corresponding voltage frequency f,,. A continuous decrease of the oscillations
frequency is observed while decreasing V.. The divergence at V},; ~ —1.2 V is an artefact arising from the rapid
change of the mean resistance value at this plunger-gate voltage. e, Evolution of the resistance oscillations with both
the plunger-gate voltage V},, and the magnetic field variation § B after subtraction of a resistance background for each

plunger-gate voltage sweep. Constant d Rp lines have a negative slope characteristic of oscillations induced by the
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XIII. ABSENCE OF CHARGING EFFECT

Here we discuss the absence of Coulomb blockade in graphene FP interferometers. We follow the ap-
proach proposed in ref.>® and estimate the relevant capacitances describing the electrostatics of the system.
We use the notations of ref., make approximate calculations for the small interferometer with a graphite
back gate and discuss the case of the devices without graphite back gate. These calculations allow us

to evaluate the parameter £ = Cbcjfg o where (Y, is the bulk-to-gate capacitance and Cyy, the edge-to-bulk

capacitance, which defines according to Ref.” if the device is operating in the Aharonov-Bohm or Coulomb-

dominated regime.

Bulk capacitance C},

The bulk capacitance C}, refers to the capacitance of the electrons located in the central part of the cavity
and spatially separated from the conducting edge channels. These bulk electrons belong to the last partially-
occupied Landau level and form an isolated island capacitively coupled to the gate electrodes’ (back gate,
plunger gates, and split-gates) . The electrostatic coupling of the bulk to the interfering edge channel is
considered separately in another capacitance term Cly, discussed later.

For our device with a graphite back gate, the bulk capacitance is mostly given by Cy, = C,g Age, Where
Cpg = 1.45 mF/m? is the effective back-gate capacitance and Ageo 18 the geometrical area. For our small FP
cavity, we obtain Cj, = 4.5 x 1071® F. The corresponding bulk charging energy is thus E¢ = % = 18 peV
comparable to that reported for devices in GaAs heterostructures® in which AB oscillations with fractional
edge channels were reported.

For our devices without graphite back gate, the 285 nm thick SiO» layer gives C,z = 0.12 mF/m?. Thus
for devices having similar sizes, C}, is approximately decreased by a factor 10 with respect to devices with
graphite back gate. For the two devices presented in section XII, BNGr64 and BNGr30, which respectively
have geometrical surfaces of 11.5 and 10.1 zm?, we obtain respectively Cj, = 1.4 and 1.2 x 10~ F.

On top of this bulk-to-back-gate capacitance, one needs to add the contribution of the plunger-gate
and split-gate electrodes resting atop the 20 nm thick capping hBN. This contribution is difficult to evaluate
because the top gates are not located directly above the bulk island. However, they still provide an additional
parallel capacitive coupling leading to an increase of C',; and a reduction of the overall bulk charging energy.
We note that this effect may play a significant role in devices on silicon substrate and may become the main

contribution to the bulk capacitance.



19
Interfering edge channel capacitance C,

Similarly, the interfering edge channel is capacitively coupled to gates electrodes and one can define a
edge-to-gates capacitance C,. For a sake of completeness, we also evaluate it though it does not appear in
the expression of §. Ce is the sum of two contributions : the edge-to-top-gates capacitance Cg /i, and the
edge-to-back-gate capacitance Cl 1.

The latter can be evaluated following a similar approach as above. In this case, C, ,, = 2LwC},g where
2L is the FP cavity perimeter and w is the width of the compressible stripe corresponding to the QH edge
channel. Assuming w = [ the magnetic length (=~ 7 nm at 14 T), we obtain C,; = 8.6 x 10~'7 F. This
contribution is likely to be increased by edge-channel reconstruction®, which could occurs along the smooth
potential of the pn-junctions.

