
Structural variants at the BRCA1/2 loci are a common source of homologous repair 
deficiency in high grade serous ovarian carcinoma 
 
Supplementary Information 
 
Scottish DNA sample preparation and quality control 
 
Somatic DNA was extracted using the Qiagen DNeasy Blood and tissue kit (cat no 69504). 
The tissue was initially homogenised using a Qiagen Bioruptor, followed by the 
manufacturers recommended protocol (including RNase digestion step). Germline DNA was 
extracted from 1-3ml whole blood using the Qiagen FlexiGene kit (cat no 51206) following 
the manufacturers recommended protocol. The resulting DNA underwent quality control as 
follows: firstly, A260 and A280nm were measured on a Denovix DS-11 Fx to qualitatively 
illustrate A260/280nm and A260/230nm ratios as surrogate measures of DNA purity. 
A260/280 had to be 1.8 or greater and A260/230 had to be 2.0 or greater. Then, DNA was 
quantified using LifeTechnologies Qubit dsDNA BR kit (cat no Q32850) and we required a 
minimum of 50ul at 25ng/ul for WGS. Thirdly, DNA was diluted to 25ng/ul and a 
representative sample was loaded onto a 0.8% TAE gel, ran at 100v for 60mins and then 
imaged using a BioRad ChemiDoc imaging system to visualise the DNA quality. 
 
Primary processing pipeline resources and versions  
 
bamtools 2.4.0 https://doi.org/10.1093/bioinformatics/btr174 

bcbio-
nextgen 

1.0.7 https://github.com/bcbio/bcbio-nextgen 

bcftools 1.6 https://github.com/samtools/bcftools 

bedtools 2.27.1 https://doi.org/10.1093/bioinformatics/btq033 

biobambam
2 

2.0.87 https://gitlab.com/german.tischler/biobambam2 

bwa 0.7.17 https://www.ncbi.nlm.nih.gov/pubmed/20080505 

CLImaT  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155249/  

cnvkit 0.9.2a0 https://www.ncbi.nlm.nih.gov/pubmed/27100738 

facets  https://pubmed.ncbi.nlm.nih.gov/27270079/  

fastqc 0.11.8 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

FeatureCou
nts 

1.6.4 https://academic.oup.com/bioinformatics/article/30/7/923/232889  

gatk4 4.0.0.0 https://currentprotocols.onlinelibrary.wiley.com/doi/abs/10.1002/047125
0953.bi1110s43 
https://www.ncbi.nlm.nih.gov/pubmed?term=20644199 

grabix 0.1.8 https://github.com/arq5x/grabix 



manta 1.2.1 https://www.ncbi.nlm.nih.gov/pubmed/26647377 

multiQC 1.7 https://academic.oup.com/bioinformatics/article/32/19/3047/2196507  

mutect2 1.1.5 http://www.nature.com/nbt/journal/v31/n3/full/nbt.2514.html 

picard 2.17.2 https://broadinstitute.github.io/picard/ 

Qualimap 2.2.2-
dev 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708105/  

Qsignature 0.1 https://sourceforge.net/p/adamajava/wiki/qSignature/  

Salmon 
quant 

0.12.0 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600148/  

sambamba 0.6.8 A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, and P. Prins. Sambamba: 
fast processing of NGS alignment formats. Bioinformatics, 2015 

samblaster 0.1.24 https://github.com/GregoryFaust/samblaster 

samtools 1.6 https://github.com/samtools/samtools 

Strelka2   https://www.nature.com/articles/s41592-018-0051-x 

tximport 1.12.1 https://f1000research.com/articles/4-1521  

vardict 2017.11
.23 

Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, 
Johnson J, Dougherty B, Barrett JC, and Dry JR. VarDict: a novel and 
versatile variant caller for next-generation sequencing in cancer research. 
Nucleic Acids Res. 2016, pii: gkw227. 

vardict-java 1.5.1 Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, 
Johnson J, Dougherty B, Barrett JC, and Dry JR. VarDict: a novel and 
versatile variant caller for next-generation sequencing in cancer research. 
Nucleic Acids Res. 2016, pii: gkw227. 

variant-
effect-
predictor 

91_GRC
h38 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-
0974-4 

vcflib 1.0.0_rc
1 

https://github.com/vcflib/vcflib 

VerifyBamId  1.1.3 https://www.ncbi.nlm.nih.gov/pubmed/23103226 

vt 2015.11
.10 

http://bioinformatics.oxfordjournals.org/content/31/13/2202 

 
 
