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1 Supplementary Note

1.1 QUILT

1.1.1 Notation

We note that when possible notation follows that of the STITCH model [1] and
the SEW model [2], though some changes have been made. In particular, for
the random variables under the model, of O, R, H and Q, to use upper case for
random variables and lower case for observations of those variables. Further, we
try to use lower case for indices, upper case for constants, and Greek characters
for parameters of the model.

Summary of notation related to counts and constants

Symbol Definition
Ns Number of SNPs
Ng Number of grids, with Ng = dNs

32 e
Nr Number of sequencing reads
Nek Defined as 4Ne

K , where Ne is the effective population size
K Number of haplotypes in haplotype reference panel
L Physical position of SNPs (i.e. Lt is the physical position for SNP t)
G Grid for SNPs, with Gt being the grid location for SNP t, with Gt = d t32e
P Recombination rate between grids, with Pg being between grids g and g + 1
D Physical distance between grids, with Dg being between grids g and g + 1
I Vector of reference haplotypes to consider in Gibbs sampling

Summary of notation related to indices

Symbol Definition
t Choice of SNP, t ∈ {1, ..., Ns}
g Choice of grid, g ∈ {1, ..., Ng}
i Choice of maternal (i = 1) or paternal (i = 2) haplotype
k Choice of haplotype in haplotype reference panel, k ∈ {1, ...,K}
v Choice of sequencing read, v ∈ {1, ..., Nr}
j Choice of SNP in read, with j ∈ {1, ..., av}, where av is the number of SNPs

intersected by read rv
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Summary of notation related to reads

Symbol Definition
R and r Random and observed variables denoting reads, consisting of u, s, b, and de-

rived a and c
Rv and rv Read with index v which spans av SNPs, has central grid cv, with SNP indices

uv, sequenced bases sv and base qualities bv, or rv = {uv, sv, bv}
av Number of SNPs spanned by read rv, with av = |uv|
cv Central grid for read rv, with cv ∈ {1, ..., Ng}, and cv being defined determin-

istically by uv
uv,j For SNP j in read rv, the indices of SNPs intersected by that read, i.e. uv,j ∈

{1, ..., Ns}, and for example it has physical position Luv,j

sv,j Sequencing base for SNP j in read rv, with sv,j = 1 for the alternate base and
0 for the reference base

bv,j Base quality for SNP j in read rv
elv,j Probability of SNP j from read rv coming from an underlying genotype l, or

P (Sv,j = sv,j |Gen = l)
O and o Random and observed variables denoting all observed data from the sequencing

reads o = {og|g = 1, ..., Ng}, or alternatively, o = {rv|v = 1, ..., Nr}
og Observations comprised of reads with central grid g, og = {rv|cv = g}
oi Observations on either maternal (i = 1) or paternal (i = 2) chromosome,

oi = {rv|hv = i}
oig Observations from a particular chromosome at grid g, oig = {rv|cv = g, hv = i}
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Summary of notation related to hidden variables

Symbol Definition
H and h Random and observed variables, vector of haplotype membership labels, with

hv = 1 denoting read v is from the maternal haplotype and hv = 2 for read v
coming from the paternal haplotype

H−v and h−v Vector H or h with read v removed
Q and q Random and observed variables, vector of hidden states, with qg denoting the

hidden copying state from the haplotype reference panel in grid g, with qg ∈
{1, ...,K}

Summary of notation related to parameters of the model

Symbol Definition
σg Recombination distance between grids g and g + 1
θt,k Probability reference haplotype k emits the alternate base at SNP t, defined

as θt,k = w when reference haplotype k at SNP t has the reference and 1 − w
when it has the alternate, for a fixed error rate w, default w = 0.001

λ Parameters of the model λ = {σ, θ}
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Summary of notation related to hidden Markov model probabilities

Symbol Definition
αig(k) Traditional HMM forward probabilities, here specifically for observations for

haplotype i up to grid g for hidden state k, where αig(k) = P (Oi1 = oig, ..., O
i
g =

oig, Q
i
g = k|λ)

βig(k) Traditional HMM backward probabilities, P (Oig+1 = oig+1, ..., O
i
Ng

= oiNg
|Qig =

k, λ)

γig(k) Traditional HMM posterior state probabilities, P (Qig = k|Oi, λ) =
αi

g(k)β
i
g(k)

P (Oi|λ)

1.1.2 Model setup, and simulating under the model

We consider a Li and Stephens model[3] in which a sample haplotype can be
modelled as a mosaic of reference haplotypes. We assume that we are considering
the region to be imputed has a high enough marker density that it is sufficient to
consider discretized regions of length 32 SNPs, where we allow recombinations
to occur between but not within such regions. We use the term “grid” to refer
to these fixed windows. Let indexes of t refer to SNPs and g to grid, and let Ns
and Ng be constants representing the number of SNPs and grids, respectively.
Let Lt be the physical position of SNP t, and Gt be the grid of SNP t, where
Gt is the ceiling of t divided by 32. Note here the difference between the special
use of N and other constants like L, where notation Nx refers to a count where
the subscript is convenient to remember the constant, rather than an index,
i.e. Ns is the number of SNPs, rather than the sth entry of vector N , but
Lt and other terms are instead indexed by t. Let Dg and Pg be the physical
distance and recombination rate between grid points g and g + 1, respectively,
where Dg is taken as the difference between the average of L for SNPs with
grid points g and g+ 1 respectively, and similarly for P for recombination rate.
Let K be the number of haplotypes in the haplotype reference panel. Then
the recombination distance between grids g and g + 1 is σg = DgPg, and the
probability of recombination between grid points g and g+1 is 1−e−Nekσg , where
Nek = 4Ne

K , although in practice we allow Nek to be user defined and find that
higher values of Nek can generate more accurate imputation, potentially due to
non-random relatedness among haplotype reference panel members. Conditional
on recombination locations, we sample a reference haplotype that will be copied
continuously between recombination break points, and we sample this haplotype
uniformly at random. We define qg as the observed reference haplotype copied
in grid g, which will be constant between recombination break points.

Finally, we simulate sequencing reads. Let Nr be a constant referring to the
number of reads. Let rv refer to the vth observed sequencing read. We first
sample a central grid cv the read is sampled from, and start and end positions
yielding a set of SNPs with indexes uv,j that the read overlaps, a set of observed
bases sv,j at these SNPs, and a set of Phred base qualities bv,j of these observed
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bases. There are av of these SNPs in total defining the number of j values.
Then rv = {av, uv, sv, bv} captures the information from this read. We assume
that for all sequencing reads, the underlying sequenced molecule differs from
the reference haplotype according to some fixed mutation/error rate. When
simulating data, this then allows us to independently sample bv,j , for each j,
and using both the sequencing and reference haplotype error rate, sample sv,j .

We make two different assumptions that govern the underlying reference
haplotype sequence over the SNPs uv,j , and use these differently in two parts
of the model. The first, more realistic assumption, is that we expect the true
underlying sequence of the sequenced read at SNP position uv,j = t and with
copied reference haplotype qGt

= k to be that of reference haplotype k and
SNP t, i.e. the true underlying molecule will reflect the copied reference hap-
lotype haplotype at that position. This assumption applies when we perform
imputation using the per-haplotype full reference panel imputation. The second
assumption, is that, instead, we expect the true underlying molecule will reflect
the copied haplotype at only the central grid of the read. Thus the sequenced
read at SNP position uv,j = t and with copied reference haplotype at central
read grid position cv with qcv = k will reflect the sequence of reference haplo-
type k and SNP t. This approximation is used for computational convenience:
it allows, in a diploid model, us to apply a hidden Markov model because it
implies the probability of observations at a given grid point reflect will only
reflect the hidden copying state at that grid point, and not on the hidden state
at any other grid point. We use this second assumption in the Gibbs sampler
and what follows next.

1.1.3 Probabilities under the model

Let λ be the parameters of the model λ = (θ, σ), where σ is recombination
distance, and θ depends on the haplotype reference panel. We use a hidden
Markov model where Qg is the random variable of hidden state and qg is its
realisation for a sample haplotype at grid point g, that is qg is in {1, ...,K},
and both Q and q have length Ng. Initial hidden states are taken to be equally
probable with P (Q1 = k) = 1

K for all k. For state transitions, with probability
e−Nekσg , no recombination occurs between grids g and g+1, and with probability
1 − e−Nekσg a recombination occurs and a new state is chosen randomly from
the K options, giving

P (Qg+1 = qg+1|Qg = qg, λ) =

{
e−Nekσg + (1− e−Nekσg )/K if qg+1 = qg

(1− e−Nekσg )/K if qg+1 6= qg
(1)

Let Q and q refer to results for an arbitrary chromosome, and Qi and qi refer
to haplotype i, where i = 1 arbitrarily refers to maternal and i = 2 to paternal
origin.

For the emission of reads, consider the SNP j in the read indexed by v.
Given the Phred scaled base quality of bv,j , we have that the probability that
this base is called erroneously is εv,j = 10−bv,j/10, and hence, compared to the
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true underlying genotype Gen = l, for observed sequence sv,j , that

P (Sv,j = sv,j |Gen = l) =

{
1− εv,j if sv,j = l
1
3εv,j if sv,j 6= l

(2)

For convenience, set elv,j = P (Sv,j = sr,j |Gen = l). For the reference hap-
lotypes, for some fixed error w (default 0.001), define θt,k = w if reference
haplotype k has a reference base at SNP t and 1 − w if reference haplotype k
has the alternate base at SNP t. We therefore have that the probability of read
v, given it was emitted in central grid cv on haplotype i with hidden copying
state qicv , is

P (Rv = rv|Qicv = qicv , λ) =

av∏
j=1

(
θuv,j ,qicv

e1v,j + (1− θuv,j ,qicv
)e0v,j

)
(3)

Let H be a random variable which is a vector of read labels of length Nr, with
observation h with hv in {1, 2}, where 1 arbitrarily refers to maternal and 2
to paternal origin. Let O be a random variable representing the entire set of
sequencing reads, with observation o. We can consider o by indexing by reads
o = {rv|v = 1, ..., Nr}, and specific observations at g as the reads that intersect
that grid og = {rv|cv = g}. Let oi be the subset of reads drawn from parental
haplotype i, with i in {1, 2}, with oi = {rv|hv = i}. We can therefore calculate
for sequencing reads oi, hidden reference panel states qi, and parameters λ that

P (Oi = oi, Qi = qi|λ) =
1

K

Ng∏
g=2

P (Qig = qig|Qig−1 = qig−1, λ)
∏
rv∈oi

P (Rv = rv|Qicv = qicv , λ)

(4)
Finally we can generate the complete data probability for all reads given the
observed data o, a hidden vectors of copying states q1 and q2, read labels h, and
parameters of the model λ as

P (O,Q1, Q2|λ) = P (O1, Q1|λ)× P (O2, Q2|λ) (5)

1.1.4 Gibbs sampling setup

Consider Gen as the diploid genotype or some arbitrary SNP that we are
interested in estimating, and that we want to posterior genotype probabili-
ties P (Gen|O, λ), which can be used to give us the diploid genotype dosage
E[Gen|O, λ] in the normal way as

E[Gen|O, λ] =

2∑
g=0

g × P (Gen = g|O, λ) (6)
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We can calculate P (Gen = g|O, λ) using Monte Carlo as follows (with ≈ be-
coming = in the limit)

P (Gen = g|O, λ) =
∑

H∈{1,2}Nr

P (Gen = g|H,O, λ)P (H|O, λ) (7)

≈
∑

H∼P (H|O,λ)

P (Gen = g|H,O, λ) (8)

We can rapidly calculate P (Gen = g|H,O, λ) under the model as

P (Gen = g|H,O, λ) =


P (Hap1 = 0|H,O, λ)× P (Hap2 = 0|H,O, λ) if g = 0

P (Hap1 = 0|H,O, λ)× P (Hap2 = 1|H,O, λ)+

P (Hap1 = 1|H,O, λ)× P (Hap2 = 0|H,O, λ) if g = 1

P (Hap1 = 1|H,O, λ)× P (Hap2 = 1|H,O, λ) if g = 2

and further we can rapidly calculate P (Hapi = 1|H,O, λ) for some SNP t as

P (Hapi = 1|H,O, λ) =

K∑
k=1

θt,kP (QiGt
= k|O, λ) (9)

recalling that θt,k gives the probability that reference haplotype k carries the
alternate allele, and P (QiGt

= k|O, λ) is the probability the the sample copies
from haplotype k at grid point Gt.

We therefore need rapid draws of H ∼ P (H|O, λ), which can be done using
Gibbs sampling in way described in the following subsection.

1.1.5 Gibbs sampling practical

We first suppose that we are working not with the full set of haplotypes but
with some subset, call it I (for example, I could be I = {3, 7, ...}. Suppose we
therefore consider a recast version of θ under this new I, such that θ∗t,k∗ = θt,Ik∗ ,
and that K∗ = |I|. In this section, it is arbitrary to use either θ∗ or K∗ versus θ
and K, as the math does does not change. Therefore for simplicity of notation in
what is already crowded mathematics, we omit the ∗, but note that in practice,
we used the reduced set that depends on I.