On the other hand, C /g = C¢/s5 + Cg/pg is the sum of the capacitance C /4, between the split-gates

/58
and the interfering edge channel and the capacitance Cg s between the plunger gate and the interfering
edge channel. The latter can be extracted from the plunger-gate voltage period AV},, of AB oscillations, as
an oscillation corresponds to the addition/removal of one flux quantum inside the area enclosed by the edge
channel and thus of an electron in the corresponding Landau level. Then, Ce/p,, = ﬁpg =16x10"'"F
for a typical voltage period AV, = 10 mV. Note that C,,, scales as the perimeter Ly of the plunger
gate (geometrically 1.5 um). From this evaluation, we can also estimate C /s, by making the reasonable
assumption that the electrostatics is the same for the split-gates and for the plunger gate. Thus C¢ /sy =
%C’e /pg = 4.7 % 10~'7 F with Lsg = 4.4 pm is the total length of the split-gate electrodes defining the
cavity. The total edge capacitance is thus about C, = 1.5 x 10716 F.

In devices with silicon back gate, we expect C, to be lower due to a smaller C,, but still of the same

order of magnitude.

Edge-to-bulk capacitive coupling C,},

The capacitive coupling between the edge and the bulk is the most difficult contribution to evaluate. We
base our estimation on ref.!?, which proposes a model to describe the transport in a quantum dot in the
QH regime composed of a conducting island enclosed and coupled to a conducting ring. Equation (19) in
ref.!” allows to evaluate Cyy, based on the charge distribution induced by a potential difference between the
interfering edge channel and the bulk compressible island separated by a distance a. For simplicity, we
assume this distance to be of the order of /g in graphene by analogy with GaAs heterostructures (see eq.

(38) of ref.? giving the width of innermost incompressible stripe). The calculation of the capacitance also
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requires to set a characteristic length scale d over which the influence of the potential difference is screened
by nearby gate electrodes. For our device with a graphite back-gate electrode, this length scale is imposed
by the thickness of the bottom hBN such that d ~ 20 nm. In these conditions, we can write:

Con = 2525%m (1)), (s1)
which leads to Ce, = 2.8 x 10717 F.

We expect that Ce}, remains of the same order of magnitude for devices with silicon back gate because
the various top gates around the FP cavity are also 20 nm away from the graphene flake and, hence, set
the cutoff length d. More specifically, for our devices BNGr64 and BNGr30, which respectively have
perimeters 2L = 15.1 and 13.3 um, we obtain Cp, = 5.0 x 10717 and 4.4 x 10~'7 F. Alternatively, if we
take d = 285 nm, we get Cop, = 10.4 x 1077 and 9.1 x 10~" F.

Discussion

From these calculations, we can estimate the parameter £ = Cl(i-% e We obtain ¢ = 0.006 for our 3.1

pum? device with graphite back gate, confirming that oscillations should arise from pure Aharonov-Bohm
effect>®. Similarly, for our devices with silicon back gate, we obtain £ = 0.03 — 0.07 < 1 also consistent
with the observation of oscillations in the AB regime. This analysis is fully consistent with the absence of

charging effect in our graphene devices.
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XIV. AHARONOV-BOHM OSCILLATIONS VERSUS DC VOLTAGE BIAS: ASYMMETRY AND DECAY

In this section, we discuss the oscillations induced by the application of a dc voltage bias and explain
the origin of the tilted checkerboard pattern. We also analyze the decay of the oscillations amplitude with

the voltage bias related to an energy relaxation or dephasing process.

Theoretical model for asymmetric potential drop

Here, we derive the formula for the transmission of a QH-FP interferometer as a function of magnetic
field and voltage bias using the same formalism as in ref.!, but we take into account a possible asymmetric
potential drop at the two QPCs.

The transmission of a non-interacting QH Fabry-Pérot interferometer reads:

w2 4 Le
ttheZﬂ— L) +i hv
(e, ®) = A (S2)
’ 27 2 4 2Le
1—ryroe” %0 " Av
where 27['% is the Aharonov-Bohm phase, QTL; the dynamical phase accumulated by electrons after one

winding in the cavity of length 2L, ¢; and ¢, the transmission amplitudes of QPC; and QPC; for right
moving particles, 7] the reflection amplitude for left-movers at QPC; and r5 the reflection amplitude for
right-movers at QPCs.

The transmission probability is:

| t1 2] o |?

