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1 Linear mixed model

Consider expression levels of J genes for N cells are given. We model the vector of expression levels
yj = (y1j, . . . , yNj)

> for gene j as a linear mixed model

yj = Xβ + Zαj + ε j; j = 1, . . . , J, (1)

where β denotes a vector of fixed effects shared across all genes, αj denotes a vector of gene specific
random effects which is independently drawn from a multivariate normal distribution, and ε j denotes
a vector of residuals which follows a multivariate normal distribution N (0, σ2

j IN) with the variance
parameter σ2

j , assuming homoscedasticity across all cells. Here In denotes n × n identity matrix. The
design matrix X can be arbitrary, we set X = Z in our model to capture the mean of αj for all genes,
around which variance parameters are estimated.

The design matrix Z is derived from a combination of known factors which account for transcrip-
tional variation of yj, so that the covariance matrix of αj captures variance components of the given data.
Here we assume αj ∼ N (0, σ2

j D), suggesting the covariance matrix of αj is shared across all genes except
for the scaling by residual variance σ2

j .
The model is general, thereby can be used for batch corrections in cell clustering and identification

of cell populations as well as differential expression analysis of a target factor while treating all other
factors as confounders. The subsequent sections describe three different utilisation of the model in
detail.

1.1 Variance component analysis

Suppose we have K known factors {x1, . . . , xK} that could account for a part of transcriptional variation.
Each factor is either a numerical or a categorical variable with N elements (i.e., xk = (x1k, . . . , xNk)

>). If
the kth factor is a numerical variable, then we introduce Zk ∈ RN×1 which is a column vector whose
elements are scaled elements of xk, so that the mean equal to 0 and variance equal to 1. If the kth
factor is a categorical variable with mk levels, we introduce a design matrix Zk ∈ RN×mk whose lth
column is an indicator vector; the ith element is 1 if xik = l, otherwise 0, for i = 1, . . . , N. We combine
{Zk; k = 1, . . . , K} as a design matrix

Z = (1, Z1, . . . , ZK) ∈ RN×M.

which is used in the model (Eq.1). Note that the first column of Z is the vector of all 1s which is intro-
duced to estimate random intercepts of yj. The corresponding random effect αj = (α0j, α>j1, . . . , α>jK)

> ∈
RM is partitioned in accordance with Z, so that

Zαj =
K

∑
k=0

Zkαjk.

We assume
αjk ∼ N (0, σ2

j ϕ2
k Imk ),

where ϕ2
k denotes the variance parameter for the factor k, which is shared across all genes.
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The variance explained by each factor k is measured by the intraclass correlation using the maximum
likelihood estimator ϕ̂2

k ,

(intraclass correlation) =
σ2

j ϕ̂2
k

σ̂2
j + σ̂2

j ϕ̂2
k
=

ϕ̂2
k

1 + ϕ̂2
k

,

where all other factors are kept constant. The standard error of the intraclass correlation is obtained by
the delta method:

SE(intraclass correlation) ≈ 2|ϕ̂k|
(1 + ϕ̂2

k)
2

SE(ϕ̂k)

Here the standard error SE(ϕ̂k) is obtained by the inverse of Fisher information matrix for ϕ.

1.2 Latent factor estimation

A goal of a single cell experiment is to cluster cells by hidden cell types which are unknown a priori.
We often use the principal component analysis (PCA) to find the most variable basis that splits single
cells into biologically distinct clusters. However, PCA works only if the transcriptional variation among
cell types is greater than the other factors, such as experimental batches. If, for example, two different
experiments were performed in different laboratories or with completely different technologies (such as
10x and smart-seq), PCA is likely to captures the technical variation rather than the biological variation
by cell types.