Now, for drawing a new h from H, suppose we start with some initial re-
alization for H, call it h, at random, i.e. P (Hv) = 1

2∀v ∈ 1, ..., Nr. Let hv be
the current label for read v and hov be the alternate read label i.e. hov = 3− hv.
Now, with Gibbs sampling, we want to efficiently calculate

P (Hv = hov|H−v, O, λ) =
P (O,Hv = hov, H−v = h−v|λ)∑2
j=1 P (O,Hv = j,H−v = h−v|λ)

(10)

This can be done if we can efficiently calculate P (O,Hv = hov, H−v = h−v|λ),
noting that we already have P (O,Hv = hv, H−v = h−v|λ) under the HMM.
Now suppose we have, for a particular realization of h, run an HMM including
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forward backward pass, separately for each of i = 1 and i = 2, generating
forward-backward variables in the normal way, with

αig(k) = P (Oi1 = oi1, ..., O
i
g = oig, Q

i
g = k|λ) (11)

βig(k) = P (Oig+1 = oig+1, ..., O
i
Ng

= oiNg
|Qig = k, λ) (12)

γig(k) = P (Qig = k|Oi = oi, λ) =
αig(k)βig(k)

P (Oi = oi|λ)
(13)

Then we have already calculated

P (O,Hv = hv, H−v = h−v|λ) = P (Ohv |λ)P (Oh
o
v |λ)

(
1

2

)Nr

(14)

and we want to efficiently calculate

P (O,Hv = hov, H−v = h−v|λ) = P (Ohv,−v|λ)P (Oh
o
v,+v|λ)

(
1

2

)Nr

(15)

where Ohv,−v means we take read v out of the observations for haplotype hv
i.e. Ohv,−v = {rv∗|hv∗ = hv, v∗ 6= v}, and similarly Oh

o
v,+v means we add

observation from read v to haplotype hov.
Now, recalling the definition of the standard HMM variables given above.

For α, we have that

αig(k) =

 K∑
j=1

αig−1(k)P (Qig = k|Qig−1 = j, λ)

P (Oig = oig|Qg = k, λ) (16)

Now, considering αhv,−v
g (k) and α

ho
v,+v
g (k) as

αhv,−v
g (k) =

αhv
g (k)

P (Rv = rv|Qg = k, λ)
(17)

α
ho
v,+v
g (k) = α

ho
v
g (k)P (Rv = rv|Qg = k, λ) (18)

Recall that in HMMs we often work with scaled versions of the forward and
backward variables, for example α̂ig(k) =

(∏g
τ=1 c

i
τ

)
αig(k), where ci here in this

paragraph is the traditional scaling variable, of length Ng here, with for example
first entry ci1 = 1∑K

k=1 α
i
1(k)

. Now for readability further consider the temporary

variable D = 1

chv
g Chv

1

c
ho
v

g Cho
v

where Ci =
∏Ng

τ=1

(
ciτ
)
, as well as the temporary
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variable E =
(
1
2

)Nr
. Then we have that

P (O = o,H−v = h−v, Hv = hov, |λ)

=P (Ohv,−v = ohv,−v|λ)P (Oh
o
v,+v = oh

o
v,+v|λ)E

=

(
K∑
k=1

αhv,−v
g (k)βhv

g (k)

)(
K∑
k=1

α
ho
v,+v
g (k)β

ho
v
g (k)

)
E

=

(
K∑
k=1

α̂hv,−v
g (k)β̂hv

g (k)

)(
K∑
k=1

α̂
ho
v,+v
g (k)β̂

ho
v
g (k)

)
DE

=

(
K∑
k=1

α̂hv
g (k)

P (Rv = rv|Qg = k, λ)
β̂hv
g (k)

)
×(

K∑
k=1

α̂
ho
v
g (k)P (Rv = rv|Qg = k, λ)β̂

ho
v
g (k)

)
DE (19)

If we do not select the new label in Gibbs sampling, nothing changes to the
forward and backward variables. If we do, we update the forward variable and
scaling variable, continuing through all such reads at grid g, before we move
to the next grid point and any reads inside it. Once we have completed an
entire forward pass, we run a backwards pass to update the β variable, and can
continue the Gibbs sampling anew.

1.1.6 Full haploid imputation

As mentionned above, with H, we can relax an assumption necessary for the
HMM, while additionally switching to using the full reference panel. As de-
scribed above, consider instead a model in which observations, denoted here
with stars ∗ to denote the differences in the assumptions of the underlying
model, reflect that the underlying sequenced molecule has bases defined by the
reference haplotypes at that particular location, i.e. instead of E[sv,j |uv,j =
t, Qcv = k] = θt,kwe have that E[sv,j |uv,j = t, QGt

= k] = θt,k. Note that under
this assumption the information from sequenced bases belonging to reads from
a haplotype no longer depends on the specific read they are in, so we re-consider
oi = {rv|hv = i} as o∗i = {(uv,j , sv,j , bv,j)|hv = i}, and in particular, at a SNP
t, this means that

o∗it = {(sv,j , bv,j)|uv,j = t} (20)

We can merge results for a given SNP into haplotype likelihoods for SNP t and
genotype l ∈ {0, 1} as e∗it,l with

e∗it,l = P (Gent = l|O∗it = o∗it ) =
∏

(v,j)|uv,j=t

elv,j (21)

Where recall that elv,j = P (Sv,j = sr,j |Gen = l). We therefore get that

P (O∗ig = o∗ig |Qig = qig, λ) =
∏

t|Gt=g

(
θt,qige

∗i
t,1 + (1− θt,qig )e∗it,0

)
(22)
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With e∗it,l = 1 if there are no entries with uv,j = t for SNPs for haplotype i (i.e.
no part of any read intersect SNP t). The full probability for a vector of hidden
copying states qi for haplotype i is therefore

P (O∗i = o∗i, Qi = qi|λ) =
1

K

Ng∏
g=2

P (Qig = qig|Qig−1 = qig−1, λ)

Ng∏
g=1

P (O∗ig = o∗ig |Qig = qig, λ)

(23)
where the transition probabilities are as defined above for the Gibbs sampler,
using the appropriate recombination distance based on the full reference panel
size. Posterior probabilities under this model can be calculated in the usual way
for HMMs, and genotype dosages obtained from posterior probabilities in the
obvious way i.e. for a diploid genotype dosage at SNP t of Gent, that

E[Gent|O, λ] =

2∑
i=1

K∑
k=1

θt,kP (QiGt
= k|O∗i = o∗i, λ) (24)

1.1.7 Full haploid imputation selection of new subset of the reference
panel

To begin, we use H and the per-chromosome full reference panel imputation
described above. This per-haplotype full reference panel K can be used to
generate αig(k), βig(k), and γig(k), though in practice, we only record αig(k),
as these matrices are very large, and the posterior state and hence genotype
probabilities can be calculated without recording β and γ.

Here, we first thin the list of grid points to be considered as a user defined
parameter, here 10%, and then do calculate and store γig(k) for those positions.
Without loss of generality, consider that one of these thinned grids in indeed
grid g, then we take γig(k) separately for each haplotype i and do a partial sort
of those values, which, for some user defined value of top matches to return,
with default value 5, orders and stores indices for all reference haplotypes at
that grid g with a posterior probability greater than or equal to the value of the
5th top value.

Once this is complete for each haplotype i and each thinned grid point, we
take the vector of indices of the previous reference panel subset (default size
400) and randomly select some subset to replace (default 100, call it A). We
then start with the previously retained haplotypes (here, default 300, call it B).

We then run a while loop, where we increment some counter c by one per
pass through of the while loop, starting from c = 1. We also start with A as
empty. Suppose we have run through the while loop a few times, so that A is
non-empty. Then we begin this pass through of the while loop by selecting a set
of putative haplotypes to add, A∗, by taking the haplotypes across each thinned
grid points that have the cth best posterior probability γig for their i. We then
make A∗ unique by removing duplicates, and removing values already in A and
B. If A∗ fits into A such that the size of A is less than its maximum, we do this,
and continue the while loop, incrementing c. Otherwise, we sample amongst A∗
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at random to fill the rest of A. If we’ve run out of retained γig before we fill A,
we fill the remainder of A at random among haplotypes not in B or A.

1.1.8 Block Gibbs sampling

Recall with normal Gibbs sampling, we need to efficiently calculate

P (Hv = hov|H−v, O, λ) =
P (O,Hv = hov, H−v = h−v|λ)∑1
j=0 P (O,Hv = j,H−v = h−v|λ)

(25)

with diploid block Gibbs sampling, we want to consider resampling some entire
continuous block of reads V ⊆ {1, ..., Nr}. Consider that in that block we want
to consider two sets of reads, first, the current set, and second, re-assigning each
read to the opposite haplotype, i.e. we have two options, hV and hoV , where
each read is re-assigned in the obvious way, for example hoV1

= (3 − hV1
). We

therefore need to calculate

P (HV = hoV |H−V = h−V , O, λ) =
P (O = o,HV = hoV , H−V = h−V |λ)∑

h∗
V ∈{hV ,ho

V }
P (O,HV = h∗V , H−V = h−V |λ)

(26)
This is easy enough to calculate for random V but inefficient when considering
multiple V . Opterationally, we therefore proceed as follows. First, we identify
discrete blocks that we want to re-sample in, where discretization is chosen
so that reads from the same grid cannot fall into different blocks, in a manner
described below. This discretizes v = 1, ..., Nr reads into {V1, ..., }, such that Vi∩
Vj = ∅∀i, j and further ∀va ∈ Vi, vb ∈ Vj , cva 6= cvb . We can therefore proceed
with updating in a single forward-backward pass, where over a particular V ,
we update the forward algorithm from the minimum min(cv|v ∈ V ) to the
maximum grid max(cv|v ∈ V ) for the flipped option, and if we accept it in the
Gibbs sampling, we update the forward variable α for the two chromosomes,
and flip all read labels from min(V ) to Nr.

As for the discretization process, we use code similar to calculating haploid
updates from the STITCH model, and calculate, given the posterior probabil-
ities for each haplotype, the expected number of switches between grids g and
g + 1, over each pair of grids. We then sum this for the two haplotypes, and
further, multiply it by the recombination rate, effectively focusing it around real
potential recombination hotspots, and remove noise from this procedure. We
then smooth this rate over a range, default 5000bp, and identify peaks using a
peak finding algorithm, again, from the STITCH model heuristic for identifying
ancestral haplotype breakpoints. This returns a discrete list of peaks being a
set of grid points, from which we generate a discretized grid, and hence generate
Vi as V = {V1, ..., } being the reads with central grid in a respective Vj .

1.1.9 Phasing

For any given Gibbs sample, considering all samplings as burn-in except for the
single final sampling, it is possible to get haplotype dosage using the logic laid
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out in Equation 9. However this does not work across Gibbs samplings due to
the arbitrariness of the maternal and paternal haplotype. Therefore, briefly, for
phasing, we attempt to define a consensus set of read labels across the Gibbs
sampled iterations, and then we use this to initialize a single final sampling,
whereupon completion we report the haploid dosages.

In more detail, suppose we have run the Gibbs samples, with final read
labellings hl for Gibbs samplings l = 1, ..., Ngs, where Ngs is the number of
Gibbs samples, and hlv is the read label for read v in Gibbs sample l. We
additionaly generate a binary 0/1 vector for each Gibbs sample, with length the
number of reads, called x, where xlv is a binary 0/1 value indicating whether it
is likely (1) or unlikely (0) that that read specifically came from one or the other
imputed haplotype. In more detail towards xlv, first consider plv,i = P (Rv =

rv|D = dl,i, λ) is the probability read v came from imputed haplotype i with
imputed dosage dl,i, i.e. for dosage dt at SNP t that P (Rv = rv|D = d, λ) =∏av
j=1(duv,je

1
v,j + (1− duv,j )e0v,j), and then suppose we define

xlv =

1 if
max (plv,1,p

l
v,2)

plv,1+p
l
v,2

> 0.95

0 otherwise

In other words, xlv is a 1 if, after imputation, there is substantial evidence it
came from either haplotypes 1 or 2 specifically, rather than being likely to come
from either haplotype.

We next only considered reads for which xlv was 1 for all l, as reads con-
fidently assigned in every run, consider this subset as hlv∗. Consider an ex-
emplar read labelling, which can be arbitrary, for convenience here choose
1, i.e. begin with the set of read labels that will initialize phasing, hp as
h1, where here p just indicates phasing rather than a label. Then we deter-
mined all pairs of sequential reads, v∗ and v ∗+1, where there existed a differ-
ence in label between the read pairs at those respective positions, i.e. where∑Ngs

a=1 |hav∗−h1v∗| 6=
∑Ngs

a=1 |hav∗+1−h1v∗+1|. In choosing which read label to keep
between those, we took the majority vote, i.e. with respect to the canonical read
labelling, if more than half of the read labels changed between their previous
and new positions, we changed the canonical read label from that read through

to the ends of reads, i.e. if
∑Ngs

a=1 |h
a
v∗+1−h

a
v∗|

Ngs
> 0.5, we flipped hpv∗ for v∗ to the

end of the confidentally chosen reads, as well as for the canonical haplotype.
In this way, we used the read labels hl from the Gibbs samples, to arrive at

a new set of read labels that attempted to model the Gibbs sampled read labels
with as few switches as possible, and used this as the starting value for h for
another round of the model.

1.1.10 Other parameters

We used default parameters of QUILT including 400 haplotypes in the Gibbs
sampler, 7 Gibbs samples, 3 iterations of Gibbs sampling and full per-haplotype
imputations. When updating read labels given a reference panel subset, per
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round of Gibbs sampling, we did 20 full iterations across all read labels, with
block Gibbs on iterations 3, 6 and 9. When updating reference panel subset
given read labels, we thinned to 10% of SNPs, sought to re-select 100 haplotypes
out of 400, and kept the top 5 matches at each thinned grid point for later
consideration. Other parameters are as defined in the help pages of the QUILT
software.