 
 
 
 
 
 



Formal definition of BRCA1/2 mutational categories 
 

General 
BRCA1/2 
mutational 
category 

BRCA1/2 mutational 
category  
 

Formal definition 
 

Deletion

  

Deletion of both BRCA1 
and BRCA2 / 
Deletion at both genes 

• Deletion of at least one exon at BOTH BRCA1 and 
BRCA2  

• Absence of other SVs at BRCA1/2 
• Absence of GSM or SSM at either gene (Figure 

3c,d) 

 
Deletion of one of 
BRCA1/2  
 

• Deletion of at least one exon at only one of BRCA1 
or BRCA2  

• Absence of other SVs at gene with deletion 

 
(Figures3c,d) 

Single deletion at BRCA1  • Deletion of at least one exon at BRCA1 only  
• Absence of other SVs at BRCA1 
• Absence of GSM or SSM at either gene (Figure 

3c,d) 

 
(Figures3c,d) 

Single deletion at BRCA2 • Deletion of at least one exon at BRCA2 only  
• Absence of other SVs at BRCA2 
• Absence of GSM or SSM at either gene (Figure 

3c,d) 

 
Intronic deletion at 
BRCA1/2 

• Deletion not involving any exons at BRCA1/2 
• Absence of other SVs at either gene 

Duplication

 

Duplication spanning 
BRCA1/2 

• Duplication spanning at least one of BRCA1 or 
BRCA2 

• Absence of other SVs at the duplicated gene 
 

 

BRCA2 duplication • Duplication spanning BRCA2 
• Absence of other SVs at BRCA2 
• Absence of GSM/SSM/deletion/inversion at either 

gene (Figure 3c,d) 

 
Intragenic exonic 
duplication at BRCA1/2 

• Duplication spanning at least one exon but not the 
entirety of one of BRCA1 or BRCA2 

• Absence of other SVs at either gene  
Inversion

 

Inversion spanning 
BRCA1/2 
 

• Inversion spanning at least one of BRCA1 or BRCA2 
• Absence of other SVs at the inverted gene 

 
BRCA1 inversion • Inversion spanning BRCA1 

• Absence of other SVs at BRCA1 
• Absence of GSM/SSM/deletion at either gene 

(Figure 3c,d) 
Complex SVs 

 

Complex combination of 
SVs including deletion of 
BRCA1/2 

• The presence of more than one SV including at 
least one deletion at at least one of BRCA1/2 

 

 

Complex combination of 
SVs at BRCA1/2 without 
deletion 

• The presence of more than one SV excluding 
deletion at at least one of BRCA1/2 

 
 
 



Further details regarding implementation of HRDetect 
 
The HRDetect1 algorithm is a logistic regression model with the probability of HR deficiency 
defined as ‘BRCA-ness’ as the outcome. The variables that make up the linear predictor 
represent genomic signatures that have been shown to correlate well with BRCA1/2 
mutation status. They include: the proportion of indels with microhomology at the 
breakpoints; the contribution of COSMIC SNV signatures 3 and 8 to the mutational profile of 
the tumour; the contribution of rearrangement signatures 3 and 5 to structural variation in 
the tumour; and the value of an earlier predictor of HR deficiency, the HRDIndex2, which 
combines levels of genome-wide medium length runs of loss of heterozygosity (LOH), 
telomere allelic imbalance (TAI) and large state transitions (LST). We based our 
implementation on a Snakemake pipeline made publicly available by Zhao et al3, with some 
modifications to ensure accurate recapitulation of the original method. As some of the 
AOCS cohort included here were also used in the validation of HRDetect in the original 
publication we were able to compare our implementation for the same patients with that of 
the authors.  
 