Although there are various batch correction methods previously proposed (MNN correction, Seurat
v3 and scanorama), non of these can handle hundreds of batches or multiple factors, a combination
of which explains a significant amount of variation in the data. The linear mixed model is a suitable
approach to cope with such a complex situation. We introduce a handful number of latent factors in the
variance component model in Eq.1, that could capture biologically meaningful principal components
while adjusting effects of other known confounding factors. The linear mixed model with latent factors
is given by

yj = Xβ + Zαj + Ψγj + ε j; j = 1, . . . , J, (2)

where Ψ ∈ RN×L denotes a matrix of L latent factors and γj denotes a random effect for each gene j
independently following the normal distribution N(0, σ2

j I). Note that, if there is no known factors in the
model (Zαj), the maximum likelihood estimator of Ψ is identical to the L principal components from the
standard PCA.

1.3 Differential expression analysis

We can also utilise the linear mixed model for the variance component analysis to adjust known con-
founding effects in the differential expression (DE) analysis. Because the factor of interest (e.g., pathol-
ogy) is confounded by other known factors (e.g., patient or brain regions), the result of a standard DE
analysis is likely to be biased by those confounding factors.

Consider the kth factor is of interest and we would like to test whether the gene j is differentially
expressed by the factor k (between different levels of a categorical factor or by one-unit change of a
numerical factor). Let αj,−k = (α>j1, . . . , α>j,k−1, α>j,k+1, . . . , α>jK)

> be the random effect without αjk for gene
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j, the Bayes factor that captures statistical significance of the factor k can be written as

BFjk =

∫
p(yj|αj, β̂, σ̂2

j )p(αj,−k|ϕ̂2
−k, σ̂2

j )p(αjk|ϕ2
k = ϕ̃2

k , σ̂2
j )dαj∫

p(yj|αj,−k, β̂, σ̂2
j , αjk = 0)p(αj,−k|ϕ̂2

−k, σ̂2
j )dαj,−k

.

Here we set ϕ̃2
k = 100ϕ̂2

k to make the prior distribution of αjk non-informative.
For the categorical factor k with more than two levels, a high Bayes factor implies the gene is differ-

entially expressed among those levels, but it does not provide any specific comparison in which a level
(or a set of levels) is differentially expressed with others. Therefore, we introduced the contrast vector ch

which partitions all levels existing in the factor k into any of two groups. Using the contrast, the Bayes
factor for the specific comparison h can be written as

BF[h]
jk =

∫
p(yj|αj, β̂, σ̂2

j )p(αj,−k|ϕ̂2
−k, σ̂2

j )p(αjk|σ̂2
j ϕ̃2

k D[h]
k )dαj∫

p(yj|αj,−k, β̂, σ̂2
j , αjk = 0)p(αj,−k|ϕ̂2

−k, σ̂2
j )dαj,−k

,

where
D[h]

k = (1− ch, ch)(1− ch, ch)
>

is the covariance matrix for αjk such that αjk ∼ N (0, σ̂2
j ϕ̃2

k D[h]
k ). For example, if the categorical factor k

has 5 levels, there are 25 − 1 = 15 contrasts,

(c1, . . . , c15) =


1 0 1 0 1 0 1 0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 ,

which partition the 5 levels into any of two groups: e.g., the comparison of the first two levels against
the last three levels is given by c3 and the covariance matrix is written as

D[3]
k = (1− c3, c3)(1− c3, c3)

> =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

 .

The Bayes factors are then used to classify genes into one of the DE partitions. Assume there are H
partitions, the likelihood is a product of finite mixture models

L(π) =
J

∏
j=1

[
π0 +

H

∑
h=1

πhBF[h]
jk

]

with the prior probability π = (π0, π1, . . . , pH)
>. We use a standard EM algorithm to maximise the

likelihood. The posterior probability of the gene j being differentially expressed by partition h is given
by

z[h]jk =
π̂hBF[h]

jk

π̂0 + ∑H
i=1 π̂hBF[i]

jk

.
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The posterior distribution of αj is useful to visualise the DE result. The mean of αjk provides the
averaged normalised expression levels for the levels of categorical factor k adjusted by other known
confounding factors. The posterior probability is analytically obtained by

α̃
[h]
j ∼ N (A−1Z>(yj − Xβ̂), σ̂2

j A−1)

where A = Z>Z + D−1 and

D =



ϕ̂1 I 0 · · · · · · 0

0
. . . . . .