7 7 , (S3)
14+ | rire |2 =2 | ryra | cos(27r<}% + 271;6 + )

T(e, @) =

where ¢ is a constant phase factor which depends on the scattering phase of the QPCs. Given that | 71 o |2 =
| 7“’1,2 ]2 =Rigand |t \2 = T2, we can rewrite (S3) as

TVT

T, ®) = .
) = R —2VRIR, cos(2m L + ZLe 4 o)

(54)

In the weak backscattering limit, R; < 1, and omitting the constant phase term ¢, we obtain at first

order:

P 2Le) (S5)

T(67¢):1—R1—R2+2MCOS (27‘.%—’_%

We then consider a finite dc voltage bias V' applied between source and drain contacts. We note ¢ =
—e < 0 the electron charge. Depending on the energy relaxation processes consecutive to the current
flow, and on the electrostatic coupling between the cavity, the back gate, the source and the drain, the

electrochemical potential in the cavity will adjust itself at a value intermediate between that of the source
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and that of the drain. The right-movers coming from the source contact have an energy ¢V + = qV(% +z) =
qV B with respect to the chemical potential within FP cavity and the left-movers coming from the drain have
an energy ¢V~ = —qV(% — 1) = —qV 3. In these expressions, z € [—%, %] is the voltage bias asymmetry
factor. = 0 corresponds to a symmetric biasing with V* = % and V- = — %, meaning that the
potential drop is the same across both QPCs. When z = % (or equivalently z = —%) the bias is completely
asymmetric, VT = V and V™~ = 0 (or equivalently V* = 0 and V'~ = —V), the potential drop only occurs
at one QPC while the FP cavity is at the same potential as one of the two contacts.

At zero temperature, the current through the device is given by I = { qu&/j T (e, ®)de. In the weak

backscattering limit, it writes:

v
I:q/
h -

where I = % (1— Ry — R2)V is the constant part of the current and I, is the oscillating part of the current

2L¢

P
1— Ry — Ry +2v/R1R5 cos <27r(I) + fwﬂ de = Iy + Lo, (56)
0

which writes:

e? ho ) 2L ) 2L _ —
L = oy RiRa—2 |sin (27— + 22qvB ) —sin (27— — 224VB) | . s7
e T eV Ry T F"l( "o 5) 8“1('”®0 o B)] (57)

The corresponding differential conductance is then:

dIOSC
av

& 2L
(I)Q hv

:Shw[ﬁcos<2w eVﬁ)—%ﬁcos(Qwil%—iieVﬁ)}, (S8)

with gosc = %2\/% and restoring ¢ = —e.
When the potential drop at the constrictions is symmetrical, that is, V™ = V/2and V~ = —V/2, we

have 3 = B = 3 (z = 0) and then:

dIosc
dV

P L
= (osc COS (2%@) cos (27T6V> , (S9)

0 hv
leading to a checkerboard pattern with a period versus bias voltage which is equal to the ballistic Thouless
energy : eAV = hv/L = Ery,.

If the bias is completely asymmetrical, for example when V* =V and V- = 0 with 3 = 1and 3 = 0

(x = %), we obtain:

dI P 2L
d;? —ghmcos<2ﬂ¢m-—2ﬂhveV) (S10)

that draws a diagonal strip pattern with a period versus bias voltage (at fixed magnetic field) which is equal to

half the Thouless energy. Any intermediate value of x leads to a mixed pattern, that is, a tilted checkerboard
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as observed in our experiment. Note that the measured diagonal resistance 0 Rp = —%(8%)2 shows

exactly the same oscillatory features as the conductance in the weak backscattering limit.

In Fig. S15, we gather the results obtained in the three different interferometers as a function of voltage
bias (Fig. S15a, c, d and f are respectively identical to Fig. 3c, d, e and f). The checkerboard patterns are
tilted for our small (a) and medium interferometers (b), whereas the tilt is hardly visible for the largest inter-
ferometer (c). Using eq. (S8), we can quantitatively reproduce in Fig. S15d, e and f the three experimental
checkerboards with asymmetry parameters = 0.2, 0.1 and 0.02, respectively.