Zhao’s pipeline makes use of the R package HRDtools in order to determine the value of the 
HRIndex. We used the same method determined by Zhao et al with the exception that we 
took the mean of the three inputs (LOH, TAI and LST) instead of the sum to reflect the 
original HRDetect approach. In addition, we redefined microhomology at indel breakpoints 
as an overlap between the deletion and the flanking region that is less than the full length of 
the deletion. In order to determine the contribution of each of the signatures to the 
mutational profile of each tumour we implemented three different methods: 
deconstructSigs4, SignIT5 and SigProfilerSingleSample6. Ultimately, we chose to use 
deconstructSigs as its estimates were the most strongly correlated with the results from the 
original HRDetect paper. After determining the value of each of the components of the 
linear predictor for each sample, each of these input variables were standardized using the 
corresponding mean and standard deviation for the variable in question in the dataset that 
was used to determine the weights in the original model published by Davies et al1.  
 
Scottish RNA sample preparation, quality control and sequencing 
 
Somatic RNA was extracted from the resulting RNA sample using the Qiagen Qiasymphony 
RNA protcol (cat no 931636). The tissue was initially homogenised using a Qiagen Bioruptor, 
followed by the manufacturers recommended protocol (including DNase digestion). The 
resulting RNA the underwent quality control as follows: firstly, A260 and A280nm were 
measured on a Denovix DS-11 Fx to qualitatively illustrate A260/280nm and A260/230nm 
ratios as measures of RNA purity. A260/280 had to be 2.0 and A260/230 had to be 2.0-2.2. 
Then RNA was quantified using LifeTechnologies Qubit RNA BR kit (cat no Q10210). RNAseq 
was carried out by the Edinburgh Clinical Research Facility on an Illumina NExtSeq500 as 
detailed below. 
 
Total RNA samples were assessed on the Agilent Bioanalyser (Agilent Technologies, 
#G2939AA) with the RNA 6000 Nano Kit (#5067-1512) for quality and integrity of total RNA, 
and then quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc, #Q32866) 
and the Qubit RNA HS assay kit (#Q32855). Libraries were prepared from total-RNA sample 



using the NEBNext Ultra 2 Directional RNA library prep kit for Illumina (#E7760S) with the 
NEBNext rRNA Depletion kit (#E6310) according to the provided protocol. 400ng of total-
RNA was then added to the ribosomal RNA (rRNA) depletion reaction using the NEBNext 
rRNA depletion kit (Human/mouse/rat) (#E6310). This step uses specific probes that bind to 
the rRNA in order to cleave it. rRNA-depleted RNA was then DNase treated and purified 
using Agencourt RNAClean XP beads (Beckman Coulter Inc, #66514). RNA was then 
fragmented using random primers before undergoing first strand and second strand 
synthesis to create cDNA. cDNA was end repaired before ligation of sequencing adapters, 
and libraries were enriched by PCR using the NEBNext Multiplex oligos for Illumina set 1 and 
2 (#E7500). Final libraries had an average peak size of 271bp. Libraries were quantified by 
fluorometry using the Qubit dsDNA HS assay and assessed for quality and fragment size 
using the Agilent Bioanalyser with the DNA HS Kit (#5067-4626). Sequencing was performed 
using the NextSeq 500/550 High-Output v2 (150 cycle) Kit (# FC- 404-2002) on the NextSeq 
550 platform (Illumina Inc, #SY-415-1002). Libraries were combined in an equimolar pool 
based on the library quantification results and run across 5 High-Output Flow Cell v2.5. 
 
Identifying differentially expressed genes in the presence of HRD 
 
Transcriptomic signatures have previously been generated7–10 to identify HRD tumours; 
however, most have used suboptimal proxies such as mutation rate to predict HRD or have 
been based upon expression in HR deficient cell lines or samples that are not from HGSOC 
patients7–10. Exploiting our novel combined cohort with matched genomic and 
transcriptomic data, we identified a list of differentially expressed (DE) genes between HR 
deficient and HR proficient HGSOC tumours, encompassing 306 protein coding genes 
(Supplementary Table 4). For the samples with RNAseq information, we defined a 
conservative HR deficient group which included the samples with pathogenic short variants 
at BRCA1/2 either in the germline or in the tumour (N=50). The contrasting HR proficient 
group of tumours, consisted of samples without damaging BRCA1/2 short variants or BRCA1 
promoter hypermethylation or damaging short variants at HR genes as defined by KEGG and 
a quiet mutational profile defined by absence of the HRD related rearrangement signatures 
(N=47). This is consistent with the definition of HR proficiency used to train HRDetect. We 
used DESeq2 to compare the expression of all protein coding genes between the two groups 
and identified those genes that were differentially expressed. Cohort and tumour cellularity 
were included as covariates in the model. We used a log fold change threshold of 1 and a 
Benjamini-Hochberg adjusted p-value threshold of 0.05 to indicate significant differential 
expression. Functional annotation of the differentially expressed genes was carried out by 
comparing the differentially expressed genes with a background list of all protein-coding 
genes and testing for enrichment of the differentially expressed genes in curated gene lists 
from GO: BP, CC and MF and KEGG. This was done using clusterProfiler11 with p-value and q-
value thresholds of 0.05.  
 