...
...

. . . ϕ̂kD[h]
k

. . .
...

...
. . . . . . 0

0 · · · · · · 0 ϕ̂K I


.

Therefore, the log fold change of expression levels between two groups can be written as

δ
[h]
jk ∼ N

(
(c1

h − c0
h)
>α

[h]
jk , σ̂2

j (c
1
h − c0

h)
>(A−1)[k,k](c

1
h − c0

h)
)

.

where

c1
h =

c>h
|ch|2

and c0
h =

1− ch
|1− ch|2

.

Here M[k,k] denotes a diagonal sub-matrix of any matrix M corresponding to the factor k (e.g., D[k,k] =

ϕ̂kD[h]
k ). The posterior distribution also yield a more robust measure of significance for each partition h,

the local true sign rate, or

ltsr[h]jk = z[h]jk max{p(δ[h]jk > 0|yj), p(δ[h]jk < 0|yj)},

which is analogous to the local false sign rate proposed in [1]. The value is more stringent than the
posterior probability z[h]jk because it requires true discoveries to be not only nonzero, but also correctly
singed in a consistent direction.
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2 Three-way Bayesian hierarchical model

The three-way Bayesian hierarchical model is a simple extension of the hierarchical model first used
in mapping eQTLs [2] or the pairwise fGWAS model to estimate a shared genetic architecture between
paired GWAS traits [3]. To introduce the model, we begin by constructing the hierarchical model for
mapping eQTLs in a single cell type. Then we increase the number of cell types (up to three) to sequen-
tially build up the model. The prior probabilities of the model are empirically estimated from the data.
We incorporate a three-stage optimisation which allows us to reduce the computational complexity and
to increase the stability of model fitting process [4].

2.1 Hierarchical model for mapping eQTLs in one cell type

The hierarchical model for mapping eQTLs in single cell type is equivalent to the Bayesian hierarchical
model proposed in [2]. We use genetic associations in cis window Wj of 1Mb centred at transcription
start site (TSS) for each gene j. The association is measured by Bayes factor of a simple linear regression
model, where log(TPM+ 1) is regressed on genotype of each genetic variant l ∈ Wj. We use the asymp-
totic Bayes factor [5] which can be easily obtained from the estimated effect size β̂ jl and its standard error
σ̂jl of a variant l on expression of gene j, such that

BFjl =
√

1− rjl exp

{
z2

jl

2
rjl

}
(3)

where

zjl = Z
(

β̂ jl

σ̂jl

)
and

rjl =
W

W + σ̂2
jl

.

Here we use Z(·) to convert student t statistic into normal z statistic to deal with small sample sizes (see
Supplementary Note of [4] for details).

The model is a mixture of the following two hypotheses:

H0 (null) : there are no genetic variants inWj that associate with the expression of gene j;

H1 (eQTL) : there is one causal variant inWj that affects the expression of gene j.
We introduce the prior probability Π1 with which a gene j is an eQTL. Assuming that there are J genes
genome-wide and their expression levels are conditionally independent, the likelihood of the hierarchi-
cal model is then written as a product of mixture probability over j = 1, . . . , J, such that

L(Π1) =
J

∏
j=1

[
(1−Π1) + Π1RBFj

]
, (4)

where RBFj denotes the regional Bayes factor which is the genetic association for gene j averaged over
all variants l ∈ Wj, defined as

RBFj =
1

#Wj
∑

l∈Wj

BFjl . (5)

Note that #Wj denotes the number of variants inWj, assuming there is one variant causal to expression
of gene j. The maximum likelihood estimator Π̂1 can be obtained by a standard EM algorithm.
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2.2 Hierarchical model for jointly mapping eQTLs in two cell types

We then extend the hierarchical model for a pair of cell types. Again, we use genetic associations of
variant l ∈ Wj that alter expression of gene j for two different cell types 1 and 2. We consider the
following 5 different hypotheses:

H0 (null) : there are no genetic variants inWj that associate with expression of gene j
in either cell types;

H1 (single) : there is one causal variant in Wj that affects expression of gene j of cell
type 1;

H2 (single) : there is one causal variant in Wj that affects expression of gene j of cell
type 2;

H3 (linkage) : there are two independent causal variants in Wj, one of which affects ex-
pression of gene j in cell type 1 and the other one affects expression of gene
j in cell type 2, independently;

H4 (colocalisation) : there is one causal variant in Wj that affects expression of gene j in both
two cell types simultaneously.

