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1. Temperature-dependent relaxation behavior 
 
Relaxation measurements performed at different temperatures from 10 K to 50 K informed about the 
temperature with optimum sensitivity for the NO-NO PELDOR and the CuII-CuII RIDME experiments, re-
spectively. 
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Figure S1: Sensitivity profiles for nitroxide-nitroxide PELDOR (left, mono-exponential approximation of T1) and CuII-CuII RIDME 
(right, mono- and bi-exponential approximation of T1 in red and blue, respectively). Profiles were calculated using equations 
given in Wort et al.,1 and measurement temperatures of 50 K and 30 K (for the mono-exponential approximation of T1) show 
> 90% of maximal sensitivity under experiment conditions. SNR = signal-to-noise ratio. 

 
The longitudinal relaxation times (T1) estimated under the mono- and bi-exponential approximations, 
1/e times, and 1/2e2 times for CuII-chelate and R1 nitroxide are given in tables S1-2, respectively. Note 
that at all temperatures, the 1/2e2 times are within 20% of the 1/e times, indicating that the relaxation 
behavior is well met by the mono-exponential approximation. The phase memory times (Tm) estimated 
under the stretched exponential approximation for CuII-chelate and R1 nitroxide are given in tables S3-
4, respectively. 
 

Temperature Mono- 
exponential T1 

Bi-exponential T1 1/e time  1/2e2 time 

10 K 4800 μs 1500 μs (0.23) / 6130 μs (0.77) 5201 μs 5241 μs 

20 K 234 μs 134 μs (0.44) / 334 μs (0.56) 301.0 μs 286.7 μs 

30 K  52.8 μs 31.0 μs (0.66) / 97.8 μs (0.54) 61.5 μs 57.5 μs 

40 K 15.6 μs 11.2 μs (0.68) / 25.3 μs (0.32) 19.6 μs 18.5 μs 

50 K 7.6 μs 5.6 μs (0.81) / 15.6 μs (0.19) 9.2 μs 8.6 μs 
Table S1: Estimated T1 values under mono- and bi-exponential approximations for CuII-chelate.   
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Temperature Mono- 
exponential T1 

Bi-exponential T1 1/e time  1/2e2 time  

10 K 397 ms 196 ms (0.23) / 486 ms (0.77) 372 ms 302 ms 

20 K 39.8 ms 11.7 ms (0.25) / 53.5 ms (0.75) 52.0 ms 47.3 ms 

30 K  8.1 ms 2.1 ms (0.13) / 9.6 ms (0.87) 17.7 ms 17.5 ms 

40 K 4.2 ms 2.1 ms (0.42) / 6.5 ms (0.58) 5.7 ms 5.3 ms 

50 K 2.2 ms 1.2 ms (0.52) / 3.9 ms (0.48) 3.1 ms 3.0 ms 
Table S2: Estimated T1 values under mono- and bi-exponential approximations for R1 nitroxide.   
 

Temperature Stretched Exponential Tm Stretching Exponent  

10 K 6.8 μs 1.17 

20 K 6.2 μs 1.19 

30 K  5.9 μs 1.45 

40 K 3.7 μs 1.10 

50 K 2.6 μs 1.07 
Table S3: Estimated Tm values under the stretched exponential approximation for CuII-chelate.   

 

Temperature Stretched Exponential Tm Stretching Exponent  

10 K 9.1 μs 1.58 

20 K 9.2 μs 1.63 

30 K  7.0 μs 1.23 

40 K 7.3 μs 1.45 

50 K 6.8 μs 1.26 
Table S4: Estimated Tm values under the stretched exponential approximation for R1 nitroxide.   
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2. Additional RIDME data (I6H/N8H/K28H/Q32H construct) 
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Figure S2: Comparison of RIDME data obtained at different concentrations and processing conditions. Top: 500 nM, meas-