Gene expression signatures for HRD 
 
We defined a gene expression signature for HR deficiency by running principal component 
analysis on the variance stabilising transformed counts of the differentially expressed genes 
using all of the samples. The first principal component was taken as the gene expression 
signature for HRD with HR deficient samples having significantly lower values of the 



signature than HR proficient samples. We tested whether HR deficient and proficient 
samples had significantly different levels of the signature using a Wilcoxon Rank Sum test 
(Mann-Whitney U test)(Supplementary Figure 6a)-b)). 
 
The ability of a gene expression signature for HRD to predict HRD was assessed by 
identifying differentially expressed genes between only 80% of true HR deficient and 80% of 
true HR proficient samples and examining whether the HR deficient and proficient samples 
in the test set lay at significantly different points along the main axis of variation (first 
principal component) in the expression of these genes within the test set. The difference in 
the levels of the signature for HR deficient and proficient samples within the test set was 
tested using a Wilcoxon Rank Sum test. We found that the expression of DE genes identified 
between HR deficient and HR proficient samples in a subset of the cohort failed to 
accurately discriminate HR deficient from HR proficient samples in the unexamined 
remainder of the cohort (Wilcox p-value=0.92)(Supplementary Figure 6c), 6d)). This is 
consistent with previous reports12 and suggests that although the transcriptome is 
perturbed in the presence of HRD, such perturbations are not consistent, and consequently 
these expression changes are poor predictors of HRD. 
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Supplementary Figures 
 
 
 

 
 
Supplementary Figure 1: Uniform primary processing of three large HGSOC cohorts. WGS 
and RNA-seq fastqs were downloaded for AOCS and TCGA and the SHGSOC cohort was 
sequenced for the first time. Sequencing reads were aligned uniformly for all cohorts to 
hg38 and variant detection was carried out to detect a range of types of variant using 
existing published tools. Ploidy and cellularity were estimated using the allele-specific copy 
number caller CLImAT and gene-level expression counts were quantified using Salmon. 
  



 
 
Supplementary Figure 2 - Comparison of methods to estimate the tumour cellularity in 
two cohorts. a) Estimates of tumour cellularity from allele-specific copy number tool 
CLImAT in comparison to estimates using qPure for the AOCS cohort. b) Estimates of tumour 
cellularity from allele-specific copy number tool CLImAT in comparison to scores from 
manual examination of the histopathology for the SHGSOC cohort. 

 



 
 
Supplementary Figure 3 – Enrichment of large deletions (>1Mb) at BRCA1/2 in comparison 
to the rest of the high grade serous ovarian cancer genome. a) The distribution of large 
deletion breakpoints throughout the genome by chromosome. The observed number of 
breakpoints from large deletions in 5Mb bins is shown in grey. The mean number of 
breakpoints per bin per chromosome is shown by a black dashed line. The locations of 
BRCA1 and BRCA2 are shown in blue on chromosomes 13 and 17. b) The null distribution (in 
grey) of the number of overlaps between observed large deletions throughout the HGSOC 
genomes and 100,000 random regions the same size as BRCA1 sampled from throughout 
the genome which is masked to exclude unmappable, repetitive regions. In green the 
observed number of overlaps between the observed large deletions and BRCA1. c) The null 
distribution (in grey) of the number of overlaps between observed large deletions 
throughout the HGSOC genomes and 100,000 random regions the same size as BRCA2 
sampled from throughout the masked genome. In green, the observed number of overlaps 
between the observed large deletions and BRCA2.  
 