1.2 HLA imputation

1.2.1 Reference panel construction

We downloaded full-length HLA alignments for annotated HLA genes and pseu-
dogenes HLA-A to HLA-Y, from the HLA database IPD-IMGT/HLA [4]. This
provides a set of (aligned) sequenced alleles for each region, hereafter the “HLA
database sequences”. Because we utilized these alleles directly in calling, and
due to extensive complications in genotyping and mapping reads in these re-
gions within standard pipelines, we excluded SNPs in these regions themselves
from the QUILT component of HLA typing, but retained SNPs in flanking re-
gions, and used reads intersecting these regions to regain information from the
excluded SNPs.

For each HLA region in the set HLA-A, -B, -C, -DQB1 and -DRB1 we
constructed a panel of reference haplotypes using the HRC reference data for
a subset of individuals drawn from the 1000 Genomes Project[5], and a set
of HLA types previously inferred using high-coverage exome sequence data for
1000 genomes samples, and the PolyPheMe software [6]. These were previously
demonstrated to have high accuracy [6]. These reference panels excluded all
members of the 5 tests populations (ASW, CEU, CHB, PJL, PUR), and had
between 3674 (DQB1) and 4082 (C) haplotypes in them.

We fixed the identified HRC haplotypes for each individual, and phased the
pair of HLA types against these as follows, to identify a single HLA allele for
each haplotype. First, we used the HLA database sequences to construct SNP
haplotypes at HRC sites by identifying which allele was carried by each haplo-
type at variant HRC sites they overlapped. For each 4-digit allele, this yielded a
set of predicted probabilities of carrying the non-reference allele (averaging over
all 4, 6 or 8 digit sequences carrying that allele) at each site. Now for 1000G
HLA-typed individuals’ HRC data, we calculated the difference between both
possible phasings and their predicted types based on their HLA alleles, counting
mismatches as cases with a difference between observed type and predicted type
probabilities of >0.9. We then took the phasing producing the smaller number
of mismatches, provided this was < 4 mismatches while the alternative showed
> 4 mismatches, or if only one HLA type was obtained and overlapped the
database, provided this had at least 2 fewer mismatches than the alternative
phasing. Although this approach phased the majority of individuals, there were
remaining cases with 1000 genomes derived HLA-types not matching those in
the reference database and unclear phasing (e.g. because both possible phasings
gave similar numbers of mismatches within the HLA region itself). To phase
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these, we used other phased HRC individuals directly, now extending the HLA
region to include sites outside the HLA gene itself: first identifying haplotypes
for each HLA-allele at each site (probabilistically averaging over sequences car-
rying that allele), and then using these new probabilities as above i.e. counting
mismatching sites with a difference of > 0.9. We identified a phasing if one
phasing over the extended region produced at least two fewer mismatches than
the other. This was applied successively, fixing already-phased individuals and
extending the HLA gene surrounds by successively adding in sets of 50 SNPs
upstream and downstream, until all individuals were phased (or else an upper
limit of 1000 SNPs was reached). Data for any remaining unphased individuals,
those with no identified type at a particular HLA gene or those with types not
identified in our HLA database sequences, was removed from the panel for that
region.

1.2.2 QUILT-HLA state inference

For each of the HLA genes listed above, we generated a reference panel using the
phased HLA data as above, the HRC reference haplotypes for the corresponding
haplotypes, and a window of 500kb on either side, removing SNPs falling within
HLA genes as described above. We then ran a modified version of QUILT. As
the number of reference haplotypes was comparatively small, we used a single
stage Gibbs sampler including all reference haplotypes (approximately 4000),
using the final parental haplotype read labels for that sample in a final full panel
per-haplotype imputation to get per-haplotype posterior state probabilities. We
generated 20 Gibbs samples per sample, retaining posterior state probabilities
from phasing at each sample, so that per sampling, we did the following. Let Ai

be the underlying allele for some arbitrary HLA gene of interest for haplotype
i (e.g. the truth for some sample could be A1 = 2 and A2 = 4 where the 2nd
indexed HLA-allele is HLA-A*01:02 and the 4th indexed HLA allele could be
HLA-A*02:01), and let Bj be the set of reference haplotypes that contain allele j
(e.g. Bj = {3, 6}means the 3rd and 6th reference haplotypes have allele indexed
by j). Then per Gibbs sampling, for the SNP indexed by t that is physically
closest to the physical center of the HLA gene, and at grid position Gt, for
haplotype i, we calculated the prediction using posterior state probability as

P (Ai = j|Oi, λ) =
∑
k∈Bj

P (QiGt
= k|O, λ) (27)

We then calculated joint probabilities as the product of the per-haplotype prob-
abilities

P ((A1, A2) = (j1, j2)|O, λ) = P (A1 = j1|O1, λ)× P (A2 = j2|O2, λ) (28)

and could therefore sum this across Gibbs samplings, to yield per-sample phased
HLA allele probabilities. We then summed across phase identical probabilities,
and took the most likely pair as the inferred allele, and assigned a confidence
as the posterior probability of that allele pairing.
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1.2.3 QUILT read based HLA typing

The above approach specifically avoids using information on reads falling within
HLA genes themselves, but instead captures long-range LD among carriers of
particular HLA-allelic types. To capture read-based information, we constructed
a likelihood for each HLA database sequence and each of the five HLA genes,
as follows.

First, we identified reads potentially mapping within the corresponding gene
by using all those whose mapped positions fell within the appropriate region of
the chromosome 6 reference sequence (extended 1000bp upstream to conser-
vatively capture reads beginning upstream). We also identified reads mapped
using bwa-mem to alternative HLA contigs, e.g. HLA-A*69:01 is a contig of
length 2917. We used both types of read going forward. A challenge of HLA-
typing is mismapped (or unmapped) reads among a highly homologous set of
genes and pseudogenes, particularly in certain regions of these genes, and we
utilized filters to remove suspicious reads, rather than simply using for exam-
ple a minimum mapping quality. A second challenge is the highly polymorphic
nature of these regions, which have an extremely high density of SNPs and in-
dels distinguishing HLA database sequences, and this makes remapping of reads
essential.

As an initial set of filters we removed reads (i) whose mate pair mapped on
another chromosome, or > 1000bp away for reads mapping on chromosome 6, or
where (ii) the read itself has an alternative mapping to another chromosome, or
elsewhere on chromosome 6 than the HLA-gene under consideration. A second
set of filters tested directly if each read (or its complementary sequence) could
be specifically mapped to a single HLA sequence, using the full HLA database
sequence set. We took bases 11-20, 21-30, 121-130 and 131-140 of each 150-bp
read (for shorter or longer reads, adapting in the obvious manner), to define
four 10-bp sequences. For each of these, we identified all possible HLA sequence
matches (e.g. an exact match to some 10-bp region of HLA-A*01:01:01:01),
in not just the HLA gene being considered, but across the entire database.
Considering these as possible matches, we found all HLA haplotypes with at
least two matches and the expected base-pair spacing between these matches.
We retained all read pairs where at least one of the pair could map to the
expected HLA region, only to this region, and where the mate pair did not map
uniquely to some other region. We discarded all other reads, i.e. those with no
mapping, with non-unique mapping, or with inconsistent mate-pair mapping.
The 10-bp matches also immediately identified a strand for each read pair,
and a set of possible aligned read start positions within the appropriate HLA
region (with potentially several start positions in the same region among indel-
containing HLA alleles in the database), which we used going forward. Note that
these filters will remove, potentially, reads containing indels, or with sufficient
errors that they do not possess exact matching over at least two of the four 10-
bp regions considered here, which is potentially problematic for less high-quality
sequencing. However they have the advantage of considering the large space of
possible allelic types across a broad set of HLA loci, and rapidly remapping reads
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over this space. Having filtered reads, we then constructed a likelihood for the
remaining set of curated reads as follows, using the HLA database sequences for
the region. For each read, we calculated, for each potential start point of that
read in the region-wide alignment, a likelihood for all possible HLA sequences.
Given a read of length l and a start point a for an alignment, against potential
HLA sequence i, this likelihood is calculated by ignoring the possibility of novel
indels as follows (indels are permitted among database HLA sequences). (We
adjust our notation here compared to other sections discussing reads, because
in this analysis we do not merely consider SNPs, but all bases – because, for
example, indels and multi-base variants occur frequently among HLA alleles,
and variant positions can overlap within the highly polymorphic HLA.)

Let the sequenced bases sp of a read indexed by p be

sp1, sp2, sp3, ..., spl (29)

and the corresponding region of the reference sequence be

ria, ri(a+1), ri(a+2), ..., ri(a+l−1) (30)

Then if we have a Phred quality score qpk for base k, we attach a likelihood of
observing base spk of 1−10−qpk/10 if spk = ri(a+k−1) and for a mismatching base,

assuming all sequencing errors are equally likely, a likelihood of 10−qpk/10/3 if
spk 6= ri(a+k−1). Assuming all bases are independent, the overall likelihood of
read p coming from a true allele i is then maximized over possible a:

L(i; sp) = max
a

l∏
k=1

(
1− 10−qpk/10

)Ispk=ri(a+k−1)
(

10−qpk/10/3
)1−Ispk=ri(a+k−1)

(31)
Paired-end reads (which come from the same haplotype i.e. HLA allele) are
dealt with by multiplying the likelihoods from each member of the read pair
together, to make a single likelihood for the read pair which we also denote by
L(i; sp). If this maximized likelihood is below the equivalent of that for a read
with 5 mismatching bases of Phred-score 30 (p = 0.001 of a mismatch), the
read was considered as mismatching all alleles and excluded from the overall
likelihood calculation below.

Given a total of n reads from this individual, for a possible pair of alleles
i, j this individual carries, we may then construct the overall likelihood of that
individual as

L(i, j; s) =

n∏
p=1

1

2
(L(i; sp) + L(j; sp)) (32)

We calculate this for all pairs of alleles, and multiply the corresponding likeli-
hoods by those from QUILT, with a few necessary modifications detailed below,
to obtain a joint likelihood. Because the QUILT approach uses only information
outside the HLA target gene while this approach uses only reads from within
this gene, we may regard the information as complementary. We note the above
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is a full-likelihood approach, at least for those reads we manage to uniquely
and correctly map in the target gene, and subject to (in)completeness of the
database.

1.2.4 Combining QUILT state inference with sequence-based infor-
mation

Because the 1000 genomes HLA types are all four-digit types, and the above
HLA database sequences have varying accuracies (up to 8-digit accuracy), and
there is incomplete overlap between the two, it is not completely straightforward
to combine their information. To do this, we only use likelihoods for four-digit
alleles in the intersection of the two sets, mainly removing alleles in the HLA
database that were not observed in the 1000 genomes samples. Because the
HLA database can have many alleles with the same 4-digit resolution, we assign
a uniform prior on all alleles with a particular 4-digit code, so the read-based
likelihood is the average over the high-resolution terms of all pairs of alleles
with a given code. Then, we simply multiply the resulting likelihoods together
to yield a combined score for each possible pair of HLA types at each gene.

1.2.5 SNP2HLA

We imputed HLA alleles in a manner emulating the approach of SNP2HLA in
the following manner. First, similar to the approach for imputation generally
described in the main text for arrays, we generated genotypes in short non-
overlapping windows at array sites for the UK Biobank Axiom array and for
the Illumina Global Screening Array using the GATK UnifiedGenotyper module,
using high coverage whole genome sequences filtered to array sites. We then
combined these into a single input file, one for each array type and HLA-gene,
imputing using SNPs from 500kbp upstream to 500kbp downstream of the centre
of that HLA gene. We then performed imputation from genotypes using the
specified version of Beagle from SNP2HLA (Beagle 4.1) and using the HRC
reference panel, removing from the HRC panel data for NA12878 or each of the
5 populations being tested. Next, using the same reference panel we used for
QUILT based HLA typing, we built a SNP2HLA reference panel for each gene.
This takes the form of a phased VCF, with each HLA allele encoded as a distinct
SNP in the reference panel. In other words, in the SNP2HLA style phased VCF,
the summed dosage of each reference haplotype over the SNPs representing
the different HLA alleles would be 1, and the sum of the dosages for the two
haplotypes, representing one sample, would be 2. Next, using the output of
the HRC based imputation as input genotypes, and using the above-described
custom SNP2HLA style reference panel, we imputed HLA alleles using Beagle
4.1 using options impute=true, grobs=true, niterations=5. We then generated
per-sample per-HLA-gene HLA alleles and a measure of confidence from the
output in the following way. For a single sample, for a single HLA-gene, the
above approach yields dosages for all alleles. We extracted those with non-zero
values, collapsed them to be unique to 4 digit accuracy if not already done, and
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then re-normalized them to have sum 1. If there was only a single imputed
allele for a given sample for that gene, we took this to imply the inferred type
was homozygous for that allele (with confidence 1). If there was more than one
imputed allele and the dosage for the most likely allele was more than twice
as likely as the second most likely allele, we took this to mean the sample was
homozygous for the most likely allele, with the normalized dosage for that allele
as the confidence. Otherwise, we took as the prediction the two most likely
alleles, and the confidence the sum of their normalized dosages. In this way we
would necessarily for each sample get a diploid genotype of HLA alleles and a
confidence score between 0 and 1.