The likelihood of the model is given by a product of a finite mixture of the 5 different hypotheses,

L(Ψ12, Π12) =
J

∏
j=1

[
Φ0 +

4

∑
h=1

ΦhRBF[h]
j

]
, (6)

where

Φh =



(1−Ψ12)(1−Π1)(1−Π2) + Ψ12(1−Π12) h = H0

(1−Ψ12)Π1(1−Π2) h = H1

(1−Ψ12)(1−Π1)Π2 h = H2

(1−Ψ12)Π1Π2 h = H3

Ψ12Π12 h = H4

(7)

denotes the prior probability that gene j belongs to one of the hypotheses h = 0, . . . , 4. The prior prob-
ability Φh is a function of the probability Ψ12 that the gene j is pleiotropic in cell type 1 and 2 and the
probability Π12 that the gene j is an eQTL driven by a same variant inWj. The probability Π1 (or Π2) is
the probability that the gene j is an eQTL in cell type 1 (or cell type 2), independently from the other cell
type. The maximum likelihood estimators, Π1 = Π̂1 and Π2 = Π̂2, are obtained by maximising Eq.4
for cell type 1 and 2 independently, and plugged into Eq.7, so that the likelihood (Eq.6) is a function of
{Ψ12, Π12}. The regional Bayes factor for a hypothesis h, RBF[h]

j , is defined by

RBF[h]
j =



RBF(1)
j h = H1

RBF(2)
j h = H2

RBF(1)
j RBF(2)

j h = H3

RBF(12)
j h = H4

where RBF(1)
j (or RBF(2)

j ) denotes the regional Bayes factor of gene j being an eQTL in cell type 1 (or cell
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type 2) defined in Eq.5, and

RBF(12)
j =

1
#Wj

∑
l∈Wj

BF(1)
jl BF(2)

jl (8)

denotes the joint association on gene expression j averaged over l ∈ Wj in cell type 1 and 2 under the
conditional independence of gene expression in two cell types. We use a standard EM algorithm to
maximise Eq.6 with respect to {Ψ12, Π12}.

2.3 Hierarchical model for jointly mapping eQTLs in three cell types

Finally, we extend the model to cope with three different cell types. We consider the following 15 hy-
potheses in the model to cover any potential shared genetic architecture:

H0 (null) : there are no genetic variants inWj that associate with expression of
gene j in three cell types;

H1 (single) : there is one causal variant inWj that affects expression of gene j in
cell type 1;

H2 (single) : there is one causal variant inWj that affects expression of gene j in
cell type 2;

H3 (single) : there is one causal variant inWj that affects expression of gene j in
cell type 3;

H4 (linkage) : there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 1 and the other one affects
expression of gene j in cell type 2;

H5 (linkage) : there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 1 and the other one affects
expression of gene j in cell type 3;

H6 (linkage) : there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 2 and the other one affects
expression of gene j in cell type 3;

H7 (linkage) : there are three independent causal variants in Wj, each of which
affects expression of gene j in each of the three cell types, indepen-
dently;

H8 (colocalisation) : there is one causal variant inWj that affects expression of gene j in
cell type 1 and 2 simultaneously;

H9. (colocalisation & linkage): there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 1 and 2 simultaneously and the
other one affects expression of gene j in cell type 3, independently;
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H10 (colocalisation) : there is one causal variant inWj that affects expression of gene j in
cell type 1 and 3 simultaneously;

H11 (colocalisation & linkage): there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 1 and 3 simultaneously and the
other one affects expression of gene j in cell type 2, independently;

H12 (colocalisation) : there is one causal variant inWj that affects expression of gene j in
cell type 2 and 3 simultaneously;