In our experiment, we apply a dc voltage to the source contact while the drain contact is kept grounded.
The electrostatic coupling of the cavity to the back-gate electrode results in an asymmetric potential drop
which could explain why the checkerboard patterns of our two smallest interferometers are tilted. On the
other hand, the fact that the checkerboard pattern is nearly symmetric for the largest interferometer, indicates
that energy relaxation processes equilibrate the chemical potential for sufficiently large interferometers,
leading to a symmetric potential drop. Interestingly, tilted checkerboards in QH-FP interferometers has
never been reported for GaAs QH-FP devices of the same size as our small interferometer, possibly due to
the larger back-gate coupling in our graphene device equipped with a graphite back gate, or because the

chemical potential equilibration is less effective in graphene.

Decay of the oscillations at finite bias

For an asymmetric potential drop characterized by an asymmetry factor x, the amplitude of the flux-

periodic oscillations given by eq. (S8) oscillates versus bias voltage with the following dependence:

AV, Eryp/e) = \/COSQ (27T2V> + 422 sin? (2775/’) (S11)

Th Th

Note that the period of this function is always the Thouless energy Ety, = hv/L whatever the asymmetry
factor z, whereas the period of the conductance oscillations versus bias voltage at fixed magnetic field varies
with the value of x (see for example eq. (S9) and eq. (S10)).

In Fig. S15a, b and c, however, we observe that the oscillations amplitude decays rapidly with the
bias voltage and vanishes typically after one voltage period. Such a fast decay is much faster than the
1/AV dependence predicted in ref.! and was already reported by McClure and coworkers!! in GaAs QH-
FP interferometers. These authors found that an exponential decay of the oscillations amplitude with the
bias describes correctly the data. Theoretical investigations'? confirmed that Coulomb interactions can lead

to an approximate exponential decay. Following this approach, we fitted the oscillations in our data with:

Vi
AV, AVigo) exp | —27 , (S12)
(V: Alorpo) o5 ( Y AVopo
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where  is a phenomenological parameter that describes how fast the oscillations vanish with voltage, and
AVexpo 1s the period of the resistance oscillations for this exponential decay. The amplitude of the oscil-
lations is obtained by computing the Fourier amplitude of the resistance oscillations as a function of the
plunger-gate voltage at fixed bias voltage. This leads to the lobe structure shown in Extended Data Fig 4a,
b and c. A good agreement between the model and the data is found for the three interferometers. The
extracted voltage periods AV, and damping factors  are reported in Table S3. It is worth noticing, how-
ever, that this phenomenological model does not capture the absence of secondary lobes in the experiments,
suggesting that the decay of the oscillations is faster than exponential.

We therefore consider a second model with a Gaussian decay of the bias-induced oscillations. Investi-
gations in Mach-Zehnder interferometers revealed that a Gaussian decay may arise from phase fluctuations
of the interfering edge channel due to Coulomb interactions or the electric noise in the non-interfering edge
channels'3~1®, Within this approach, we fitted our data with:

V2
A(V, AVgauss) exp (—2> , (S13)

2V
where Vj is the voltage scale characterizing the width of the Gaussian envelope, and AVgayes the period
of the resistance oscillation for this Gaussian decay. The fits of the experimental data with this expression
are displayed in Extended Data Fig. 4a, b and c (orange lines). This second model also describes well
the data. The extracted voltage periods AV, ss, reported in Table S3, are close to those obtained with the
exponential decay model. The extracted V{) values scale linearly with the inverse interfering path length

1/L as mentioned in ref.!® and is typically one third of AVjg,yss.

The qualitative difference between the exponential and Gaussian decays is that the exponential decay

fits better the amplitude of the first lobe but fails to reproduce the vanishing of the second ones, whereas the

Gaussian model is less accurate for the first lobe but shows a suppressed second lobe.