1.3 Haplotagging

Haplotagging uses barcoded and bead-bound Tn5 transposomes to fragment
(“tagment”) and barcode genomic DNA. Effectively, multiple reads belonging
to the same input DNA molecule, i.e., a haplotype, will be tagged with the same
4-segment DNA barcode under Illumina sequencing (split into i7 and i5 indexes,
each 13 nucleotides long). Under haplotagging, as presently configured up to 96
individuals can be multiplexed in a single Illumina sequencing lane by means
of one of the four barcode segments (designed “C” segment here). We per-
formed haplotagging essentially as described in Meier et al.[7]. Briefly, for each
DNA sample (NA12878 and the 5-Family samples), we extracted high molecular
weight DNA (typically ¿ 100 kbp) using Nanobind (Circulomics, Baltimore MA,
USA) or in-house equivalent. For the 1000G-GBR samples (MGP00003) we di-
rectly obtained extracted DNA from the Coriell Institute for Medical Research.
For each sample, 3 ng of DNA were tagmented using 5 µl of haplotagging beads
(approximately 3.5 million beads and thus 3.5 million barcodes). Next, either
the entire batch of beads for NA12878, or each sample were subsampled to ob-
tain a pool of 3.5 million beads that were used for a subsequent thermocycling
reaction to amplify the haplotag libraries as described in Meier et al.[7]. These
libraries were pooled and sequenced on a HiSeq3000 instrument as a 2x150
paired-end run with extra index cycles of 13 and 12nt at the Genome Core of
the Max Planck Institute for Developmental Biology, Tübingen, Germany. The
resulting data were demultiplexed as described in Meier et al.[7] prior to stan-
dard read alignment and further analysis. The barcode information is retained
in the BX tag in BAM files.
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2 Supplementary Tables

Method Input pse pse2 disc
1 Optimal Illumina ht 0.04 4.38 5.82
2 Optimal Illumina 0.03 4.33 5.78
3 Optimal ONT 0.12 13.03 17.79
4 QUILT Illumina ht 0.23 8.9 13.61
5 QUILT Illumina 0.28 10.94 17.07
6 QUILT ONT 0.36 18.35 27.92
7 GLIMPSE Illumina 0.63 13.74 21.47
8 GLIMPSE ONT 1.72 29.52 50.5

(a) 0.1X coverage

Method Input pse pse2 disc
1 Optimal Illumina ht 0.01 2.04 2.57
2 Optimal Illumina 0.01 1.95 2.46
3 Optimal ONT 0.03 4.75 6.7
4 QUILT Illumina ht 0.11 3.72 5.26
5 QUILT Illumina 0.18 5.13 7.74
6 QUILT ONT 0.18 7.99 12.1
7 GLIMPSE Illumina 0.23 5.4 7.96
8 GLIMPSE ONT 0.7 20.32 35.09

(b) 0.25X coverage

Method Input pse pse2 disc
1 Optimal Illumina ht 0 1.36 1.53
2 Optimal Illumina 0 1.31 1.5
3 Optimal ONT 0.01 2.38 3.12
4 QUILT Illumina ht 0.09 2.07 2.66
5 QUILT Illumina 0.11 2.62 3.52
6 QUILT ONT 0.14 4.98 7.51
7 GLIMPSE Illumina 0.14 2.51 3.3
8 GLIMPSE ONT 0.59 16.05 27.98

(c) 0.5X coverage
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Method Input pse pse2 disc
1 Optimal Illumina ht 0 0.94 1.08
2 Optimal Illumina 0 0.96 1.07
3 Optimal ONT 0.01 1.3 1.58
4 QUILT Illumina ht 0.08 1.48 1.75
5 QUILT Illumina 0.13 1.73 2.12
6 QUILT ONT 0.09 2.28 3.24
7 GLIMPSE Illumina 0.13 1.66 2.04
8 GLIMPSE ONT 0.61 11.18 19.12

(d) 1.0X coverage

Method Input pse pse2 disc
1 Optimal Illumina ht 0 0.72 0.81
2 Optimal Illumina 0 0.74 0.82
3 Optimal ONT 0 0.98 1.12
4 QUILT Illumina ht 0.1 1.13 1.27
5 QUILT Illumina 0.15 1.23 1.32
6 QUILT ONT 0.08 1.52 2.01
7 GLIMPSE Illumina 0.15 1.25 1.34
8 GLIMPSE ONT 0.7 6.95 11.03

(e) 2.0X coverage

Supplementary Table 1: Effect of coverage on phasing performance
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Method Optimal Optimal Optimal QUILT QUILT QUILT GLIMPSE GLIMPSE
Data HT Illumina ONT HT Illumina ONT Illumina ONT
Cov 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

(0,0.0001] 0.102 0.089 0.079 0.062 0.058 0.048 0.054 0.019
(0.0001,0.0002] 0.275 0.221 0.176 0.171 0.149 0.079 0.142 0.02
(0.0002,0.0005] 0.336 0.308 0.187 0.192 0.193 0.097 0.146 0.032
(0.0005,0.001] 0.531 0.522 0.329 0.448 0.402 0.222 0.304 0.105
(0.001,0.002] 0.606 0.593 0.457 0.46 0.416 0.343 0.335 0.148
(0.002,0.005] 0.687 0.677 0.504 0.552 0.502 0.384 0.423 0.207
(0.005,0.01] 0.724 0.742 0.567 0.602 0.563 0.441 0.479 0.265
(0.01,0.02] 0.819 0.816 0.627 0.718 0.679 0.507 0.609 0.345
(0.02,0.05] 0.88 0.876 0.682 0.807 0.772 0.582 0.707 0.424
(0.05,0.1] 0.923 0.918 0.764 0.857 0.825 0.678 0.774 0.5
(0.1,0.2] 0.933 0.929 0.764 0.861 0.829 0.686 0.794 0.519
(0.2,0.5] 0.934 0.934 0.769 0.869 0.837 0.68 0.806 0.526

(0.5,0.95] 0.937 0.936 0.789 0.874 0.849 0.711 0.82 0.574
(0.95,1] 0.869 0.858 0.748 0.827 0.822 0.659 0.748 0.488

(a) 0.1X

Method Optimal Optimal Optimal QUILT QUILT QUILT GLIMPSE GLIMPSE
Data HT Illumina ONT HT Illumina ONT Illumina ONT
Cov 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

(0,0.0001] 0.148 0.153 0.093 0.103 0.117 0.07 0.131 0.033
(0.0001,0.0002] 0.355 0.339 0.198 0.289 0.276 0.156 0.285 0.06
(0.0002,0.0005] 0.478 0.462 0.397 0.367 0.38 0.346 0.371 0.137
(0.0005,0.001] 0.64 0.636 0.565 0.553 0.534 0.475 0.522 0.283
(0.001,0.002] 0.68 0.685 0.629 0.635 0.605 0.581 0.562 0.322
(0.002,0.005] 0.775 0.77 0.703 0.721 0.69 0.618 0.661 0.369
(0.005,0.01] 0.844 0.842 0.778 0.792 0.753 0.698 0.734 0.465
(0.01,0.02] 0.893 0.893 0.842 0.852 0.817 0.776 0.801 0.474
(0.02,0.05] 0.934 0.937 0.883 0.91 0.891 0.832 0.875 0.659
(0.05,0.1] 0.965 0.966 0.918 0.941 0.928 0.881 0.917 0.71
(0.1,0.2] 0.972 0.973 0.914 0.951 0.935 0.871 0.927 0.719
(0.2,0.5] 0.977 0.979 0.916 0.954 0.94 0.87 0.931 0.685

(0.5,0.95] 0.978 0.982 0.924 0.962 0.948 0.883 0.942 0.742
(0.95,1] 0.922 0.914 0.848 0.884 0.852 0.826 0.85 0.555

(b) 0.25X
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Method Optimal Optimal Optimal QUILT QUILT QUILT GLIMPSE GLIMPSE
Data HT Illumina ONT HT Illumina ONT Illumina ONT
Cov 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

(0,0.0001] 0.164 0.183 0.121 0.148 0.14 0.122 0.18 0.077
(0.0001,0.0002] 0.38 0.374 0.322 0.319 0.29 0.263 0.352 0.131
(0.0002,0.0005] 0.491 0.515 0.453 0.493 0.469 0.381 0.477 0.228
(0.0005,0.001] 0.667 0.684 0.633 0.638 0.606 0.543 0.609 0.304
(0.001,0.002] 0.744 0.76 0.7 0.709 0.678 0.669 0.672 0.428
(0.002,0.005] 0.807 0.812 0.761 0.784 0.752 0.686 0.738 0.458
(0.005,0.01] 0.869 0.871 0.849 0.851 0.831 0.797 0.822 0.594
(0.01,0.02] 0.928 0.927 0.89 0.905 0.892 0.845 0.892 0.668
(0.02,0.05] 0.955 0.957 0.931 0.945 0.935 0.908 0.934 0.725
(0.05,0.1] 0.98 0.981 0.96 0.973 0.967 0.936 0.966 0.782
(0.1,0.2] 0.984 0.986 0.963 0.978 0.972 0.934 0.97 0.782
(0.2,0.5] 0.987 0.988 0.965 0.98 0.975 0.937 0.974 0.771

(0.5,0.95] 0.989 0.99 0.971 0.983 0.98 0.941 0.978 0.798
(0.95,1] 0.925 0.931 0.926 0.918 0.9 0.898 0.914 0.679

(c) 0.5X

Method Optimal Optimal Optimal QUILT QUILT QUILT GLIMPSE GLIMPSE
Data HT Illumina ONT HT Illumina ONT Illumina ONT
Cov 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0,0.0001] 0.172 0.213 0.153 0.146 0.134 0.143 0.209 0.104
(0.0001,0.0002] 0.387 0.429 0.282 0.334 0.351 0.268 0.372 0.098
(0.0002,0.0005] 0.555 0.58 0.494 0.531 0.532 0.466 0.509 0.242
(0.0005,0.001] 0.763 0.762 0.697 0.729 0.713 0.655 0.72 0.389
(0.001,0.002] 0.809 0.83 0.746 0.776 0.754 0.726 0.765 0.46
(0.002,0.005] 0.849 0.853 0.823 0.824 0.81 0.799 0.801 0.558
(0.005,0.01] 0.913 0.918 0.886 0.897 0.892 0.862 0.876 0.653
(0.01,0.02] 0.948 0.954 0.935 0.938 0.93 0.911 0.92 0.674
(0.02,0.05] 0.971 0.971 0.965 0.962 0.958 0.954 0.954 0.802
(0.05,0.1] 0.985 0.985 0.981 0.981 0.978 0.972 0.977 0.839
(0.1,0.2] 0.989 0.989 0.983 0.986 0.983 0.972 0.983 0.847
(0.2,0.5] 0.991 0.992 0.985 0.988 0.986 0.975 0.986 0.839

(0.5,0.95] 0.993 0.993 0.987 0.989 0.988 0.979 0.987 0.865
(0.95,1] 0.963 0.957 0.942 0.955 0.943 0.927 0.955 0.709

(d) 1.0X
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Method Optimal Optimal Optimal QUILT QUILT QUILT GLIMPSE GLIMPSE
Data HT Illumina ONT HT Illumina ONT Illumina ONT
Cov 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

(0,0.0001] 0.272 0.276 0.194 0.252 0.209 0.188 0.274 0.108
(0.0001,0.0002] 0.521 0.537 0.347 0.434 0.422 0.34 0.456 0.139
(0.0002,0.0005] 0.645 0.648 0.574 0.631 0.625 0.572 0.551 0.329
(0.0005,0.001] 0.778 0.794 0.748 0.774 0.768 0.734 0.714 0.419
(0.001,0.002] 0.854 0.854 0.82 0.811 0.806 0.784 0.785 0.511
(0.002,0.005] 0.877 0.888 0.862 0.864 0.853 0.841 0.832 0.611
(0.005,0.01] 0.934 0.938 0.922 0.93 0.925 0.907 0.908 0.744
(0.01,0.02] 0.966 0.967 0.952 0.959 0.953 0.946 0.939 0.81
(0.02,0.05] 0.978 0.978 0.97 0.974 0.972 0.964 0.967 0.875
(0.05,0.1] 0.988 0.988 0.987 0.986 0.986 0.984 0.985 0.901
(0.1,0.2] 0.992 0.992 0.988 0.99 0.99 0.983 0.988 0.913
(0.2,0.5] 0.994 0.994 0.991 0.992 0.992 0.987 0.991 0.906

(0.5,0.95] 0.994 0.995 0.992 0.993 0.993 0.988 0.991 0.912
(0.95,1] 0.955 0.95 0.963 0.958 0.954 0.949 0.96 0.72

(e) 2.0X

Supplementary Table 2: Imputation accuracy for NA12878 across
methods, data and coverage



26

Method QUILT QUILT QUILT QUILT QUILT Beagle Beagle
Data HT HT HT HT HT UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.062 0.103 0.148 0.146 0.252 0.188 0.121
(0.0001,0.0002] 0.171 0.289 0.319 0.334 0.434 0.276 0.259
(0.0002,0.0005] 0.192 0.367 0.493 0.531 0.631 0.43 0.43
(0.0005,0.001] 0.448 0.553 0.638 0.729 0.774 0.606 0.566
(0.001,0.002] 0.46 0.635 0.709 0.776 0.811 0.694 0.683
(0.002,0.005] 0.552 0.721 0.784 0.824 0.864 0.745 0.72
(0.005,0.01] 0.602 0.792 0.851 0.897 0.93 0.819 0.824
(0.01,0.02] 0.718 0.852 0.905 0.938 0.959 0.885 0.905
(0.02,0.05] 0.807 0.91 0.945 0.962 0.974 0.95 0.944
(0.05,0.1] 0.857 0.941 0.973 0.981 0.986 0.979 0.971
(0.1,0.2] 0.861 0.951 0.978 0.986 0.99 0.986 0.978
(0.2,0.5] 0.869 0.954 0.98 0.988 0.992 0.989 0.984

(0.5,0.95] 0.874 0.962 0.983 0.989 0.993 0.989 0.981
(0.95,1] 0.827 0.884 0.918 0.955 0.958 0.931 0.933