urement with 34 ms mixing time, all other rows: 500 mM protein, mixing times in ms are indicated (35 or 65 ms, or deconvo-
luted, corresponding to the ratios 35/5 or 65/5, respectively). Left: raw RIDME traces (black) with background function (grey), 
the vertical line indicates where traces were cut; middle: background-corrected data (black) with fit (grey); right: correspond-

ing distance distributions given as 95% confidence intervals (± 2) with 50% noise added for error estimation during statistical 
analysis. Color bars represent reliability ranges (green: shape reliable; yellow: mean and width reliable; orange: mean relia-
ble: red: no quantification possible). 
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Additional RIDME measurements were performed at high protein concentration to assess the unex-
pected ~3 nm peak observed in the 500 nM sample of the tetra-histidine construct. This peak is not 
present at the higher concentration sample measured using different mixing times for deconvolution 
and recorded with approximately two-fold longer evolution time at high SNR. This results in a more 
accurate estimation of the background function and allows the data to be cut, which subsequently im-
proves fitting. 
This is not feasible at the lower concentration; however, we can demonstrate that the peak at the ex-
pected distance of ~2.4 nm is stable while the additional peaks are fully uncertain after statistical anal-
ysis (i.e., are dependent on the choice of background start time, zero-time artefact, etc.). 
The figure below shows the 500 nM sample of the tetra-histidine construct with different choices of 
background start time, demonstrating the effect on the additional peaks while the ‘true’ distance peak 
is unaffected. 
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Figure S3: Comparison of RIDME data obtained at 500 nM protein concentration. The same experimental data as shown in 
Figure S2 top row was processed with either a background start time of 30 ns (top) or 50 ns (bottom). Left: raw RIDME traces 
(black) with background function (grey); middle: background-corrected data (black) with fit (grey); right: corresponding dis-
tance distributions. At the earliest background start time the ~3 nm peak is mostly suppressed, while already at 50 ns start 
time it is clearly visible as a distinct peak. 
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3. Additional PELDOR data (I6R1/K28R1 construct) 
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Figure S4: Comparison of PELDOR data obtained at different concentrations. Top: 100 nM, middle: 500 nM, bottom: 25 mM 
protein. Left: raw PELDOR trace (black) with background function (grey); middle: background-corrected data (black) with fit 

(grey); right: corresponding distance distributions given as 95% confidence intervals (± 2) with 50% noise added for error 
estimation during statistical analysis. Color bars represent reliability ranges (green: shape reliable; yellow: mean and width 
reliable; orange: mean reliable: red: no quantification possible). Regularization parameters varied depending on concentra-

tion: 100 for 100 nM, 1 for 500 nM, and 0.1 for 25 mM protein. 
 

At 25 mM protein concentration of the I6R1/K28R1 construct the trace can be recorded over a longer 
evolution time, thus improving reliability for longer distances in the corresponding distribution. These 
data indicate that the bimodal shape of the distribution peak at 2.5 nm is indeed true. This suggests that 
down to concentrations as low as 500 nM one can reliably retain the true distance information. At even 
lower concentration (100 nM) the mean distance can still be retrieved; however, the resolution of the 
bimodality is lost due to i) low SNR and ii) necessity of a larger regularization parameter. 
 
To confirm this observation, data for the 500 nM were processed with a regularization parameter of 10 
and 100, and vice versa, the 100 nM data were processed with smaller regularization parameters, as 
shown below. 
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Figure S5: Comparison of PELDOR data obtained at 500 nM concentration using larger regularization parameters a. Top: a = 

10; bottom: a = 100. Left: background-corrected data (black) with fit (grey); right: corresponding distance distributions given 

as 95% confidence intervals (± 2) with 50% noise added for error estimation during statistical analysis. Color bars represent 
reliability ranges (green: shape reliable; yellow: mean and width reliable; orange: mean reliable: red: no quantification pos-

sible). As expected, the larger a oversmooth the data and as a result the bimodality is lost, similar to the distribution observed 
for the 100 nM sample. 
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Figure S6: Comparison of PELDOR data obtained at 100 nM concentration using smaller regularization parameters a. Top: a 