H13 (colocalisation & linkage): there are two independent causal variants in Wj, one of which af-
fects expression of gene j in cell type 2 and 3 simultaneously and the
other one affects expression of gene j in cell type 1, independently;

H14 (colocalisation) : there is one causal variant inWj that affects expression of gene j in
all three cell types simultaneously;

The likelihood of the model given expression data of J genes can be written as

L(Ψ123, Π123) =
J

∏
j=1

[
Φ0 +

14

∑
h=1

ΦhRBF[h]
j

]
(9)

with the extended prior probabilities

Φh =



Ψ1(1−Π1)(1−Π2)(1−Π3) + (Ψ12 −Ψ123)(1−Π12)(1−Π3)

+(Ψ13 −Ψ123)(1−Π13)(1−Π2) + (Ψ23 −Ψ123)(1−Π23)(1−Π1)

+Ψ123(1−Π123) h = H0

Ψ1Π1(1−Π2)(1−Π3) + (Ψ23 −Ψ123)(1−Π23)Π1 h = H1

Ψ1(1−Π1)Π2(1−Π3) + (Ψ13 −Ψ123)(1−Π13)Π2 h = H2

Ψ1(1−Π1)(1−Π2)Π3 + (Ψ12 −Ψ123)(1−Π12)Π3 h = H3

Ψ1Π1Π2(1−Π3) h = H4

Ψ1Π1(1−Π2)Π3 h = H5

Ψ1(1−Π1)Π2Π3 h = H6

Ψ1Π1Π2Π3 h = H7

(Ψ12 −Ψ123)Π12(1−Π3) h = H8

(Ψ12 −Ψ123)Π12Π3 h = H9

(Ψ13 −Ψ123)Π13(1−Π2) h = H10

(Ψ13 −Ψ123)Π13Π2 h = H11

(Ψ23 −Ψ123)Π23(1−Π1) h = H12

(Ψ23 −Ψ123)Π23Π1 h = H13

Ψ123Π123 h = H14

where Ψ1 = 1− Ψ12 − Ψ13 − Ψ23 + 2Ψ123, so that ∑h∈H Φh = 1. The prior probability Φh is a function
of the probability Ψ123 that the gene j is pleiotropic in the three cell types and the probability Π123 that
the gene j is an eQTL for the gene j in the three cell types. All other parameters are introduced in the
pairwise or single hierarchical models in Section 2.1 and 2.2 (e.g., Ψ23 is the probability that the gene j
is pleiotropic in cell type 2 and 3). Those parameters are estimated a priori by maximising Eq. 4 and
6. Then they are plugged into the likelihood (Eq. 9), so that Eq. 9 is maximised only with respect to
{Ψ123, Π123}.
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The corresponding genetic association for each hypothesis is given by

RBF[h]
j =



RBF(1)
j h = H1

RBF(2)
j h = H2

RBF(3)
j h = H3

RBF(1)
j RBF(2)

j h = H4

RBF(1)
j RBF(3)

j h = H5

RBF(2)
j RBF(3)

j h = H6

RBF(1)
j RBF(2)

j RBF(3)
j h = H7

RBF(12)
j h = H8

RBF(12)
j RBF(3)

j h = H9

RBF(13)
j h = H10

RBF(13)
j RBF(2)

j h = H11

RBF(23)
j h = H12

RBF(23)
j RBF(1)

j h = H13

RBF(123)
j h = H14

where RBF(i)
j denotes the regional Bayes factor of gene j being an eQTL in cell type i (Eq.5), RBF(ik)

j
denotes the regional Bayes factor of gene j being an eQTL in cell type i and k with a same causal variant
(Eq.8), and

RBF(123)
j =

1
#Wj

∑
l∈Wj

BF(1)
jl BF(2)

jl BF(3)
jl (10)

is the joint association on gene expression j averaged over l ∈ Wj in cell type 1, 2 and 3 under conditional
independence of gene expression in those cell types. We use a standard EM algorithm to maximise Eq.9
with respect to {Ψ123, Π123}.