(a) Haplotagged Illumina
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Method QUILT QUILT QUILT QUILT QUILT Beagle Beagle
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.058 0.117 0.14 0.134 0.209 0.188 0.121
(0.0001,0.0002] 0.149 0.276 0.29 0.351 0.422 0.276 0.259
(0.0002,0.0005] 0.193 0.38 0.469 0.532 0.625 0.43 0.43
(0.0005,0.001] 0.402 0.534 0.606 0.713 0.768 0.606 0.566
(0.001,0.002] 0.416 0.605 0.678 0.754 0.806 0.694 0.683
(0.002,0.005] 0.502 0.69 0.752 0.81 0.853 0.745 0.72
(0.005,0.01] 0.563 0.753 0.831 0.892 0.925 0.819 0.824
(0.01,0.02] 0.679 0.817 0.892 0.93 0.953 0.885 0.905
(0.02,0.05] 0.772 0.891 0.935 0.958 0.972 0.95 0.944
(0.05,0.1] 0.825 0.928 0.967 0.978 0.986 0.979 0.971
(0.1,0.2] 0.829 0.935 0.972 0.983 0.99 0.986 0.978
(0.2,0.5] 0.837 0.94 0.975 0.986 0.992 0.989 0.984

(0.5,0.95] 0.849 0.948 0.98 0.988 0.993 0.989 0.981
(0.95,1] 0.822 0.852 0.9 0.943 0.954 0.931 0.933

(b) Illumina
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Method QUILT QUILT QUILT QUILT QUILT Beagle Beagle
Data ONT ONT ONT ONT ONT UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.049 0.072 0.117 0.147 0.188 0.188 0.121
(0.0001,0.0002] 0.091 0.158 0.284 0.279 0.357 0.276 0.259
(0.0002,0.0005] 0.117 0.337 0.403 0.488 0.576 0.43 0.43
(0.0005,0.001] 0.226 0.48 0.56 0.664 0.733 0.606 0.566
(0.001,0.002] 0.354 0.58 0.676 0.741 0.784 0.694 0.683
(0.002,0.005] 0.382 0.624 0.694 0.802 0.844 0.745 0.72
(0.005,0.01] 0.466 0.7 0.793 0.864 0.911 0.819 0.824
(0.01,0.02] 0.522 0.78 0.85 0.913 0.946 0.885 0.905
(0.02,0.05] 0.588 0.836 0.912 0.955 0.964 0.95 0.944
(0.05,0.1] 0.681 0.884 0.938 0.973 0.984 0.979 0.971
(0.1,0.2] 0.694 0.868 0.934 0.974 0.984 0.986 0.978
(0.2,0.5] 0.685 0.87 0.938 0.976 0.987 0.989 0.984

(0.5,0.95] 0.716 0.881 0.944 0.98 0.988 0.989 0.981
(0.95,1] 0.66 0.836 0.89 0.928 0.952 0.931 0.933

(c) ONT

Supplementary Table 3: Imputation accuracy for NA12878 across
methods, data and coverage
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Method Optimal Optimal QUILT QUILT GLIMPSE
Data HT Illumina HT Illumina Illumina
Cov 0.1 0.1 0.1 0.1 0.1

(0,0.0001] 0.024 0.025 0.021 0.019 0.015
(0.0001,0.0002] 0.161 0.161 0.165 0.145 0.116
(0.0002,0.0005] 0.283 0.286 0.281 0.25 0.184
(0.0005,0.001] 0.443 0.446 0.442 0.405 0.327
(0.001,0.002] 0.458 0.463 0.45 0.407 0.328
(0.002,0.005] 0.521 0.527 0.518 0.461 0.364
(0.005,0.01] 0.635 0.636 0.625 0.569 0.476
(0.01,0.02] 0.714 0.709 0.71 0.655 0.564
(0.02,0.05] 0.835 0.837 0.822 0.774 0.705
(0.05,0.1] 0.882 0.885 0.867 0.823 0.761
(0.1,0.2] 0.894 0.898 0.881 0.837 0.782
(0.2,0.5] 0.908 0.911 0.891 0.85 0.804

(0.5,0.95] 0.914 0.917 0.899 0.861 0.818
(0.95,1] 0.736 0.74 0.722 0.678 0.597

(a) 0.1X

Method Optimal Optimal QUILT QUILT GLIMPSE
Data HT Illumina HT Illumina Illumina
Cov 0.25 0.25 0.25 0.25 0.25

(0,0.0001] 0.032 0.031 0.032 0.029 0.029
(0.0001,0.0002] 0.197 0.197 0.208 0.199 0.187
(0.0002,0.0005] 0.339 0.339 0.343 0.329 0.308
(0.0005,0.001] 0.502 0.498 0.505 0.492 0.465
(0.001,0.002] 0.524 0.525 0.531 0.514 0.478
(0.002,0.005] 0.601 0.596 0.609 0.582 0.538
(0.005,0.01] 0.708 0.709 0.721 0.692 0.655
(0.01,0.02] 0.795 0.795 0.801 0.778 0.742
(0.02,0.05] 0.895 0.896 0.895 0.878 0.85
(0.05,0.1] 0.938 0.941 0.937 0.922 0.906
(0.1,0.2] 0.947 0.952 0.948 0.933 0.916
(0.2,0.5] 0.957 0.96 0.956 0.941 0.926

(0.5,0.95] 0.957 0.96 0.956 0.942 0.927
(0.95,1] 0.795 0.794 0.804 0.785 0.768

(b) 0.25X



30

Method Optimal Optimal QUILT QUILT GLIMPSE
Data HT Illumina HT Illumina Illumina
Cov 0.5 0.5 0.5 0.5 0.5

(0,0.0001] 0.04 0.04 0.038 0.038 0.053
(0.0001,0.0002] 0.222 0.225 0.228 0.228 0.235
(0.0002,0.0005] 0.364 0.368 0.372 0.367 0.366
(0.0005,0.001] 0.536 0.538 0.537 0.533 0.527
(0.001,0.002] 0.563 0.564 0.568 0.559 0.551
(0.002,0.005] 0.632 0.634 0.64 0.628 0.615
(0.005,0.01] 0.745 0.75 0.758 0.746 0.73
(0.01,0.02] 0.825 0.83 0.831 0.822 0.808
(0.02,0.05] 0.913 0.917 0.917 0.911 0.904
(0.05,0.1] 0.95 0.954 0.954 0.949 0.944
(0.1,0.2] 0.961 0.965 0.964 0.961 0.954
(0.2,0.5] 0.968 0.971 0.97 0.967 0.961

(0.5,0.95] 0.968 0.971 0.97 0.966 0.961
(0.95,1] 0.818 0.824 0.823 0.814 0.814

(c) 0.5X

Method Optimal Optimal QUILT QUILT GLIMPSE
Data HT Illumina HT Illumina Illumina
Cov 1.0 1.0 1.0 1.0 1.0

(0,0.0001] 0.05 0.05 0.047 0.048 0.078
(0.0001,0.0002] 0.235 0.234 0.247 0.244 0.264
(0.0002,0.0005] 0.398 0.4 0.405 0.404 0.417
(0.0005,0.001] 0.561 0.564 0.563 0.563 0.575
(0.001,0.002] 0.588 0.591 0.594 0.588 0.593
(0.002,0.005] 0.658 0.66 0.662 0.658 0.656
(0.005,0.01] 0.767 0.776 0.778 0.773 0.77
(0.01,0.02] 0.845 0.849 0.849 0.846 0.844
(0.02,0.05] 0.925 0.928 0.927 0.926 0.924
(0.05,0.1] 0.958 0.961 0.96 0.96 0.959
(0.1,0.2] 0.966 0.971 0.969 0.969 0.968
(0.2,0.5] 0.973 0.976 0.975 0.974 0.973

(0.5,0.95] 0.972 0.975 0.974 0.973 0.973
(0.95,1] 0.834 0.836 0.838 0.837 0.852

(d) 1.0X
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Method Optimal Optimal QUILT QUILT GLIMPSE
Data HT Illumina HT Illumina Illumina
Cov 2.0 2.0 2.0 2.0 2.0

(0,0.0001] 0.059 0.064 0.056 0.06 0.113
(0.0001,0.0002] 0.269 0.269 0.274 0.275 0.307
(0.0002,0.0005] 0.431 0.431 0.437 0.437 0.471
(0.0005,0.001] 0.586 0.587 0.593 0.592 0.608
(0.001,0.002] 0.616 0.618 0.615 0.616 0.633
(0.002,0.005] 0.678 0.682 0.681 0.68 0.693
(0.005,0.01] 0.793 0.797 0.797 0.796 0.803
(0.01,0.02] 0.862 0.866 0.863 0.862 0.866
(0.02,0.05] 0.933 0.937 0.934 0.936 0.938
(0.05,0.1] 0.962 0.965 0.963 0.964 0.966
(0.1,0.2] 0.97 0.973 0.971 0.972 0.973
(0.2,0.5] 0.976 0.978 0.977 0.977 0.978

(0.5,0.95] 0.975 0.977 0.976 0.976 0.977
(0.95,1] 0.841 0.845 0.845 0.846 0.871

(e) 2.0X

Supplementary Table 4: Imputation accuracy for 5-Family samples
methods, data and coverage
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Method QUILT QUILT GLIMPSE
Data HT Illumina Illumina
Cov 0.1 0.1 0.1

(0,0.0001] 0.161 0.136 0.088
(0.0001,0.0002] 0.242 0.206 0.125
(0.0002,0.0005] 0.304 0.26 0.16
(0.0005,0.001] 0.413 0.36 0.238
(0.001,0.002] 0.481 0.425 0.31
(0.002,0.005] 0.575 0.516 0.401
(0.005,0.01] 0.658 0.602 0.498
(0.01,0.02] 0.728 0.679 0.589
(0.02,0.05] 0.811 0.767 0.704
(0.05,0.1] 0.85 0.81 0.761
(0.1,0.2] 0.858 0.819 0.776
(0.2,0.5] 0.868 0.834 0.796

(0.5,0.95] 0.879 0.848 0.813
(0.95,1] 0.79 0.748 0.671

(a) 0.1X

Method QUILT QUILT GLIMPSE
Data HT Illumina Illumina
Cov 0.25 0.25 0.25

(0,0.0001] 0.223 0.212 0.185
(0.0001,0.0002] 0.337 0.312 0.259
(0.0002,0.0005] 0.425 0.393 0.322
(0.0005,0.001] 0.55 0.513 0.432
(0.001,0.002] 0.629 0.593 0.519
(0.002,0.005] 0.723 0.687 0.615
(0.005,0.01] 0.799 0.765 0.704
(0.01,0.02] 0.852 0.823 0.774
(0.02,0.05] 0.907 0.886 0.856
(0.05,0.1] 0.938 0.919 0.9
(0.1,0.2] 0.943 0.926 0.909
(0.2,0.5] 0.947 0.931 0.917

(0.5,0.95] 0.952 0.938 0.925
(0.95,1] 0.895 0.874 0.843

(b) 0.25X

Supplementary Table 5: Imputation accuracy for GBR samples with
haplotagging data across methods, data and coverage
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Method Optimal Optimal QUILT QUILT GLIMPSE GLIMPSE
Data Illumina ONT Illumina ONT Illumina ONT
Cov 0.1 0.1 0.1 0.1 0.1 0.1

(0,0.0001] 0.124 0.062 0.067 0.055 0.054 0.034
(0.0001,0.0002] 0.134 0.067 0.074 0.065 0.057 0.034
(0.0002,0.0005] 0.181 0.105 0.117 0.098 0.093 0.046
(0.0005,0.001] 0.263 0.147 0.178 0.142 0.16 0.104
(0.001,0.002] 0.347 0.166 0.233 0.158 0.207 0.119
(0.002,0.005] 0.465 0.266 0.307 0.249 0.29 0.187
(0.005,0.01] 0.541 0.298 0.361 0.281 0.344 0.224
(0.01,0.02] 0.596 0.322 0.412 0.309 0.402 0.247
(0.02,0.05] 0.643 0.371 0.468 0.36 0.46 0.29
(0.05,0.1] 0.662 0.39 0.489 0.382 0.481 0.318
(0.1,0.2] 0.68 0.401 0.507 0.397 0.499 0.326
(0.2,0.5] 0.715 0.454 0.551 0.443 0.548 0.372

(0.5,0.95] 0.737 0.488 0.58 0.477 0.577 0.403
(0.95,1] 0.626 0.39 0.448 0.366 0.458 0.305

(a) 0.1X
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Method Optimal Optimal QUILT QUILT GLIMPSE GLIMPSE
Data Illumina ONT Illumina ONT Illumina ONT
Cov 0.25 0.25 0.25 0.25 0.25 0.25

(0,0.0001] 0.201 0.126 0.16 0.126 0.129 0.066
(0.0001,0.0002] 0.219 0.154 0.155 0.149 0.12 0.075
(0.0002,0.0005] 0.318 0.226 0.238 0.218 0.179 0.111
(0.0005,0.001] 0.43 0.292 0.314 0.284 0.282 0.166
(0.001,0.002] 0.536 0.351 0.401 0.33 0.367 0.216
(0.002,0.005] 0.672 0.454 0.502 0.443 0.482 0.313
(0.005,0.01] 0.757 0.522 0.565 0.503 0.548 0.363
(0.01,0.02] 0.8 0.559 0.624 0.539 0.607 0.394
(0.02,0.05] 0.83 0.587 0.66 0.567 0.641 0.428
(0.05,0.1] 0.844 0.613 0.675 0.591 0.659 0.453
(0.1,0.2] 0.857 0.629 0.691 0.611 0.671 0.474
(0.2,0.5] 0.881 0.664 0.728 0.643 0.711 0.511

(0.5,0.95] 0.889 0.683 0.747 0.662 0.728 0.53
(0.95,1] 0.817 0.605 0.686 0.585 0.662 0.384