= 10; bottom: a = 1. Left: background-corrected data (black) with fit (grey); right: corresponding distance distributions given 

as 95% confidence intervals (± 2) with 50% noise added for error estimation during statistical analysis. Color bars represent 
reliability ranges (green: shape reliable; yellow: mean and width reliable; orange: mean reliable: red: no quantification pos-

sible). With the smaller a some probability for bimodality is observed, however the SNR is too poor to be certain.  
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4. Deep neural network processing and wavelet denoising 
 
100 and 500 nM PELDOR data (I6R1/K28R1 construct) and 500 nM RIDME data (I6H/N8H/K28H/Q32H 
construct) were further subjected to alternative processing methods. 
 
Deep neural network processing was performed using DEERNet2 within the Spinach3 spin dynamics soft-
ware (version 2.5.5459, Nov 2020). Input data were the same as used for the DeerAnalysis processing, 
but the time axis was supplied from 0 to tmax as required (i.e., the negative points of the time trace were 
removed).  
DEERNet results of PELDOR data confirm DeerAnalysis results in that the second conformation is clearly 
distinguishable at 500 nM GB1 concentration, while at 100 nM the 95% confidence band would allow 
rejecting a second conformation (i.e., it is possible to draw a line without a second conformation present 
without leaving the confidence band). 
 

 

 
Figure S7: DEERNet results for 500 nM (top) and 100 nM (bottom) GB1 I6R1/K28R1 PELDOR data. 
 
DEERNet results for the RIDME data show that the additional distance ~3 nm observed after DeerAnal-
ysis processing is fully uncertain (and thus, potentially not real), confirming the RIDME data obtained for 

the 500 mM sample. 
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Figure S8: DEERNet results for 500 nM GB1 I6H/N8H/K28H/Q32H (1.6 mM CuII-NTA) RIDME data. 
 
Wavelet denoising was performed using WavPDS (db6 wavelet).4 Input data were the same as used for 
the DeerAnalysis processing, but the RIDME data were provided background-corrected (.fit file) to avoid 
background issues. After denoising, data were subjected to Tikhonov regularization within DeerAnalysis 
without further background correction.  
As observed for the original PELDOR data, in our hands the bimodal distribution was not recovered at 
100 nM protein concentration after denoising. 
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Figure S9: WavPDS results for 500 nM (top) and 100 nM (bottom) GB1 I6R1/K28R1 PELDOR data. 
 
As observed with the original RIDME data, in our hands an artefact peak at ~3 nm is preserved after 
denoising. 
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Figure S10: WavPDS results for 500 nM GB1 I6H/N8H/K28H/Q32H (1.6 mM CuII-NTA) RIDME data. 
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5. Instantaneous diffusion 
 
The effect of instantaneous diffusion (ID;) on signal decay was determined as described previously var-

ying the flip-angle of the second pulse of Hahn echo from  to /5.5 All measurements were recorded at 
the magnetic field where the signal maximum was found in the field swept EPR spectrum. No ID was 

observable at 500 nM protein concentration, so experiments were repeated at 25 mM protein concen-
tration, however there was still no observable ID. This suggests that the effect of two spin labels in the 
same molecule is negligible in terms of dipolar dephasing in the system under study. 
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Figure S11: Decay traces from ID experiments on GB1 I6R1/K28R1 at 500 nM protein concentration (top left) and 25 mM 

protein concentration (top right), comparing  (black) and /5 (blue) decay rates obtained at 50 K. Corresponding ratios are 
shown in the bottom row. 
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6. Sensitivity considerations 
 
Our aim is to better understand why different experiments require different concentrations to achieve 
similar sensitivities. The relative performance of CuII-CuII PELDOR, CuII-CuII RIDME, and CuII-nitroxide 
RIDME has been quantified previously.1 Here, we investigate how nitroxide-nitroxide PELDOR ranks in 
comparison. All sensitivity calculations were performed as outlined in previous reports.1, 5 
 
