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Appendix A. Stability analysis for linear fractional viscoelastic materials

Lemmas 4 and 5 provide stability estimates for the linear viscoelastic mechanics problem introduced in Eq. (47).
We note that the fractional derivative approximation follows the form discussed in Section 2.4. Here N denotes the
number of Prony terms, and βk, τk ∈ R+ denote the scaling and time scale of the k th Maxwell element in the
approximation (with β0 being the scaling of a pure dashpot element). This approximation relies on intermediate
variables Qn

k which obey the update formula in Eq. (A.1).
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With this approximation in mind, we can derive the following stability estimate for the discrete solution showing
that the discrete solution is unconditionally stable and bounded by given data.

Lemma 4. Consider the linear incompressible fractional viscoelasticity problem shown in Eq. (47) and the update
formula shown in Eq. (A.1). Assuming that v0
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Proof of Lemma 4. To prove Lemma 4, we choose wh = 0, yh = vn
h and qh = 0 in Eq. (47) resulting in the
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h) = 0 (A.2)

Rearranging the update formula for Qn
k in Eq. (A.1), we note that
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Focusing on the stress term in Eq. (A.2), noting the symmetry of Σ n , that vn
h is weakly divergence free, the modified

update formula of Eq. (A.3), and the identity
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Applying Eq. (A.4) and the equality in Eqs. (A.5) to (A.2),
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Examining the final term in Eq. (A.6), noting through both Korn and Poincaré inequalities there exists a CΩ > 0
such that,
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Combining Eqs. (A.6) and (A.7) and re-arranging terms, we observe that
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Noting that ek ≤ 1, applying induction, noting Q0
k = 0 and utilizing the boundedness of b, we arrive at the stability

estimate.

To show stability for the pressure, pn
h , we assume that the spaces Vh

0 and Ph are inf–sup stable, satisfying the
condition (β > 0) [96],
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With these assumptions, we can prove unconditional stability for the discrete model pressure.

Lemma 5. Suppose the assumptions of Lemma 4 hold. Assuming there is a v−1
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Proof of Lemma 5. Looking at Eq. (47), we first separate components of Σ n , choose wh = 0 and qh = 0 and
rearrange the equation. Applying Cauchy–Schwarz inequality, we can arrive at the following inequality.
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Noting that the spaces of discrete solutions satisfy the inf–sup condition, the inequality in Eq. (A.11) can be
simplified to provide an upper bound on the pressure, pn

h .
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On the RHS of Eq. (A.12), the terms involving b remain bounded due to the implicit assumption that b ∈

W 1,∞([0, T ]; L2(Ω0)). Moreover, from Lemma 4, we know there exists a C0 > 0 (independent of h and ∆t )
such that,
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The stability estimate in Eq. (A.12) relies on the boundedness of the discrete time derivative of vn
h as well as the

symmetric derivative of vn
h . To ensure these quantities remain bounded independent of ∆t , we return to Eq. (47).
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Applying the same approach as in Lemma 4 we can arrive at the following bound.

ϱ∥δvn
h∥

2
0 + E∥D(δun

h)∥2
0 + ηβ0∆t∥D(δvn

h)∥2
0 +

N∑
k=1

η

βkek
∥δQn

k∥
2
0

≤ ϱ∥δvn−1
h ∥

2
0 + E∥D(δun−1

h )∥2
0 +

N∑
k=1

η

βkek
∥e2

kδQn−1
k ∥

2
0 + ∆t

CΩ

ηβ0
∥δbn

∥
2
0

≤ ϱ∥δv0
h∥

2
0 + E∥D(δu0

h)∥2
0 +

n∑
m=1

∆t
CΩ

ηβ0
∥δbm

∥
2
0 (A.15)

Dividing by ∆2
t and noting δt un

h = vn
h for any n, we observe that the remaining terms in Eq. (A.12) are bounded

by given data, e.g.
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Combining these results, along with bounds on b and its derivative, we arrive at the stability estimate.

Appendix B. Optimal prony series parameters for approximating the Caputo fractional derivative

In Section 2.5, we presented the method for optimizing the parameters of the Prony series for a defined time
scale proportional to the duration of the simulation. In practice, we observed in our examples (Sections 5 and 6)
that better convergence rates can be achieved by scaling the time interval for which the Prony series parameters
were mapped to. In every case, the convergence rates were significantly improved by lengthening the time scale by

Fig. B.11. Comparing convergence of the Prony-based approximation Eq. (12) in the polynomial example with refinement in time, α = 0.1,
0.4, 0.8, and 3, 6, 9, and 12 Prony terms when scaling the Prony series parameters to time intervals that are 1 times, 10 times and 100
times the size of the actual time interval.
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Fig. B.12. Comparing convergence of the Prony-based approximation Eq. (12) in Appendix B exponential function example (Example 2)
with refinement in time, α = 0.1, 0.4, 0.8, and 3, 6, 9, and 12 Prony terms when scaling the Prony series parameters to time intervals that
are 1 times, 10 times and 100 times the size of the actual time interval.

a factor of 10 or even 100. This was first observed as a consequence of the Geo et al. example (Section 6), where
the convergence response can be worse initially as the number of Prony terms increases. This is a result of the
increase in value of C(β, τ ), which results in slow convergence until the approximation error hits the bounds of the
error estimate in Theorem 3. Numerically, lengthening the time interval for mapping the Prony series parameters
increases the time constants τk and decreases the weights βk . We can observe from Theorem 3 that the error bound,
specifically β0 and C(β, τ ), reduces as a result, decreasing the overall error of the approximation.

As this effect appears to be problem dependent (more significant in Gao et al. Example 1 [67]), we tested this
in more detail using two polynomial examples: (1) the decaying oscillating function like polynomial presented in
Fig. 4, which behaves with short variable base frequencies and (2) a polynomial that is monotonically increasing with
highly exponential behavior, which behaves with single long base frequency (i.e. fitted to e6∗t

−1). The convergence
response was tested for α ∈ {0.1, 0.4, 0.8} and N ∈ {3, 6, 9, 12} with time scaling of 1, 10, and 100.

The overall response is quite similar. Most important is that lengthening the time scale by a factor of 10 always
results in better convergence and overall error (Fig. B.11 and Fig. B.12), sometimes by two order of magnitude.
Results from scaling by a factor of 100 is more variable. Most noticeably, the lower-bound with a scaling of 100
can be much worse at larger N . However, the convergence at larger ∆t can be significantly better. Most noticeably,
the L2-norm in the example 2 (Fig. B.12) can be 3 magnitude better at ∆t = 10−3 for α = 0.8 and N = 12 with a
scaling of 100. However, also note that with a scaling of 10, the L2-norm eventually surpasses the scaling of 100
after it has plateaued. Here, the gain in convergence at large ∆t surpasses the 1 magnitude gain in the lowerbound
as a result of the truncation error (Lemma 1), which requires 1.5 more magnitude in ∆t refinement. In contrast, for
example 1 (Fig. B.11), we observe that the gain in convergence initially is much less significant, and the truncation
error is around 2 magnitudes larger.

Clearly, these results are also problem dependent. Part of this dependency can be observed from Theorem 3, by
the weights of

[
| f ′(0)| + ∥ f ′′

∥0,1
]

and ∥ f ∥W 3,∞(0,T ) on ε and C(β, τ ) respectively. Example 1 (Fig. B.11) starts at