(b) 0.25X
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Method Optimal Optimal QUILT QUILT GLIMPSE GLIMPSE
Data Illumina ONT Illumina ONT Illumina ONT
Cov 0.5 0.5 0.5 0.5 0.5 0.5

(0,0.0001] 0.236 0.177 0.19 0.173 0.164 0.089
(0.0001,0.0002] 0.305 0.236 0.246 0.227 0.2 0.107
(0.0002,0.0005] 0.408 0.329 0.34 0.329 0.269 0.155
(0.0005,0.001] 0.516 0.425 0.42 0.426 0.37 0.255
(0.001,0.002] 0.636 0.516 0.529 0.504 0.487 0.342
(0.002,0.005] 0.767 0.62 0.648 0.602 0.617 0.441
(0.005,0.01] 0.849 0.699 0.717 0.678 0.698 0.509
(0.01,0.02] 0.885 0.729 0.756 0.705 0.734 0.527
(0.02,0.05] 0.912 0.759 0.787 0.737 0.768 0.557
(0.05,0.1] 0.924 0.773 0.807 0.748 0.785 0.576
(0.1,0.2] 0.932 0.79 0.82 0.765 0.797 0.584
(0.2,0.5] 0.945 0.809 0.839 0.783 0.822 0.616

(0.5,0.95] 0.948 0.823 0.853 0.802 0.837 0.628
(0.95,1] 0.892 0.744 0.774 0.718 0.761 0.545

(c) 0.5X
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Method Optimal Optimal QUILT QUILT GLIMPSE GLIMPSE
Data Illumina ONT Illumina ONT Illumina ONT
Cov 1.0 1.0 1.0 1.0 1.0 1.0

(0,0.0001] 0.297 0.216 0.272 0.216 0.224 0.109
(0.0001,0.0002] 0.364 0.294 0.337 0.312 0.262 0.125
(0.0002,0.0005] 0.474 0.414 0.452 0.434 0.357 0.209
(0.0005,0.001] 0.601 0.538 0.546 0.539 0.477 0.342
(0.001,0.002] 0.7 0.638 0.64 0.629 0.598 0.439
(0.002,0.005] 0.825 0.749 0.758 0.731 0.735 0.554
(0.005,0.01] 0.9 0.818 0.83 0.797 0.812 0.625
(0.01,0.02] 0.927 0.848 0.861 0.823 0.847 0.648
(0.02,0.05] 0.947 0.869 0.89 0.845 0.874 0.671
(0.05,0.1] 0.955 0.882 0.902 0.859 0.887 0.686
(0.1,0.2] 0.962 0.892 0.91 0.868 0.893 0.693
(0.2,0.5] 0.97 0.905 0.925 0.884 0.908 0.718

(0.5,0.95] 0.971 0.909 0.929 0.888 0.913 0.732
(0.95,1] 0.926 0.838 0.86 0.818 0.849 0.615

(d) 1.0X
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Method Optimal Optimal QUILT QUILT GLIMPSE GLIMPSE
Data Illumina ONT Illumina ONT Illumina ONT
Cov 2.0 2.0 2.0 2.0 2.0 2.0

(0,0.0001] 0.336 0.249 0.322 0.254 0.268 0.14
(0.0001,0.0002] 0.436 0.358 0.417 0.366 0.319 0.173
(0.0002,0.0005] 0.56 0.512 0.537 0.528 0.443 0.298
(0.0005,0.001] 0.664 0.624 0.64 0.628 0.58 0.445
(0.001,0.002] 0.754 0.719 0.732 0.712 0.699 0.562
(0.002,0.005] 0.862 0.823 0.835 0.809 0.815 0.681
(0.005,0.01] 0.924 0.894 0.896 0.881 0.884 0.765
(0.01,0.02] 0.946 0.918 0.923 0.899 0.916 0.788
(0.02,0.05] 0.961 0.932 0.941 0.916 0.933 0.804
(0.05,0.1] 0.967 0.938 0.95 0.921 0.943 0.811
(0.1,0.2] 0.972 0.944 0.955 0.927 0.947 0.814
(0.2,0.5] 0.979 0.954 0.964 0.938 0.956 0.825

(0.5,0.95] 0.979 0.956 0.964 0.94 0.958 0.826
(0.95,1] 0.939 0.909 0.92 0.89 0.91 0.721

(e) 2.0X

Supplementary Table 6: Imputation accuracy for Shafin et al samples
methods, data and coverage
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Method QUILT QUILT QUILT QUILT QUILT Beagle 5.1 Beagle 5.1
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.16 0.203 0.223 0.259 0.288 0.203 0.183
(0.0001,0.0002] 0.127 0.172 0.204 0.244 0.277 0.161 0.13
(0.0002,0.0005] 0.199 0.267 0.341 0.374 0.44 0.204 0.173
(0.0005,0.001] 0.342 0.465 0.544 0.607 0.668 0.356 0.302
(0.001,0.002] 0.492 0.616 0.686 0.744 0.797 0.506 0.422
(0.002,0.005] 0.65 0.78 0.837 0.875 0.903 0.681 0.58
(0.005,0.01] 0.722 0.846 0.899 0.928 0.946 0.784 0.679
(0.01,0.02] 0.771 0.886 0.93 0.952 0.966 0.855 0.743
(0.02,0.05] 0.812 0.912 0.949 0.965 0.975 0.905 0.794
(0.05,0.1] 0.83 0.924 0.955 0.971 0.979 0.929 0.85
(0.1,0.2] 0.843 0.933 0.963 0.976 0.983 0.946 0.89
(0.2,0.5] 0.867 0.947 0.971 0.983 0.988 0.959 0.919

(0.5,0.95] 0.876 0.95 0.974 0.984 0.989 0.962 0.921
(0.95,1] 0.819 0.914 0.947 0.965 0.974 0.901 0.794

(a) ASW
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Method QUILT QUILT QUILT QUILT QUILT Beagle 5.1 Beagle 5.1
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.108 0.169 0.221 0.276 0.373 0.179 0.145
(0.0001,0.0002] 0.21 0.307 0.389 0.467 0.548 0.313 0.275
(0.0002,0.0005] 0.284 0.418 0.481 0.565 0.648 0.383 0.363
(0.0005,0.001] 0.426 0.562 0.64 0.699 0.771 0.543 0.52
(0.001,0.002] 0.517 0.656 0.734 0.782 0.839 0.641 0.631
(0.002,0.005] 0.606 0.745 0.805 0.854 0.891 0.735 0.723
(0.005,0.01] 0.707 0.825 0.877 0.913 0.939 0.819 0.832
(0.01,0.02] 0.771 0.875 0.917 0.943 0.959 0.881 0.898
(0.02,0.05] 0.85 0.928 0.956 0.97 0.979 0.943 0.941
(0.05,0.1] 0.896 0.96 0.977 0.984 0.988 0.976 0.963
(0.1,0.2] 0.91 0.97 0.984 0.989 0.992 0.985 0.975
(0.2,0.5] 0.92 0.974 0.987 0.992 0.994 0.988 0.982

(0.5,0.95] 0.928 0.976 0.988 0.992 0.995 0.988 0.982
(0.95,1] 0.827 0.905 0.937 0.956 0.965 0.928 0.911

(b) CEU
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Method QUILT QUILT QUILT QUILT QUILT Beagle 5.1 Beagle 5.1
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.093 0.164 0.224 0.307 0.402 0.111 0.119
(0.0001,0.0002] 0.158 0.273 0.378 0.49 0.601 0.163 0.171
(0.0002,0.0005] 0.211 0.361 0.481 0.6 0.707 0.23 0.271
(0.0005,0.001] 0.3 0.472 0.583 0.693 0.789 0.318 0.39
(0.001,0.002] 0.421 0.581 0.678 0.768 0.84 0.43 0.485
(0.002,0.005] 0.532 0.673 0.752 0.825 0.876 0.551 0.561
(0.005,0.01] 0.646 0.771 0.833 0.884 0.92 0.671 0.669
(0.01,0.02] 0.741 0.852 0.899 0.93 0.95 0.793 0.803
(0.02,0.05] 0.794 0.898 0.938 0.959 0.972 0.888 0.887
(0.05,0.1] 0.816 0.918 0.955 0.972 0.981 0.935 0.91
(0.1,0.2] 0.838 0.93 0.963 0.978 0.986 0.954 0.929
(0.2,0.5] 0.857 0.942 0.97 0.983 0.989 0.965 0.944

(0.5,0.95] 0.872 0.947 0.972 0.984 0.99 0.967 0.949
(0.95,1] 0.74 0.861 0.911 0.937 0.955 0.856 0.816

(c) CHB
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Method QUILT QUILT QUILT QUILT QUILT Beagle 5.1 Beagle 5.1
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.287 0.395 0.475 0.545 0.622 0.353 0.333
(0.0001,0.0002] 0.3 0.433 0.519 0.61 0.69 0.358 0.331
(0.0002,0.0005] 0.357 0.502 0.594 0.682 0.764 0.397 0.367
(0.0005,0.001] 0.437 0.59 0.685 0.759 0.828 0.482 0.456
(0.001,0.002] 0.487 0.629 0.709 0.783 0.837 0.533 0.498
(0.002,0.005] 0.534 0.674 0.753 0.813 0.861 0.573 0.547
(0.005,0.01] 0.636 0.764 0.833 0.881 0.917 0.689 0.671
(0.01,0.02] 0.692 0.817 0.878 0.917 0.941 0.768 0.775
(0.02,0.05] 0.771 0.887 0.929 0.954 0.969 0.878 0.871
(0.05,0.1] 0.816 0.92 0.955 0.973 0.982 0.94 0.905
(0.1,0.2] 0.833 0.933 0.965 0.979 0.987 0.958 0.928
(0.2,0.5] 0.858 0.945 0.973 0.984 0.99 0.969 0.948

(0.5,0.95] 0.869 0.949 0.974 0.985 0.99 0.971 0.95
(0.95,1] 0.685 0.837 0.891 0.923 0.948 0.827 0.785

(d) PJL
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Method QUILT QUILT QUILT QUILT QUILT Beagle 5.1 Beagle 5.1
Data Illumina Illumina Illumina Illumina Illumina UKBB GSA
Cov 0.1 0.25 0.5 1.0 2.0

(0,0.0001] 0.079 0.11 0.142 0.177 0.231 0.13 0.088
(0.0001,0.0002] 0.181 0.266 0.324 0.369 0.451 0.268 0.223
(0.0002,0.0005] 0.34 0.45 0.511 0.579 0.651 0.41 0.384
(0.0005,0.001] 0.415 0.545 0.627 0.689 0.746 0.48 0.456
(0.001,0.002] 0.5 0.629 0.707 0.766 0.814 0.565 0.52
(0.002,0.005] 0.613 0.741 0.808 0.854 0.888 0.67 0.619
(0.005,0.01] 0.709 0.826 0.878 0.913 0.937 0.781 0.735
(0.01,0.02] 0.766 0.874 0.919 0.943 0.96 0.851 0.81
(0.02,0.05] 0.822 0.915 0.947 0.964 0.975 0.912 0.87
(0.05,0.1] 0.859 0.942 0.966 0.977 0.983 0.954 0.921
(0.1,0.2] 0.88 0.955 0.975 0.984 0.989 0.971 0.948
(0.2,0.5] 0.897 0.963 0.981 0.988 0.992 0.979 0.963

(0.5,0.95] 0.906 0.966 0.983 0.989 0.993 0.98 0.965
(0.95,1] 0.792 0.9 0.931 0.953 0.964 0.897 0.829

(e) PUR

Supplementary Table 7: Imputation accuracy for 1000 Genomes pop-
ulations across methods, data and coverage
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW rare States 45 80 62.2 85.7 91.2 68.4 94.9 91.2 61.4 100
ASW rare Joint 45 80 62.2 85.7 91.2 70.2 95 94.7 89.5 94.1
ASW common States 75 82.7 64 93.8 96.8 55.6 97.1 90.5 58.7 97.3
ASW common Joint 75 82.7 64 93.8 98.4 63.5 97.5 95.2 93.7 96.6
ASW all States 120 81.7 63.3 90.8 94.2 61.7 95.9 90.8 60 98.6
ASW all Joint 120 81.7 63.3 90.8 95 66.7 96.2 95 91.7 95.5
CEU rare States 38 100 89.5 100 97.4 68.4 100 92.1 68.4 100
CEU rare Joint 38 100 89.5 100 97.4 68.4 100 97.4 84.2 100
CEU common States 160 97.5 82.5 100 98.8 76.2 99.2 99.4 67.5 100
CEU common Joint 160 97.5 82.5 100 100 73.8 100 100 83.8 100
CEU all States 198 98 83.8 100 98.5 74.7 99.3 98 67.7 100
CEU all Joint 198 98 83.8 100 99.5 72.7 100 99.5 83.8 100
CHB rare States 69 84.1 79.7 85.5 92.8 44.9 96.8 91.3 33.3 100
CHB rare Joint 69 84.1 79.7 85.5 92.8 40.6 96.4 95.7 66.7 97.8
CHB common States 137 89.8 86.9 92.4 95.6 38.7 100 97.1 48.9 100
CHB common Joint 137 89.8 86.9 92.4 96.4 43.8 100 98.5 73 100
CHB all States 206 87.9 84.5 90.2 94.7 40.8 98.8 95.1 43.7 100
CHB all Joint 206 87.9 84.5 90.2 95.1 42.7 98.9 97.6 70.9 99.3
PJL rare States 33 69.7 84.8 78.6 78.8 42.4 92.9 84.8 48.5 93.8
PJL rare Joint 33 69.7 84.8 78.6 78.8 48.5 93.8 87.9 84.8 92.9
PJL common States 159 93.1 86.8 97.8 98.1 70.4 99.1 98.7 70.4 99.1
PJL common Joint 159 93.1 86.8 97.8 98.1 71.7 99.1 99.4 93.1 99.3
PJL all States 192 89.1 86.5 94.6 94.8 65.6 98.4 96.4 66.7 98.4
PJL all Joint 192 89.1 86.5 94.6 94.8 67.7 98.5 97.4 91.7 98.3
PUR rare States 91 81.3 81.3 83.8 81.3 63.7 86.2 79.1 61.5 85.7
PUR rare Joint 91 81.3 81.3 83.8 83.5 68.1 88.7 91.2 91.2 91.6
PUR common States 117 91.5 65 96.1 98.3 70.1 100 97.4 63.2 100
PUR common Joint 117 91.5 65 96.1 99.1 71.8 100 97.4 84.6 100
PUR all States 208 87 72.1 90 90.9 67.3 94.3 89.4 62.5 93.8
PUR all Joint 208 87 72.1 90 92.3 70.2 95.2 94.7 87.5 96.2
ALL rare States 412 83.7 78.9 89.2 90.8 59.2 94.7 88.6 56.1 95.7
ALL rare Joint 412 83.7 78.9 89.2 91.7 60.9 95.2 94.7 84.7 95.7
ALL common States 512 93.8 79.5 96.8 97.7 64.1 99.4 98.6 63.1 99.7
ALL common Joint 512 93.8 79.5 96.8 98.2 65.8 99.7 98.8 84.2 99.8
ALL all States 924 89.3 79.2 93.4 94.6 61.9 97.4 94.2 60 98
ALL all Joint 924 89.3 79.2 93.4 95.3 63.6 97.8 97 84.4 97.9