2.4 Posterior probability calculation

Once the maximum likelihood estimator Φ̂h is estimated, the posterior probability that the gene j be-
longs to one of the 14 alternative hypotheses H1, . . . , H14 is given by

z[h]j =
Φ̂hRBF[h]

j

Φ̂0 + ∑14
i=1 Φ̂iRBF[i]

j

; h = 1, . . . , 14.

Therefore the posterior probability that the gene j is an eQTL in cell type 1 is written as

P(gene j is an eQTL in cell type 1)

= z[1]j + z[4]j + z[5]j + z[7]j + z[8]j + z[9]j + z[10]
j + z[11]

j + z[13]
j + z[14]

j .

Likewise,

P(gene j is an eQTL in cell type 2)

= z[2]j + z[4]j + z[6]j + z[7]j + z[8]j + z[9]j + z[11]
j + z[12]

j + z[13]
j + z[14]

j

10



and

P(gene j is an eQTL in cell type 3)

= z[3]j + z[5]j + z[6]j + z[7]j + z[9]j + z[10]
j + z[11]

j + z[12]
j + z[13]

j + z[14]
j .
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3 Detailed experimental protocols

3.1 Total RNA extraction from primary microglia

Total RNA was extracted from primary microglia using the Qiagen AllPrep DNA/RNA Micro kit (Qia-
gen, 80284), according to the manufacturer’s instructions. Total RNA quantity and quality was assessed
using an Agilent Bioanalyzer with an RNA 6000 pico kit (Agilent Technologies, 5067-1513).