“Dummy” PELDOR and RIDME experiments 

Dummy PELDOR and RIDME traces were recorded for the I6R1/K28R1 construct at 500 nM and 25 mM 
protein concentration. The total number of echoes per point for each trace was kept constant (four shots 
per point in a 2-step phase cycle for PELDOR and one shot per point in an 8-step phase cycle for RIDME) 
and calculated noise levels (RMSD, root mean square deviation, estimated from the second and third 
quartile of the imaginary part of the phase-corrected trace) for each trace are compared. 
At 500 nM protein concentration, results show the lowest noise for HQ (high Q, critically coupled reso-
nator) RIDME while noise is approximately a factor 2.6 higher for LQ (low Q, over-coupled resonator) 
RIDME and a factor ~3.9 higher for PELDOR. 
 

Experiment RMSD estimate Relative noise 

PELDOR 0.11 3.89 

RIDME, LQ 0.077 2.62 

RIDME, HQ 0.029 1.00 
Table S5: Estimated noise of dummy nitroxide-nitroxide PELDOR and RIDME experiments performed on the GB1 I6R1/K28R1 
construct at 500 nM concentration. 
 
Results suggest critical coupling gains a factor of ~2.6 in the single frequency experiment whereas off-
resonance detection only loses a factor of ~1.5 (4-pulse DEER versus 5-pulse RIDME sequences over-
coupled). This does not consider effects of modulation depth and signal averaging (shot repetition time) 
on sensitivities. 
 

At 25 mM protein concentration, this is less clear-cut. Very low RMSD values ranging from 0.14 % to 
0.38 % in a single scan lead to baseline imperfections contributing to the RMSD, which therefore does 
not reflect pure thermal noise anymore. The above factors change to 1.4 and 1.9, respectively, repro-
ducing the same qualitative trend. 
 

Experiment RMSD estimate Relative noise 

PELDOR 0.0038 2.59 

RIDME, LQ 0.0020 1.39 

RIDME, HQ 0.0015 1.00 
Table S6: Estimated noise of dummy nitroxide-nitroxide PELDOR and RIDME experiments performed on the GB1 I6R1/K28R1 

construct at 25 mM concentration. 
 
Sensitivity considerations for nitroxide-nitroxide PELDOR versus CuII-CuII RIDME experiments 

Sensitivity (S) is determined as the ratio of modulation depth () divided by RMSD. Normalized sensitiv-
ity (Sn) is S divided by the square root of total echoes per point (taken as the product of number of scans, 

shots per point, number of  averages, and phase cycle). Sensitivity per unit time (St) is Sn multiplied with 
the square root of the averaging rate. 
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Below, results are shown for comparison of nitroxide-nitroxide PELDOR at 100 nM and 500 nM protein 
concentration (GB1 I6R1/K28R1 construct) and CuII-CuII RIDME at 500 nM protein concentration (GB1 
I6H/N8H/K28H/Q32H construct). 
 

Experiment Concentration RMSD estimate  Averaging rate 

NO-NO PELDOR 100 nM 0.021 0.223 200 

NO-NO PELDOR 500 nM 0.0034 0.292 200 

CuII-CuII RIDME 500 nM 0.0031 0.055 2500 
Table S7: Noise estimates, modulation depths () and averaging rates for nitroxide-nitroxide PELDOR and CuII-CuII RIDME. 
 

Experiment Concentration S Sn St Relative St 

NO-NO PELDOR 100 nM 10.43 0.02 0. 30 7 

NO-NO PELDOR 500 nM 86.02 0.32 4.46 100 

CuII-CuII RIDME 500 nM 17.58 0.009 0.45 10 
Table S8: Sensitivities for nitroxide-nitroxide PELDOR and CuII-CuII RIDME. 
 
