In the format provided by the authors and unedited.

Geospatial immune variability illuminates differential evolution of lung adenocarcinoma

Khalid AbdulJabbar[®]^{1,2,53}, Shan E. Ahmed Raza[®]^{1,2,53}, Rachel Rosenthal^{3,4}, Mariam Jamal-Hanjani^{3,5}, Selvaraju Veeriah^{3,4}, Ayse Akarca⁶, Tom Lund⁷, David A. Moore^{3,6}, Roberto Salgado^{8,9}, Maise Al Bakir⁴, Luis Zapata^{1,2}, Crispin T. Hiley^{3,4}, Leah Officer[®]¹⁰, Marco Sereno[®]¹¹, Claire Rachel Smith[®]¹¹, Sherene Loi[®]⁹, Allan Hackshaw¹², Teresa Marafioti⁶, Sergio A. Quezada[®]¹³, Nicholas McGranahan[®]^{3,14}, John Le Quesne^{10,11,15}, TRACERx Consortium^{*}, Charles Swanton[®]^{3,4,5,54} and Yinyin Yuan[®]^{1,2,54}

¹Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK. ²Division of Molecular Pathology, The Institute of Cancer Research, London, UK. ³Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK. ⁴Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK. ⁵Department of Medical Oncology, University College London Hospitals NHS Foundation Trust, London, UK. ⁶Department of Cellular Pathology, University College London, University College Hospital, London, UK.
⁷Translational Immune Oncology Group, Centre for Molecular Medicine, Royal Marsden Hospital NHS Trust, London, UK. ⁸Department of Pathology, GZA-ZNA-Ziekenhuizen, Antwerp, Belgium. ⁹Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia. ¹⁰MRC Toxicology Unit, University of Cambridge, Leicester, UK. ¹¹Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
¹²Cancer Research UK & University College London Cancer Trials Centre, University College London, UK. ¹³Cancer Immunology Unit, University College London Cancer Trials Centre, University College London, UK. ¹³Cancer Immunology Unit, University College London, London, UK. ¹⁵Glenfield Hospital, University Hospitals Leicester NHS Trust, Leicester, UK. ⁵³These authors contributed equally: Khalid Abdul Jabbar, Shan E. Ahmed Raza. ⁵⁴These authors jointly supervised this work: Charles Swanton, Yinyin Yuan. ^{*A} full list of authors and their affiliations appears at the end of the paper. ^{Exa} e-mail: jlq2@leicester.ac.uk; Charles.Swanton@crick.ac.uk; Yinyin.Yuan@icr.ac.uk

	Item No	Recommendation		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the		
DONE		abstract		
		(b) Provide in the abstract an informative and balanced summary of what was		
		done and what was found		
Introduction				
Background/rationale	2	Explain the scientific background and rationale for the investigation being		
DONE		reported		
Objectives	3	State specific objectives, including any prespecified hypotheses		
DONE				
Methods				
Study design	4	Present key elements of study design early in the paper		
DONE				
Setting	5	Describe the setting, locations, and relevant dates, including periods of		
DONE – methods/reporting		recruitment, exposure, follow-up, and data collection		
summary				
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of		
DONE - reporting		participants. Describe methods of follow-up		
summary		(b) For matched studies, give matching criteria and number of exposed and		
		unexposed		
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and		
DONE		effect modifiers. Give diagnostic criteria, if applicable		
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of		
DONE		assessment (measurement). Describe comparability of assessment methods if		
		there is more than one group		
Bias	9	Describe any efforts to address potential sources of bias		
DONE – results/Fig3/Ext				
Fig 6	10			
Study size	10	Explain how the study size was arrived at		
DONE – methods/Ext Fig				
1 Quantitative variables	11	Evaluin how quantitative variables were handled in the analyses. If applicable		
DONE	11	describe which groupings were chosen and why		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for		
DONE		(a) 2 evenes an emission memory, meroding mere accure contact for		
		(b) Describe any methods used to examine subgroups and interactions		
		(c) Explain how missing data were addressed		
		(d) If applicable, explain how loss to follow-up was addressed		
		(<u>e</u>) Describe any sensitivity analyses		
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers		
DONE – CONSRT		potentially eligible, examined for eligibility, confirmed eligible, included in the		
diagram in Ext Fig 1		study, completing follow-up, and analysed		
		(b) Give reasons for non-participation at each stage		
		(c) Consider use of a flow diagram		
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)		

STROBE Statement—Checklist of items that should be included in reports of *cohort studies*