QH-FP | AVexpo (WV)| X |AVgauss (uV)|Vo (1Y)
Small 134 0.42 128 40
Medium 83 0.42 81 25
Large 57 0.35 61 21

TABLE S3: Fitting parameters for the different models of bias-induced oscillation decay. Voltage period AVeypo
for the exponential decay model; x damping rate for the exponential decay model; voltage period AVg,yss for the

Gaussian decay model; V width of the Gaussian envelope.
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FIG. S15: Bias dependence of Aharonov-Bohm oscillations. a, b, ¢, Differential diagonal resistance variations
SRp, after background subtraction, versus dc diagonal voltage Vi and plunger-gate voltage Vi1 for the small,
medium and large interferometer respectively in a, b and c. Interferences are obtained with the outer edge channel
at 14 T. d, e, f, Numerical simulations of resistance oscillations induced by voltage bias and plunger-gate voltage
that reproduce the data presented in a, b and c, respectively. The simulations incorporate an asymmetric potential
drop at the two QPCs and an out-of-equilibrium decoherence factor. The voltage bias asymmetry factors of x = 0.2
and = = 0.1, respectively for the small d and medium interferometer e, are significant, indicating a limited chemical

potential equilibration as opposed to the large interferometer f, which has a very small asymmetry term x = 0.02.
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XV. TEMPERATURE DEPENDENCE OF THE AHARONOV-BOHM OSCILLATIONS: THERMAL
AVERAGING

The effect of temperature on the visibility of the Aharonov-Bohm oscillations has been calculated in
ref.! in the limit of weak backscattering and at finite bias voltage for a symmetric potential drop at the
two constrictions. This calculation considers only the thermal averaging of the interference and does not
introduce decoherence by inelastic scattering or energy relaxation at finite bias.

Here we explain in details the calculation in the symmetric case and then extend the result to the case
of an asymmetric potential drop as observed in our device. In the following, we use the expression of the

transmission coefficient obtained in the previous section in the limit of weak backscattering:

T(E, (I)) —1— R, — Ry + /7R1R2 (eiZW‘b/@oeiEQL/ﬁv + 67i271-<b/¢’067iE2L/hv) (S14)

Symmetric potential drop

Assuming a symmetric potential drop at the two constrictions as in ref.!, the current at finite temperature

T and finite voltage V is given by:

+o00
q 1 1

1@,v.7) =1 T(E,® - dE, si15
( ) h / ( ) (1 + e(E—%)/k’BT 1+ €(E+q;/)/kBT> ( )

—0o0
where ¢ < 0 is the electron charge. Using the expression of the transmission coefficient in the limit of weak
back-scattering, the current writes:

2

I(®,V,T) = %(1 —Ri—R)V — %\/Rle (e2m®/®H(V,T) + e ™ H(V,T)),  (S16)
where we introduce the function:
too 1 1
H(V,T) = / B2l - - - dE. (S17)
S 1+ eB=")/ksT 1 4 o(B+75)/ksT
By changing the variable in the integral, it becomes:
+00
_ (iYL —iY2L/h iE2L/hv 1

H(V,T) = (e > e~i% )/_Oo e s i L (S18)

where the choice of a symmetric potential drop influences only the term in the parenthesis. The calculation

of the integral gives:

+ .
/+00 eiEQL/ﬁv 1 dE = —127Tk'BT ZO:O e—wn2L/ﬁv . _7'27TkBT
—0oQ

= S19
1+ eE/ksT =5 2 Sinh(ﬂkBTQL/hU) ’ ( )
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where w, = (2n+1)wkpT are the Matsubara frequencies, with n € Z. In this case of a symmetric potential

drop, the function H(V,T) is real and writes:

H(V,T) = sin(qV L/hv) —— (:2 §;2TL T (S20)
The current finally writes:
[(®,V,T) = GoV — L VI 2 cos(27® /) sin(qV L /hv) —— Bl (S21)
h sinh(wkgT2L/hv)
which is equivalent to equations (16) and (18) in ref.!. The differential conductance writes:
G(®,V,T) =Gy — (22 VRiRy 2 cos(2r®/®q) cos(qV L/hwv) sing(k::lii%/g;}hv)’ (522)

which forms a checkerboard pattern as a function of field and voltage. At high temperature, the visibility of

these oscillations decreases exponentially with a dependence of the form:

2
¢~ kBT2L/h _ o~ Am*kpT /By _ o~T/To (S23)

where Epy, = hv/ L is the ballistic Thouless energy which corresponds to the oscillation period gAV versus
bias voltage, and Ty is the fitting parameter of the exponential temperature dependence which is related to

the Thouless energy by:

A7k Ty = Emy = qAV. (S24)

Asymmetric potential drop

In case of an asymmetric potential drop at the two constrictions (see section XIV), the potential energy
is gVt = BqV at the source contact and ¢V~ = — ¢V at the drain contact, with 3 = % +zand § = % —x
with the parameter = € [—%, %] characterizing the asymmetry of the potential drop. The current at finite

temperature 7" and finite voltage V' is then given by:

—+o00
q 1 1
@ V.T) = h/ T(E.®) (1 + e(E-BaV)/keT — 1 4 e(E+BqV)/kBT) dE (525)

—0o0
Following the same calculations as above now gives the function:

2rkgT

H T) = twqV2L/hv : L/k
(V.T)=e stnlaV L/ ) e s T L 7o)

(S26)

which contains a complex phase factor. The current writes:

2wkl
sinh(rkgT2L/hv)

I(®,V,T) = GOV—% VRiRy 2 cos(2n® /Py +xqV2L/hw) sin(qV L/hv) (827)
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which is modified only by the term zqV 2L /hv in the cosine function. The differential conductance writes:

wkgT2L/hv
sinh(mkgT2L/hv)

2
G(®.V.T) = Go— - VEiR: 29(2,V) (S28)

where the oscillation term:

g(®, V) = cos(2n® /Py + xqV2L/hv) cos(¢V L/hw) — 2z sin(2n® /Py + xqV2L/hw) sin(qV L/ hv)
(S29)
gives a titled checkerboard pattern as a function of field and voltage for x # 0. It is interesting to note
that the temperature dependence is not affected by the asymmetry of the potential drop at the constrictions.
The fitting parameter Tj of the exponential temperature dependence is still related to the ballistic Thouless

energy by 472k Ty = Ery.
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XVI. EVALUATION OF THE PHASE COHERENCE LENGTH L

To estimate the phase coherence length L in our graphene QH-FP interferometers, we assume that the

visibility V of coherent oscillations scales as:

2L/Ly 2L
V=Vo—"777— - S30
0 Simh(2L/ L) &P ( L¢(T)> (530)
where L = %fﬁ is the characteristic length associated with the decay of the visibility due to thermal

averaging at temperature 7' (see eq. (S22) in previous section), L4(T') is the phase coherence length asso-
ciated with extrinsic effects (that can depend on temperature), 2L is the the perimeter of the FP cavity and
Vo is the asymptotic limit reached by the visibility when L tends to zero. In this expression, both thermal
broadening (that acts as an internal phase decoherence between the different spectral components of the
thermal electron wave packet) and extrinsic dephasing mechanisms add up and result in an effective de-
coherence length given by 1/L%(T") = 1/Ly + 1/Ly for the limit of long interfering path lengths. Note
that the exponential decrease due to the finite coherence length is only valid for 2L above Ly and should
saturate to a particular visibility below unity for smaller perimeters.

Fitting the evolution of V with 2L at fixed temperature with eq. (S30) provides a direct estimate of
Ly. As visibility depends on the QPC transmissions, we performed this length-dependence analysis by
considering our best visibility data obtained for the three sizes of interferometers. We evaluate the electron
temperature at our base fridge temperature to be T' ~ 20 mK, which corresponds to the temperature below
which the T'-dependence of the visibility saturates. For experiments with the inner edge channel, we ex-

tracted the visibility through Gmax—gﬁz};;(%mr:}?n— TRy

which subtracts the conductance contribution of the
fully transmitted outer edge channel.

Extended Data Figure 5 shows the evolution of these visibilities )V with the perimeter of the interferom-
eters 2 L. For comparison, the decrease of the visibility induced by the thermal broadening at 20 mK is also
shown with the solid red line (eq. (S30) with L4(7T') infinite and a edge state velocity of 1.4 x 10° m/s, giv-
ing Lt = 17 pm). For both experiments with the outer and the inner edge channel, a fast decrease of V with
2L is observed which cannot be explained by the effect of thermal broadening. The best visibilities for both
interfering edge channels are virtually the same except for data in the large interferometer with the inner
edge channel, which shows a significant drop compared to the data with the outer one. It probably reflects
that the tuning of the QPC could have been improved. We thus discard it for our quantitative analysis.