3.2 Low-input bulk RNA-seq library preparation for primary microglia

Between 0.3 ng and 10 ng of total RNA was diluted to a final volume of 25 µL with nuclease-free 10 mM
Tris-HCl pH 7.5. To this, 25 µL of a 2x lysis/binding buffer (200 mM Tris-HCl pH 7.5, 1 M LiCl, 20 mM
EDTA, 2 % w/v lithium dodecyl sulphate, and 10 mM 1,4-dithiothreitol) was added and mixed well. Ac-
cording to the manufacturer’s instructions, mRNA was purified using the mRNA DIRECT kit (Thermo
Fisher, 61012) from the total RNA using 20 µL of oligo dT Dynabeads, with a final elution volume of
7 µL of nuclease-free 10 mM Tris-HCl pH 7.5. The purified mRNA was processed using a modified
Smart-seq2 protocol [6] as follows: 2 µL of oligo dT30VN (Integrated DNA Technologies) and 2.34 µL
of 10 mM dNTPs (Thermo Fisher, R0193) were mixed with 7 µL of the purified mRNA and heated to 72
◦C for 3 minutes to denature secondary structures, before rapidly chilling on ice for 5 minutes. 5 µL of
5x SMARTScribe first-strand buffer (Clontech Takara, 639538), 0.63 µL of SUPERase inhibitor (Thermo
Fisher, AM2696), 1.25 µL of 100 mM 1,4-dithiothreitol, 5 µL of betaine (Sigma, B0300-5VL), 0.15 µL of 1 M
MgCl2, 0.38 µL of template-switching LNA-oligo (TSO) (Qiagen) and 1.25 µL of SMARTScribe reverse
transcriptase (Clontech Takara, 639538) were added to the denatured mRNA/dNTP/oligo dT30VN mix.
Following a brief vortex mix, reverse transcription was performed at 42 ◦C for 90 minutes, followed by
10 cycles of 50 ◦C for 2 minutes, then 42 ◦C for 2 minutes. The reaction was stopped by incubating
at 70 ◦C for 15 minutes. The first-strand cDNA was purified using 0.8 volumes of Ampure XP beads
(Beckman Coulter, BCAG0006) to 1 volume of the reverse transcription reaction volume, according to
the manufacturer’s instructions, but leaving the eluted cDNA in 12 µL of 10 mM Tris-HCl pH7.5 with
the beads in solution. This was done to maximise the amount of cDNA carried forward to the subse-
quent cDNA amplification reaction. The cDNA was amplified by adding 0.5 µL of 10 µM ISPCR primer
(Integrated DNA Technologies) and 12.5 µL of 2x KAPA HiFi polymerase (Kapa Biosystems, KK2601)
to the 12 µL of cDNA and mixed before heating at 98 ◦C for 3 minutes, followed by 11-18 cycles (de-
pending on total RNA input quantity) of 98 ◦C for 20 seconds, 67 ◦C for 15 seconds and 72 ◦C for 6
minutes, followed by a final extension at 72 ◦C 5 minutes. The amplified double-stranded cDNA was
purified as before, but this time the Ampure XP beads were removed from the 20 µL eluate. Amplified
double-stranded cDNA was quantified with a Quant-iTTM dsDNA high sensitivity assay kit (Thermo
Fisher, Q33120) in black v-bottom 96-well plates (Greiner Bio-One, 651209) on a FLUOstar Omega (BMG
Labtech), according manufacturers’ instructions. For cDNA tagmentation, 4 ng of cDNA was diluted
with 10 mM Tris-HCl pH 7.5 to a volume of 9.5 µL. 5 µL of a 3x tagmentation buffer (99 mM Tris ac-
etate, 198 mM potassium acetate, 30 mM magnesium acetate and 48 % v/v N,N-dimethylformamide)
and 0.5 µL of TDE1 (Illumina, 20034197) were added, mixed and incubated at 55 ◦C for 5 minutes. The
tagmentation reaction was stopped by the addition of 2.5 µL of a tagmentation stop buffer (220 mM
EDTA and 1.1 % w/v sodium dodecyl sulphate) and mixed before incubating at room temperature for
10 minutes. The tagmented cDNA was diluted with 10 mM Tris-HCl pH 7.5 to a final volume of 50 µL,
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before purifying with a 2:1 ratio of Ampure XP beads to sample volume, eluting the tagmented cDNA
in 7 µL of 10 mM Tris-HCl pH 7.5. Tagmented cDNA samples were then amplified and sample-indexed
by PCR as follows: 7 µL of tagmented cDNA was added to 2.5 µL of i5 index adapter and 2.5 µL of
i7 index adapter from the Nextera R©XT index kit v2 set A (Illumina, 15052163), 0.25 µL of 50 µM PC1
primer, 0.25 µL of 50 µM PC2 primer and 12.5 µL of 2x KAPA HiFi polymerase, before mixing and
incubating at 72 ◦C for 3 minutes, 98 ◦C for 30 seconds, followed by 9 cycles at 98 ◦C for 15 seconds,
62 ◦C for 30 seconds and 72 ◦C for 30 seconds, followed by a final extension at 72 ◦C for 3 minutes.
Individual libraries were purified and excess primers removed by performing 0.8:1 ratio of Ampure XP
beads to PCR volume, eluting the finished library in 20 µL of 10 mM Tris-HCl pH 7.5. Libraries were
quantified with a Quant-iTTM dsDNA high sensitivity assay kit, as mentioned above, before combining
96 libraries per pool in equimolar amounts. Library pools were assessed for fragment length and quan-
tity on a Bioanalyser using a High Sensitivity DNA kit (Agilent Technologies, 5067-4626), according to
the manufacturer’s instructions. Each 96-library pool was sequenced over 8 lanes of a HiSeq SBS v4,
collecting 75 bp paired-end reads.