Regarding the PELDOR measurements, one would expect the relative St of the 100 nM nitroxide-nitrox-
ide PELDOR to be approximately 20, i.e., a factor 5 lower than at 500 nM. However, observed St at low 
concentration is another factor ~3 worse, which can be attributed to difficulties in optimization (pulses, 
phase, field position etc.) due to the very low signal; a slight shift in field position away from the maxi-
mum of the field swept spectrum would also explain the reduced modulation depth. This can therefore 
be considered a ‘penalty’ on achievable sensitivity at very low concentrations. 
 
Regarding the CuII-CuII RIDME, the affinity of the CuII-NTA for the double-histidine site is currently limit-
ing sensitivity, as indicated by a modulation depth of ~5% instead of ~25%. One solution would be either 
to covalently bind copper ions or to replace one double-histidine site with a nitroxide for CuII-nitroxide 
RIDME. In the latter case, a saturation of the double-histidine site is possible with similar sensitivity St 
compared to CuII-CuII RIDME. Thus, calculating with a modulation depth of 25%, the relative St would go 
up by a factor 5 from 10 to 50 at 500 nM, and thus would be ~10 at 100 nM compared to 7 for the 
corresponding nitroxide-nitroxide PELDOR. We therefore postulate that CuII-nitroxide RIDME measure-
ments should be possible at protein concentrations of 100 nM (or less).  
 
Simulated modulation depth profile for the tetra-histidine construct 
The observed modulation depth of ~5.5% for the CuII-CuII RIDME measurement is consistent with pre-
diction, based on the simulated sensitivity profile shown below.6 The maximum of the profile is 0.22, 
which for a maximum theoretical modulation depth of 25.7% yields an expected modulation depth of 
5.7%. Since the labelling efficiency is limited by the presence of the β-sheet double-histidine motif, sim-
ulation of a sensitivity profile for a tetra-histidine construct containing two α-helical double-histidine 
motifs was performed. The predicted maximum of the profile is ~0.50, which for a maximum theoretical 
modulation depth of 25.7% yields an expected modulation depth of >12%. 
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Figure S12: 500 nM tetra-histidine GB1 simulated modulation depth profile. The simulated modulation depth profile is shown 
as a function of increasing CuII-NTA concentration. Dissociation constants (KD) of 0.14 and 1.4 μM are assumed for the α-
helical and β-sheet double-histidine motifs, respectively. 
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Figure S13: Simulated modulation depth profile of a double a-helical double-histidine construct, at 500 nM protein concen-
tration. The simulated modulation depth profile is shown as a function of increasing CuII-NTA concentration. A dissociation 
constant (KD) of 0.14 μM is assumed for each of the α-helical double-histidine motifs. 
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7. Literature search 
 
Nitroxide-nitroxide PELDOR 
PubMed was searched on 30 November 2020 for the search terms “PELDOR” or “DEER” and “EPR”. The 
time range was 2017 to 2020. The search resulted in 124 publications, including 9 reviews, which were 
not further investigated. 61 out of the remaining 115 publications showing nitroxide-nitroxide PELDOR  
data on biomolecules (protein, DNA, or RNA) were used for statistical analysis.5, 7-66 
All these 61 publications provided details regarding biomolecule and spin concentration, and we had 
excluded any spin concentrations above 400 micromolar to not artificially inflate the average. 

We found an average (mean) spin concentration of 116 mM, a minimum of 5 mM in one case, and as 

stated above the maximum was set by us to 400 mM. The standard deviation was 90 mM, showing the 

large spread across values, with the median being at 100 mM spin concentration. 
 
Metal-metal RIDME 
On 22 January 2021, the Milikisyants paper67 introducing the 5-pulse RIDME sequence had 91 citations. 
Out of these citations, 13 papers described metal-metal RIDME data and provided details regarding bi-
omolecule or chemical compound and spin concentration and were used for statistical analysis.1, 68-79  

We found an average (mean) spin concentration of 253 mM, a minimum of 25 mM in one case, and a 

maximum of 1000 mM. The standard deviation was 259 mM, showing the large spread across values, 

with the median being at 100 mM spin concentration. 
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