By fitting the visibility decay, we extract a phase coherence length Ly ~ 10 pm at 20 mK. We estimate
the electron temperature as the temperature below which the visibility does not increase anymore, which is

about 20 mK. The obtained value of 10 um is smaller or comparable to the perimeter length, which justifies
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the exponential decrease used in eq. (S30) (the saturation would appear for smaller perimeters as the ones
studied here). This value is also consistent with the observation of coherent Aharonov-Bohm oscillations in

the double FP cavity at base temperature.
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XVII. ANALYSIS OF THE DOUBLE-CAVITY INTERFEROMETER

In this section we discuss the experiments performed in the coherently-coupled double FP cavity. We
first derive the theoretical expression for the transmission for a double cavity and then compare it with our
data to show that electron transport remains coherent in the overall device.

The transmission and reflection amplitudes of a Fabry-Pérot interferometer reads:

t1t2€i90
trp(p) = Wa (S31)
t/ t/ eigo
/ _ 12
() = T 7 —5; Ty (S32)
thltl 6i2<'0
rep(p) =T+ T —5 T,;Qeﬂw, (S33)
/ ' rllt/2t2ei2(p
Tep(p) =79 + (S34)

where 2¢ is the Aharonov-Bohm phase accumulated by electrons after one winding in the cavity, ¢; (¢}) the
transmission amplitude, and 7; (r}) the reflection amplitude of QPC; for right (left) moving particles.

The total transmission amplitude ¢, of two coupled FP cavities can be calculated using the transmission
and reflection amplitudes of one FP cavity and the transmission and reflection amplitudes of a third QPC.
Thus, using the previous expressions, we have:

trp(1)tzete?
1 — rpp(p1)raei2ez’

tot(p1, p2) = (S35)

where 2¢; and 2 are the Aharonov-Bohm phase accumulated by electrons after one winding in the cavity
between QPC; and QPC, and between QPC, and QPC3, respectively.

> = |ti]*> = T3, |ri|*> = |ri|*> = R; and the relation r, = —7;t./t; (the overline indicates

Using |¢;

complex conjugate), we can express the transmission as:

Ty T2T3 . T T2T3
|1 — VR Ryei1 — \/RoRgei®2 + /Ry Rzei(®1+¢2)|2 D '

where ¢ and ¢9 are the Aharonov-Bohm phases acquired when quasiparticles wind into the medium and

Tiot(01, P2) = (S36)

small cavities respectively (including the phase factor from the reflection amplitudes of the QPCs). The
denominator D can be written as:
D=1+ RiRy+ R3Ry+ R1R3 — 2(1 + Rg)\/ R Ry COS(¢1) — 2(1 + Rl)\/ RsoR3 COS(qf)g)
+ 2V R1R3 cos(¢1 + ¢2) + 2Ra/ R1 R3 cos(¢1 — ¢2).

(S37)
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In this expression, four oscillation frequencies emerge, namely, ¢1, ¢, ¢z = ¢1 + P2 and ¢4 = P1 — @o.
The terms in ¢3 and ¢4 in eq. (S37), which result from coherent interferences through the two interferom-
eters, does not have the same prefactor : the amplitude of the ¢3 oscillations is larger than the amplitude
of the ¢4 oscillations which is even negligible in the weak backscattering limit. In contrast, in a situation
where the transport through the double cavity would be incoherent, one could expect the appearance of term
in the form of cos(¢1) x cos(¢2) = 3 [cos(¢3) + cos(¢4)] which would lead to equal amplitudes of ¢3 and
¢4 oscillating components.