DONE		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
		(c) Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Report numbers of outcome events or summary measures over time	
DONE			
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates	
DONE		and their precision (eg, 95% confidence interval). Make clear which	
		confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute risk	
		for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
DONE		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	
DONE			
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	
DONE		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	
DONE		limitations, multiplicity of analyses, results from similar studies, and other	
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	
DONE			
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and,	
DONE		if applicable, for the original study on which the present article is based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

Comparison of tissue segmentation performance between deep learning and classic machine learning

We implemented the Micro-Net¹ algorithm for tissue segmentation which has been shown to perform accurate segmentation compared to the state-of-the-art algorithms. Due to complex structures in histology slides or weak staining, classic machine learning algorithms often fail and are problematic to tune. This problem can be more complex while segmenting sections without Eosin or cytoplasmic staining such as IHC-stained images due to weak contrast between the tissue region and the background glass.

As an independent comparison, we experimented classic methods such as threshold, active contours ², watershed segmentation ³ and Support Vector Machines (SVM) based method trained on local binary pattern features ⁴ on 10 different images randomly selected from the TRACERx histology cohort (Supplementary Figures 1-20). Deep learning (MicroNet) outperformed all classic methods using various accuracy metrics as shown in Supplementary Table 6.

Supplementary Figure 10 demonstrates the effect of weaker staining on threshold and active contours algorithms, whereas MicroNet consistently performed better on all the images. The watershed algorithm segmented multiple regions in all images, with such variation, it was very hard to fine-tune the algorithm in order to merge all relevant tissue regions into a single segment. For SVM, the local binary patterns (LBP) features were extracted to segment the tissue regions, however, a major limitation can be observed in the form of discarding Eosin only areas, as shown on Supplementary Figure 9 and Supplementary Figure 21.

Supplementary Table 6: Quantitative comparison of tissue segmentation results for proposed (Micro-Net) vs classic machine learning.

Method	Dice	Object Dice	Pixel Accuracy	F1-Score
Threshold	0.631500453	0.491553304	0.699176744	0.000949264
Watershed	0.38605082	0.370697822	0.447965797	0.176859504
Chan_Vese	0.598405502	0.469242029	0.667303606	0.000914946
SVM_LBP	0.917539751	0.915315159	0.910894913	0.749012437
MicroNet	0.961247872	0.955819821	0.964068566	0.773748864

- 1. Raza, S. E. A. *et al.* Micro-Net: A unified model for segmentation of various objects in microscopy images. *Med. Image Anal.* **52**, 160–173 (2019).
- 2. Chan, T. F., Sandberg, B. Y. & Vese, L. A. Active Contours without Edges for Vector-Valued Images. J. Vis. Commun. Image Represent. **11**, 130–141 (2000).
- 3. Meyer, F. Topographic distance and watershed lines. *Signal Processing* **38**, 113–125 (1994).
- 4. Ojala, T., Pietikainen, M. & Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *IEEE Trans. Pattern Anal. Mach. Intell.* **24**, 971–987 (2002).

Supplementary Figures 1-20: comparison of H&E tissue segmentation across five different methods: MicroNet, threshold, active contours, watershed segmentation and SVM based method trained on local binary pattern features. Supplementary Figures 1-10 show the results for segmenting entire diagnostic slides and Supplementary Figures 11-20 show various zoomed-in examples.

Raw Image

Threshold

Active Contours

SVM using LBP features

Micro-Net

Watershed

Raw Image

Threshold

Active Contours

SVM using LBP features

Threshold

Active Contours

Watershed

SVM using LBP features

SVM using LBP features

Raw Image

Watershed

Threshold

SVM using LBP features

Active Contours

Watershed

SVM using LBP features

Raw Image

Watershed

Threshold

SVM using LBP features

Active Contours

Raw Image

Watershed

Threshold

SVM using LBP features

Active Contours

Raw Image

Watershed

Threshold

SVM using LBP features

Active Contours

Threshold

SVM using LBP features

Active Contours

Threshold

Active Contours

Watershed

SVM using LBP features

Raw Image

Threshold

Active Contours

SVM using LBP features

Raw Image

Threshold

Active Contours

Watershed

SVM using LBP features

Micro-Net

Raw Image

Threshold

Active Contours

SVM using LBP features

Threshold

Active Contours

Watershed

SVM using LBP features

Raw Image

Threshold

Active Contours

SVM using LBP features

Threshold

Active Contours

Watershed

SVM using LBP features

Threshold

Active Contours

Watershed

SVM using LBP features

Threshold

Active Contours

Watershed

SVM using LBP features

Watershed

Threshold

Active Contours

Micro-Net