(a) HLA-A
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW rare States 62 87.1 69.4 97.7 82.4 35.3 100 91.2 58.8 100
ASW rare Joint 62 87.1 69.4 97.7 82.4 30.9 100 92.6 88.2 95
ASW common States 58 86.2 60.3 97.1 90.4 30.8 100 92.3 53.8 100
ASW common Joint 58 86.2 60.3 97.1 88.5 28.8 100 96.2 92.3 95.8
ASW all States 120 86.7 65 97.4 85.8 33.3 100 91.7 56.7 100
ASW all Joint 120 86.7 65 97.4 85 30 100 94.2 90 95.4
CEU rare States 61 85.2 77 100 90.2 54.1 100 88.5 45.9 96.4
CEU rare Joint 61 85.2 77 100 88.5 63.9 100 95.1 72.1 97.7
CEU common States 137 97.8 89.8 100 99.3 72.3 100 99.3 73 100
CEU common Joint 137 97.8 89.8 100 99.3 79.6 100 100 86.1 100
CEU all States 198 93.9 85.9 100 96.5 66.7 100 96 64.6 99.2
CEU all Joint 198 93.9 85.9 100 96 74.7 100 98.5 81.8 99.4
CHB rare States 119 84.9 72.3 91.9 86.6 31.1 94.6 81.5 37 95.5
CHB rare Joint 119 84.9 72.3 91.9 88.2 34.5 95.1 92.4 68.1 96.3
CHB common States 87 88.5 78.2 97.1 90.8 40.2 97.1 92 43.7 100
CHB common Joint 87 88.5 78.2 97.1 93.1 42.5 97.3 96.6 70.1 96.7
CHB all States 206 86.4 74.8 94.2 88.3 35 95.8 85.9 39.8 97.6
CHB all Joint 206 86.4 74.8 94.2 90.3 37.9 96.2 94.2 68.9 96.5
PJL rare States 80 78.8 58.8 87.2 80 47.5 94.7 78.8 32.5 92.3
PJL rare Joint 80 78.8 58.8 87.2 82.5 50 95 88.8 68.8 96.4
PJL common States 112 91.1 68.8 94.8 96.4 57.1 98.4 92 39.3 97.7
PJL common Joint 112 91.1 68.8 94.8 95.5 60.7 98.5 95.5 70.5 98.7
PJL all States 192 85.9 64.6 91.9 89.6 53.1 97.1 86.5 36.5 95.7
PJL all Joint 192 85.9 64.6 91.9 90.1 56.2 97.2 92.7 69.8 97.8
PUR rare States 130 73.8 63.1 85.4 76.9 30.8 100 80 40 92.3
PUR rare Joint 130 73.8 63.1 85.4 80 33.1 100 88.5 63.8 94
PUR common States 78 85.9 66.7 92.3 94.9 43.6 100 91 51.3 100
PUR common Joint 78 85.9 66.7 92.3 94.9 44.9 100 96.2 65.4 100
PUR all States 208 78.4 64.4 88.1 83.7 35.6 100 84.1 44.2 95.7
PUR all Joint 208 78.4 64.4 88.1 85.6 37.5 100 91.3 64.4 96.3
ALL rare States 639 82.3 66.5 92.2 84.7 39.1 97.6 84.4 41.5 96.2
ALL rare Joint 639 82.3 66.5 92.2 85.9 42.3 97.8 92 69.6 96
ALL common States 285 94.7 82.5 98.3 98.6 59.6 100 97.9 61.4 100
ALL common Joint 285 94.7 82.5 98.3 98.2 62.5 100 98.9 82.5 99.6
ALL all States 924 86.1 71.4 94.4 89 45.5 98.6 88.5 47.6 97.7
ALL all Joint 924 86.1 71.4 94.4 89.7 48.5 98.7 94.2 73.6 97.2

(b) HLA-B
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW rare States 35 94.3 94.3 97 88.6 71.4 92 88.6 74.3 96.2
ASW rare Joint 35 94.3 94.3 97 91.4 74.3 92.3 97.1 100 97.1
ASW common States 87 95.4 97.7 95.3 97.7 70.1 98.4 97.7 89.7 98.7
ASW common Joint 87 95.4 97.7 95.3 96.6 69 98.3 98.9 97.7 98.8
ASW all States 122 95.1 96.7 95.8 95.1 70.5 96.5 95.1 85.2 98.1
ASW all Joint 122 95.1 96.7 95.8 95.1 70.5 96.5 98.4 98.4 98.3
CEU rare States 56 91.1 98.2 90.9 92.9 82.1 91.3 92.9 94.6 92.5
CEU rare Joint 56 91.1 98.2 90.9 92.9 80.4 91.1 94.6 96.4 94.4
CEU common States 142 99.3 99.3 99.3 98.6 84.5 100 99.3 97.9 100
CEU common Joint 142 99.3 99.3 99.3 99.3 85.2 100 99.3 100 99.3
CEU all States 198 97 99 96.9 97 83.8 97.6 97.5 97 97.9
CEU all Joint 198 97 99 96.9 97.5 83.8 97.6 98 99 98
CHB rare States 36 86.1 100 86.1 77.8 61.1 95.5 86.1 91.7 87.9
CHB rare Joint 36 86.1 100 86.1 80.6 63.9 95.7 88.9 94.4 91.2
CHB common States 170 88.2 84.7 95.8 97.6 69.4 100 98.2 78.2 99.2
CHB common Joint 170 88.2 84.7 95.8 98.2 72.4 100 99.4 92.9 100
CHB all States 206 87.9 87.4 93.9 94.2 68 99.3 96.1 80.6 97
CHB all Joint 206 87.9 87.4 93.9 95.1 70.9 99.3 97.6 93.2 98.4
PJL rare States 56 91.1 89.3 98 98.2 78.6 97.7 98.2 94.6 98.1
PJL rare Joint 56 91.1 89.3 98 98.2 82.1 97.8 98.2 92.9 98.1
PJL common States 136 99.3 98.5 99.3 99.3 89.7 100 99.3 94.9 99.2
PJL common Joint 136 99.3 98.5 99.3 99.3 89.7 100 99.3 97.1 100
PJL all States 192 96.9 95.8 98.9 99 86.5 99.4 99 94.8 98.9
PJL all Joint 192 96.9 95.8 98.9 99 87.5 99.4 99 95.8 99.5
PUR rare States 68 88.2 95.6 89.2 92.6 67.6 95.7 94.1 79.4 98.1
PUR rare Joint 68 88.2 95.6 89.2 94.1 75 94.1 97.1 91.2 96.8
PUR common States 140 99.3 97.9 100 98.6 75.7 100 97.9 88.6 99.2
PUR common Joint 140 99.3 97.9 100 99.3 79.3 100 99.3 97.1 99.3
PUR all States 208 95.7 97.1 96.5 96.6 73.1 98.7 96.6 85.6 98.9
PUR all Joint 208 95.7 97.1 96.5 97.6 77.9 98.1 98.6 95.2 98.5
ALL rare States 384 89.1 93.5 93.3 93.5 68.8 96.6 94.5 83.9 96.9
ALL rare Joint 384 89.1 93.5 93.3 94.3 71.9 96.4 96.9 93.8 97.2
ALL common States 542 98.2 96.1 98.7 98.5 82.3 99.6 98.7 92.3 99
ALL common Joint 542 98.2 96.1 98.7 98.9 83.4 99.6 99.3 97.8 99.4
ALL all States 926 94.4 95 96.5 96.4 76.7 98.5 97 88.8 98.2
ALL all Joint 926 94.4 95 96.5 97 78.6 98.4 98.3 96.1 98.5

(c) HLA-C
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW rare States 22 81.8 68.2 86.7 77.3 18.2 100 86.4 54.5 100
ASW rare Joint 22 81.8 68.2 86.7 86.4 45.5 100 90.9 95.5 95.2
ASW common States 100 86 73 93.2 82 14 85.7 84 48 91.7
ASW common Joint 100 86 73 93.2 89 34 97.1 93 83 95.2
ASW all States 122 85.2 72.1 92 81.1 14.8 88.9 84.4 49.2 93.3
ASW all Joint 122 85.2 72.1 92 88.5 36.1 97.7 92.6 85.2 95.2
CEU rare States 17 100 94.1 100 94.1 29.4 100 100 64.7 100
CEU rare Joint 17 100 94.1 100 100 29.4 100 100 100 100
CEU common States 169 87.6 67.5 96.5 92.9 31.4 98.1 94.1 45.6 98.7
CEU common Joint 169 87.6 67.5 96.5 95.3 49.1 100 99.4 100 99.4
CEU all States 186 88.7 69.9 96.9 93 31.2 98.3 94.6 47.3 98.9
CEU all Joint 186 88.7 69.9 96.9 95.7 47.3 100 99.5 100 99.5
CHB rare States 9 55.6 44.4 75 87.5 25 100 92.9 55.4 100
CHB rare Joint 9 55.6 44.4 75 92.9 48.2 100 96.4 94.6 98.1
CHB common States 81 97.5 71.6 98.3 97.1 17.6 100 100 38.2 100
CHB common Joint 81 97.5 71.6 98.3 97.1 32.4 100 100 97.1 100
CHB all States 90 93.3 68.9 96.8 91.1 22.2 100 95.6 48.9 100
CHB all Joint 90 93.3 68.9 96.8 94.4 42.2 100 97.8 95.6 98.8
PJL rare States 35 94.3 85.7 100 88.6 31.4 100 94.3 74.3 100
PJL rare Joint 35 94.3 85.7 100 94.3 62.9 95.5 97.1 97.1 100
PJL common States 157 86.6 58.6 93.5 93 23.6 94.6 95.5 61.1 99
PJL common Joint 157 86.6 58.6 93.5 95.5 54.8 98.8 98.7 98.1 98.7
PJL all States 192 88 63.5 95.1 92.2 25 95.8 95.3 63.5 99.2
PJL all Joint 192 88 63.5 95.1 95.3 56.2 98.1 98.4 97.9 98.9
PUR rare States 21 85.7 57.1 91.7 85.4 19.5 87.5 87.8 51.2 85.7
PUR rare Joint 21 85.7 57.1 91.7 95.1 39 93.8 90.2 95.1 94.9
PUR common States 147 86.4 58.5 95.3 92.1 15.7 95 89.8 40.2 100
PUR common Joint 147 86.4 58.5 95.3 92.1 29.9 97.4 99.2 93.7 99.2
PUR all States 168 86.3 58.3 94.9 90.5 16.7 92.9 89.3 42.9 95.8
PUR all Joint 168 86.3 58.3 94.9 92.9 32.1 96.3 97 94 98.1
ALL rare States 201 81.6 63.7 92.2 85.1 17.4 97.1 86.1 53.2 93.5
ALL rare Joint 201 81.6 63.7 92.2 89.6 42.8 97.7 93 90.5 96.7
ALL common States 557 90.3 66.8 96.2 91.9 24.6 95.6 94.3 50.1 99.3
ALL common Joint 557 90.3 66.8 96.2 95.2 44.2 98.8 98.9 96.9 98.9
ALL all States 758 88 66 95.2 90.1 22.7 95.9 92.1 50.9 97.7
ALL all Joint 758 88 66 95.2 93.7 43.8 98.5 97.4 95.3 98.3