Relating this model to our device geometry, we can ascribe to each of these four Aharonov-Bohm fluxes

a coupling to the relevant plunger gates:

2 2
01 5 (OALB + A13B) = G- (o1 Vet B + A10B), (838)
2 2
62~ 5-(042B + 420B) = F-(aVoa B + A205), (539)
) 2
63 = g (041 +642)B + (A1 + A)0B] = I [(01 Vs + 2Vpu2) B+ (A1 + 42)3B] . (540)
2w 2
gf)4 ~ ao [(6141 — 5A2)B + (A1 — AQ)(;B] = ao [(al‘/i)gl - QQ%gZ)B + (Al - A2)6B] ) (S41)

where A1 and Aj are the area of the medium and small cavities, respectively, Vpo1 and Vj,e> the plunger-gate
voltages that tune these areas and «v; and «y their lever arms.

In Figure S16 we show the expected frequencies in Fourier space for a coherently-coupled double QH-
FP interferometer upon varying both plunger gates (Fig. S16a), or one plunger gate and the magnetic field
(Fig. S16b and c). For the former case, the plunger-gate frequencies corresponding to the small and medium
interferometers are located on the x and y axis, reflecting the terms ¢; and ¢2 in eq. (S37), whereas the
double interferometer terms ¢3 and ¢4 that depend on both plunger gates are located on the diagonals. For
latter configurations, the frequency of the interferometer without the active plunger gate depends only on
B and is thus located at zero plunger-gate frequency on the horizontal axis (¢; in b and ¢ in c), whereas
the frequency of the other interferometer with the active plunger gate, as well as the coupled interferometer
frequencies, are located at finite plunger gate frequency.

In Figure S17 we reproduce the data shown in Fig. 4 for the coherently-coupled QH-FP interferometer
and add the configuration with V},¢1 active and magnetic field (Fig. S17c), which provides another confir-
mation of the presence of the ¢3 contribution. The four quadrants of the Fourier amplitudes are shown in

order to check the presence of the ¢4 = ¢1 — @2 frequency. The ¢, frequency, whose expected location is
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FIG. S16: Fourier analysis of double QH-FP interferometer. a, b, ¢, Positions in reciprocal space of the oscillation
frequencies for three different configurations of interferometry experiments (assuming A; = 3A,). Each peak is
labelled with its Aharonov-Bohm phase. Top schematics depict the active QPCs (red) and plunger gates (orange)
in each experiments. The parameters used to tune the Aharonov-Bohm phases in each case are indicated above the

corresponding schematic.

indicated by the red circle in Fig. S17d-f, is clearly present in the configuration of Fig. S17e. Its amplitude
is smaller than the amplitude of the ¢3 contribution as expected in eq. (S37). For the two other configura-
tions, this ¢4 frequency is hardly visible. This detailed analysis provides compelling evidence for coherent
transport through the three QPCs.

We can furthermore simulate the data by a simplified model that neglects terms in R? in eq. (S37):
R = 0R; cos(¢1) + dRa cos(pa) + R cos(¢s). (S42)

Using the experimental Fourier amplitudes for the parameters d R1, § R and d R3 we obtain the resistance

maps shown in Fig. S17g-i that reproduce the experimental maps in Fig. S17a-c with excellent fidelity.
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FIG. S17: Coherently-coupled double QH-FP interferometer. a, Diagonal resistance versus plunger-gate voltages
Vpe1 and Vg0 (outer edge channel interfering, B = 14 T). b, Diagonal resistance versus magnetic field variation 6 B
and plunger-gate voltage V,,qo (inner edge channel interfering, B = 14 T). ¢, Diagonal resistance versus magnetic field
variation 0B and plunger-gate voltage V,,1 (outer edge channel interfering, B = 14 T). The inset schematics in a, b
and c indicate the active QPCs (in red) and plunger gates (in orange) for the respective measurements. a and b are
identical to the Fig. 4c and 4d of the main text. d, e, f, Four-quadrant Fourier amplitude of the resistance oscillations
displayed respectively in a, b and c in their respective reciprocal space. The peaks corresponding to the different
Aharonov-Bohm phases are identified in each case. g, h, i, Numerical simulations reproducing the experiments
shown respectively in a, b and ¢ with eq. (S42). The parameters (§ R, dRo, 6 R3) are (0.66, 1, 0.18) in g, (0.64, 1,
0.22) in h, and (0.19, 1, 0.11) in i.
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