3.3 iPS cell culture and macrophage differentiation

iPS cell culture and macrophage differentiation was carried as previously described [7] but with some
minor modifications: embryoid bodies were harvested 3 days after formation and transferred onto
gelatinised tissue-culture treated 10 cm dished in serum-free X-VIVO 15 (Lonza, BE02-060F) or Stem
Pro-34 SFM (Thermo Fisher, 10640-019), with both mediums supplemented with 2 mM GlutaMAX
(Thermo Fisher, 35050061), 50 IU/ml penicillin, 50 IU/ml streptomycin (Sigma, P4333), 100 ng/ml hu-
man macrophage colony stimulating factor (hM-CSF) (Peprotech, 300-25) and 25 ng/ml human interleukin-
3 (hIL-3) (Peprotech, 200-03). Macrophage progenitor cells were counted and plated in RPMI 1640
(Thermo Fisher, 11875093) supplemented with 10% heat-inactivated FBS (Thermo Fisher, 10500-064),
2mM GlutaMAX (Thermo Fisher, 35050061) and 100 ng/ml hM-CSF (Peprotech, 300-25) at a cell density
of 10,000 cells per well on a 96-well plate (for RNA-seq), 100,000 cells per well on a 6-well plate (for
ATAC-seq) or 25,000 cells per well of black 96-well plate (VWR, 734-1661) (for the macrophage purity
assay) and differentiated for another 7 days.

3.4 iPS-derived macrophage purity assay

iPS-derived macrophages progenitor cells were seeded and differentiated as above before fixing in 50
µL of 4 % formaldehyde (Applichem, A0823.2500) at 4◦C for 20 minutes. After fixation, the formalde-
hyde was aspirated and the fixed cells were washed twice in 100 µL PBS with calcium and magnesium
(Sigma, D8662). After the final wash, the PBS was removed and replaced with 100 µL of 10 % block-
ing solution (1 in 10 dilution of donkey serum (AbD Serotec, C06SBZ) with 0.1 % Triton X-100 (Sigma,
93420)) before incubating at room temperature for 1 hour. The blocking solution was removed and
replaced with 50 µL of 1 % blocking solution with either a 200-fold dilution of mouse anti-CD14 (Bi-
oLegend, 301802) or an 800-fold dilution of rabbit anti-CD68 (Cell Signaling Technology, 76437S), before
incubating at 4 ◦C overnight. Control wells were also set up with 50 µL of 1 % blocking solution only.
After the overnight primary antibody incubation, the cells were washed three times with 100 µL of PBS,
incubating at room temperature for 5 minutes for each wash. 50 µL of 1 % blocking solution and 10
µg/mL DAPI (AppliChem, A1001), with either a 1000-fold dilution of donkey anti-mouse Alexa Fluor
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647 (Thermo Fisher, A31571) or a 1000-fold dilution of donkey anti-rabbit Alexa Fluor 488 (Thermo
Fisher, A21206), was added to the anti-CD14-treated cells or the anti-CD68-treated cells, respectively,
before incubating at room temperature for 1 hour. Control wells were treated with 50 µL of 1 % block-
ing solution and 10 µg/mL DAPI. After the secondary immunostaining was complete, the cells were
washed three times with 100 µL of PBS. To determine the proportion of double-stained cells (CD14 and
CD68), the cells were analysed on a Cellomics Arrayscan (Thermo Fisher), according to the manufac-
turer’s instructions. Only cell lines with greater than 90 % of cells being double-stained for CD14 and
CD68 were processed for RNA-seq and ATAC-seq.

3.5 ATAC-seq library preparation for iPS-derived macrophage cell lines and pri-
mary macrophages

ATAC-seq library creation was performed as previously described [7]. ATAC-seq libraries were quanti-
fied on a Bioanalyser using a High Sensitivity DNA kit (Agilent Technologies, 5067-4626), according to
the manufacturer’s instructions, before pooling libraries in equimolar amounts. Pools were sequenced
at 4 libraries per lane of a HiSeq SBS v4, collecting 75 bp paired-end reads.

3.6 iPS-derived macrophage low-input bulk RNA-seq preparation

iPS-derived macrophages progenitor cells were seeded and differentiated as described above before 50
µL of a 1x lysis/binding buffer (100 mM Tris-HCl pH 7.5, 0.5 M LiCl, 10 mM EDTA, 1 % w/v lithium
dodecyl sulphate, and 5 mM 1,4-dithiothreitol) was added and mixed well. Lysed cells were stored at
−80 ◦C until needed. RNA-seq libraries were generated as with the primary microglia samples. All
iPS-derived macrophage RNA-seq libraries were generated with 11 cycles of amplification during the
ISPCR stage.
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