 
 
 



 
 
 
 
 
 
 
 

Supplementary Figure 4 – Enrichment of deletions, duplications and inversions at BRCA1/2 
within chromosomes 13 and 17. In all panels, the grey histogram represents the circularly 
permuted null distribution of overlaps between the structural variants and regions that are 
the same size as BRCA1/2 throughout their respective chromosomes. The green line 
represents the observed number of overlaps between the structural variant type in question 
and BRCA1/2. In all cases the events occurring at BRCA1 or BRCA2 are well within the range 
expected given the permuted null distribution and are therefore not significantly enriched. 
a), b) and c) consider the enrichment of large deletions, large duplications and inversions at 
BRCA1 within chromosome 17 and d), e) and f) consider the enrichment of large deletions, 
large duplications and inversions at BRCA2 within chromosome 13.  



 

 
 
Supplementary Figure 5 - BRCA1/2 expression in samples with deletions, with and without 
SNVs in the same BRCA1/2 gene. a) Boxplot with points overlaid showing that BRCA1 
expression (variance stabilising transformed) is higher in samples with only deletions than in 
samples with an SNV and a deletion at BRCA1 (DESeq2 fold change for just deletions vs SNV 
+ deletion = 1.6, p-value=0.02). b) Boxplot with points overlaid showing no evidence of a 
significant difference in BRCA2 expression between samples with only deletions and 
samples with an SNV and a deletion at the same gene (DESeq2 fold change for just deletions 
vs SNV + deletion= 1.02, p-value=0.95).  
 
 
 
 
 
 
 
 
 
  



 

 
 
Supplementary Figure 6 –  BRCA1/2 mutation classes and rearrangement signatures in 
three HGSOC cohorts. a) Boxplots of the level of rearrangement signature 3 by BRCA1/2 
mutation category. Rearrangement signature 3 is characterised by tandem duplications and 
has been associated with BRCA1 deficiency specifically. Rearrangement signature 3 is a term 
in the HRDetect predictive model. b) Boxplots of the level of rearrangement signature 5 by 
BRCA1/2 mutation category. Rearrangement signature 5 is characterised by deletions 
<100kb in length and has been associated with both BRCA1 and BRCA2 deficiency. It is also 
included as a term in the HRDetect model. 
 
  



 
 
Supplementary Figure 7 - Integrative modelling of repair deficiency in HGSOC in full 
dataset. a) Median effect sizes of features selected to predict HRD, using elastic net 
regularised regression on 50 training/test set splits. Binary mutational status variables (e.g. 
presence/absence of BRCA1 somatic SNV) were included as factors and continuous variables 
were standardised to allow comparisons between variables. b) Distributions of effect size 
for each variable on HRD (log odds) in each training/test set split. Variables in red are 
selected for inclusion by the model in more than half of the training sets. It should be noted 
that, due to the lower number of samples with expression information and the increased 
number of features this model is likely to be underpowered to accurately identify significant 
features. 
  



 
 

 
Supplementary Figure 8 – Deletions, duplications and other SVs at BRCA1/2 in other 
cancer types in PCAWG. The proportion of samples of various histologies in PCAWG with a 
deletion, duplication or other SVs overlapping at least one exon at at least one of BRCA1/2. 
Histologies are ordered along the x-axis by overall SV burden as defined by PCAWG with the 
subtypes with the highest rates of structural variation on the left. Deletions and duplications 
considered separately here are those identified by the PCAWG consensus CNV pipeline. The 
other SVs, including translocations with a breakpoint within a BRCA1/2 exon, inversions, and 
deletions and duplications picked up by paired and split read technologies, are determined 
by the PCAWG consensus SV pipeline. For consistency, we focus on those deletions called by 
the consensus CNV pipeline in our subsequent analyses. 



 

 
 
Supplementary Figure 9 – Performance of expression signature for HRD at predicting HRD. 
a) The first two principal components of differentially expressed (DE) genes between HRD 
and HRP samples. DE genes identified in the training set and PCA fitted to the training set. b) 
The level of the first principal component in samples in the training set. The first principal 
component, is significantly different between HR deficient and HR proficient samples in the 
combined cohort (Wilcox p-values =2.3x10-10) c) The first two principal components from 
PCA applied to the test set using the DE genes identified in the training set. d) The level of 
the first principal component in samples in the test set. PC1 discriminates poorly between 
HRD and HRP samples which suggests that HRD expression signatures is not a generalisable 
predictor. Notably these genes do not include known HR genes and given their diverse 
functions their dysregulation is likely to be a consequence rather than a cause of HRD.  
 
 
 
 
 
 
 
 