(d) HLA-DQB1
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW rare States 76 65.8 57.9 72.7 64.5 5.3 100 51.3 0 NaN
ASW rare Joint 76 65.8 57.9 72.7 64.5 7.9 100 75 56.6 88.4
ASW common States 46 93.5 65.2 96.7 71.7 0 NaN 69.6 4.3 100
ASW common Joint 46 93.5 65.2 96.7 67.4 8.7 50 69.6 63 69
ASW all States 122 76.2 60.7 82.4 67.2 3.3 100 58.2 1.6 100
ASW all Joint 122 76.2 60.7 82.4 65.6 8.2 80 73 59 80.6
CEU rare States 43 67.4 32.6 78.6 55.8 0 NaN 34.9 7 33.3
CEU rare Joint 43 67.4 32.6 78.6 48.8 9.3 0 55.8 51.2 68.2
CEU common States 155 83.9 46.5 97.2 81.9 16.8 100 67.7 12.3 100
CEU common Joint 155 83.9 46.5 97.2 82.6 21.9 100 83.2 55.5 96.5
CEU all States 198 80.3 43.4 94.2 76.3 13.1 100 60.6 11.1 90.9
CEU all Joint 198 80.3 43.4 94.2 75.3 19.2 89.5 77.3 54.5 90.7
CHB rare States 76 63.2 46.1 82.9 68.4 9.2 100 56.6 9.2 100
CHB rare Joint 76 63.2 46.1 82.9 65.8 11.8 88.9 73.7 47.4 83.3
CHB common States 130 85.4 54.6 94.4 86.9 11.5 100 63.8 3.8 100
CHB common Joint 130 85.4 54.6 94.4 91.5 17.7 100 97.7 73.8 99
CHB all States 206 77.2 51.5 90.6 80.1 10.7 100 61.2 5.8 100
CHB all Joint 206 77.2 51.5 90.6 82 15.5 96.9 88.8 64.1 94.7
PJL rare States 45 68.9 55.6 72 68.9 4.4 100 60 2.2 100
PJL rare Joint 45 68.9 55.6 72 64.4 8.9 100 68.9 44.4 80
PJL common States 147 91.2 70.1 96.1 91.2 13.6 100 76.2 11.6 100
PJL common Joint 147 91.2 70.1 96.1 95.2 24.5 100 94.6 73.5 99.1
PJL all States 192 85.9 66.7 91.4 85.9 11.5 100 72.4 9.4 100
PJL all Joint 192 85.9 66.7 91.4 88 20.8 100 88.5 66.7 96.1
PUR rare States 107 65.4 29.9 75 60.7 12.1 100 44.9 1.9 100
PUR rare Joint 107 65.4 29.9 75 64.5 15 93.8 70.1 51.4 90.9
PUR common States 101 76.2 31.7 90.6 73.3 3 66.7 73.3 0 NaN
PUR common Joint 101 76.2 31.7 90.6 78.2 7.9 100 87.1 62.4 93.7
PUR all States 208 70.7 30.8 82.8 66.8 7.7 93.8 58.7 1 100
PUR all Joint 208 70.7 30.8 82.8 71.2 11.5 95.8 78.4 56.7 92.4
ALL rare States 631 70.2 44.5 83.6 67.4 6.7 97.6 53.1 4 92
ALL rare Joint 631 70.2 44.5 83.6 68.3 11.7 89.2 74.6 54 87.4
ALL common States 295 94.9 60 97.7 93.9 16.3 100 82.4 10.5 100
ALL common Joint 295 94.9 60 97.7 96.3 23.7 100 97.3 73.6 99.1
ALL all States 926 78.1 49.5 89.1 75.8 9.7 98.9 62.4 6 96.4
ALL all Joint 926 78.1 49.5 89.1 77.2 15.6 94.4 81.9 60.3 91.9

(e) HLA-DRB1

Supplementary Table 8: HLA imputation accuracy for 1000 Genomes
populations across populations, methods, and coverage Qmethod refers
to whether QUILT results are just using results from a labelled haplotype refer-
ence panel (States), or jointly using the labelled reference panel and read map-
ping (Joint). Array results are unaffected by this setting and are listed twice
for simplicity. Population ALL refers to running all individuals as if they were
from a single population. freq referring to frequency refers to whether analyses
are restricted to alleles that are rare (less than or equal to 5 % frequency in the
truth samples for that population) or common. Across the 9 accuracy columns,
the prefix A, L and H refers to A for the array based method (SNP2HLA style
using Beagle), and otherwise L for low (0.1X) and H for high (2.0X) coverage
sequence using QUILT-HLA. For the suffix, accA is accuracy across all samples
regardless of confidence (i.e. always taking the most likely called HLA alleles),
while perT is percent of samples that meet the threshold (0.90), and accT is
accuracy only on the high confidence HLA alleles.
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 27:05 States 2 100 100 100 100 100 100 100 100 100
ASW 27:05 Joint 2 100 100 100 100 100 100 100 100 100
CEU 27:05 States 6 83.3 66.7 100 100 66.7 100 100 50 100
CEU 27:05 Joint 6 83.3 66.7 100 100 66.7 100 100 83.3 100
CHB 27:05 States 1 100 100 100 100 100 100 100 0 NaN
CHB 27:05 Joint 1 100 100 100 100 100 100 100 100 100
PJL 27:05 States 3 100 33.3 100 100 66.7 100 100 33.3 100
PJL 27:05 Joint 3 100 33.3 100 100 66.7 100 100 66.7 100
PUR 27:05 States 1 100 100 100 100 100 100 100 100 100
PUR 27:05 Joint 1 100 100 100 100 100 100 100 100 100
ALL 27:05 States 13 92.3 69.2 100 100 76.9 100 100 53.8 100
ALL 27:05 Joint 13 92.3 69.2 100 100 76.9 100 100 84.6 100

(a) HLA-B, 27:05

pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 57:01 States 0
ASW 57:01 Joint 0
CEU 57:01 States 13 100 84.6 100 100 69.2 100 100 61.5 100
CEU 57:01 Joint 13 100 84.6 100 100 92.3 100 100 92.3 100
CHB 57:01 States 1 100 100 100 100 0 NaN 100 100 100
CHB 57:01 Joint 1 100 100 100 100 0 NaN 100 100 100
PJL 57:01 States 8 100 75 100 100 75 100 100 50 100
PJL 57:01 Joint 8 100 75 100 100 87.5 100 100 87.5 100
PUR 57:01 States 5 100 80 100 100 40 100 100 40 100
PUR 57:01 Joint 5 100 80 100 100 40 100 100 100 100
ALL 57:01 States 27 100 81.5 100 100 63 100 100 55.6 100
ALL 57:01 Joint 27 100 81.5 100 100 77.8 100 100 92.6 100

(b) HLA-B, 57:01
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 58:01 States 8 87.5 62.5 100 75 12.5 100 100 50 100
ASW 58:01 Joint 8 87.5 62.5 100 75 12.5 100 100 100 100
CEU 58:01 States 0
CEU 58:01 Joint 0
CHB 58:01 States 16 93.8 81.2 100 93.8 62.5 100 87.5 62.5 100
CHB 58:01 Joint 16 93.8 81.2 100 100 62.5 100 100 68.8 100
PJL 58:01 States 5 100 40 100 100 60 100 100 0 NaN
PJL 58:01 Joint 5 100 40 100 100 60 100 100 80 100
PUR 58:01 States 2 100 100 100 50 50 100 100 50 100
PUR 58:01 Joint 2 100 100 100 100 50 100 100 100 100
ALL 58:01 States 31 93.5 71 100 87.1 48.4 100 93.5 48.4 100
ALL 58:01 Joint 31 93.5 71 100 93.5 48.4 100 100 80.6 100

(c) HLA-B, 58:01

pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 02:01 States 6 83.3 50 100 83.3 50 100 100 50 100
ASW 02:01 Joint 6 83.3 50 100 100 83.3 100 100 100 100
CEU 02:01 States 17 94.1 76.5 100 100 23.5 100 100 35.3 100
CEU 02:01 Joint 17 94.1 76.5 100 94.1 52.9 100 100 100 100
CHB 02:01 States 5 100 60 100 100 0 NaN 100 40 100
CHB 02:01 Joint 5 100 60 100 100 40 100 100 100 100
PJL 02:01 States 36 86.1 69.4 92 94.4 13.9 100 97.2 63.9 100
PJL 02:01 Joint 36 86.1 69.4 92 97.2 30.6 100 100 97.2 100
PUR 02:01 States 11 81.8 45.5 100 100 9.1 100 90.9 45.5 100
PUR 02:01 Joint 11 81.8 45.5 100 100 36.4 100 100 100 100
ALL 02:01 States 75 88 65.3 95.9 96 17.3 100 97.3 52 100
ALL 02:01 Joint 75 88 65.3 95.9 97.3 41.3 100 100 98.7 100

(d) HLA-DQB1, 02:01
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 03:02 States 4 75 25 100 100 0 NaN 75 0 NaN
ASW 03:02 Joint 4 75 25 100 100 0 NaN 100 25 100
CEU 03:02 States 0
CEU 03:02 Joint 0
CHB 03:02 States 0
CHB 03:02 Joint 0
PJL 03:02 States 0
PJL 03:02 Joint 0
PUR 03:02 States 8 50 25 100 87.5 25 100 50 0 NaN
PUR 03:02 Joint 8 50 25 100 87.5 25 100 87.5 62.5 100
ALL 03:02 States 12 58.3 25 100 91.7 16.7 100 58.3 0 NaN
ALL 03:02 Joint 12 58.3 25 100 91.7 16.7 100 91.7 50 100

(e) HLA-DRB1, 03:02

pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 04:01 States 5 80 40 100 40 0 NaN 0 0 NaN
ASW 04:01 Joint 5 80 40 100 60 0 NaN 60 40 100
CEU 04:01 States 25 88 52 100 52 0 NaN 20 0 NaN
CEU 04:01 Joint 25 88 52 100 48 0 NaN 52 16 100
CHB 04:01 States 3 33.3 0 NaN 0 0 NaN 33.3 0 NaN
CHB 04:01 Joint 3 33.3 0 NaN 0 0 NaN 66.7 0 NaN
PJL 04:01 States 1 0 100 0 0 0 NaN 0 0 NaN
PJL 04:01 Joint 1 0 100 0 0 0 NaN 0 0 NaN
PUR 04:01 States 4 75 50 100 25 0 NaN 0 0 NaN
PUR 04:01 Joint 4 75 50 100 50 0 NaN 50 25 100
ALL 04:01 States 38 78.9 47.4 94.4 42.1 0 NaN 15.8 0 NaN
ALL 04:01 Joint 38 78.9 47.4 94.4 44.7 0 NaN 52.6 18.4 100

(f) HLA-DRB1, 04:01
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pop freq Qmethod N AaccA AperT AaccT LaccA LperT LaccT HaccA HperT HaccT
ASW 08:01 States 0
ASW 08:01 Joint 0
CEU 08:01 States 5 100 40 100 80 0 NaN 80 0 NaN
CEU 08:01 Joint 5 100 40 100 20 20 0 0 80 0
CHB 08:01 States 1 0 0 NaN 100 0 NaN 100 0 NaN
CHB 08:01 Joint 1 0 0 NaN 100 0 NaN 0 0 NaN
PJL 08:01 States 1 100 100 100 100 0 NaN 0 0 NaN
PJL 08:01 Joint 1 100 100 100 0 0 NaN 0 0 NaN
PUR 08:01 States 2 100 100 100 50 0 NaN 100 0 NaN
PUR 08:01 Joint 2 100 100 100 50 50 0 0 100 0
ALL 08:01 States 9 88.9 55.6 100 77.8 0 NaN 77.8 0 NaN
ALL 08:01 Joint 9 88.9 55.6 100 33.3 22.2 0 0 66.7 0

(g) HLA-DRB1, 08:01

Supplementary Table 9: HLA imputation accuracy for 1000 Genomes
populations for specific alleles with medical importance Format is the
same as the previous Supplementary Table, except that freq here is just the
specific allele under interrogation, and rows for which there are no truth values
are listed as blank. Alleles are selected as per Karnes et al. [8]
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Pop Cov Per-X-cost Pheno-cost GR Gimp Ggsa r2 imp r2 gsa
1 CHB 0.1 26.458 5 3.527 33311.535 9444.559 0.857 0.944
2 CHB 0.1 26.458 50 1.344 12696.680 9444.559 0.857 0.944
3 CHB 0.1 13.229 5 4.134 39047.455 9444.559 0.857 0.944
4 CHB 0.1 13.229 50 1.378 13015.533 9444.559 0.857 0.944
5 CHB 0.1 6.615 5 4.524 42725.404 9444.559 0.857 0.944
6 CHB 0.1 6.615 50 1.396 13180.959 9444.559 0.857 0.944
7 CHB 0.25 26.458 5 2.690 25410.385 9444.559 0.942 0.944
8 CHB 0.25 26.458 50 1.376 12998.143 9444.559 0.942 0.944
9 CHB 0.25 13.229 5 3.611 34103.758 9444.559 0.942 0.944

10 CHB 0.25 13.229 50 1.460 13784.682 9444.559 0.942 0.944
11 CHB 0.25 6.615 5 4.356 41141.161 9444.559 0.942 0.944
12 CHB 0.25 6.615 50 1.505 14214.217 9444.559 0.942 0.944
13 CHB 0.5 26.458 5 1.835 17329.334 9444.559 0.970 0.944
14 CHB 0.5 26.458 50 1.272 12013.272 9444.559 0.970 0.944
15 CHB 0.5 13.229 5 2.770 26164.219 9444.559 0.970 0.944
16 CHB 0.5 13.229 50 1.417 13383.751 9444.559 0.970 0.944
17 CHB 0.5 6.615 5 3.718 35115.494 9444.559 0.970 0.944
18 CHB 0.5 6.615 50 1.503 14193.623 9444.559 0.970 0.944
19 CHB 1.0 26.458 5 1.110 10486.151 9444.559 0.983 0.944
20 CHB 1.0 26.458 50 1.070 10107.608 9444.559 0.983 0.944
21 CHB 1.0 13.229 5 1.860 17567.376 9444.559 0.983 0.944
22 CHB 1.0 13.229 50 1.289 12178.291 9444.559 0.983 0.944
23 CHB 1.0 6.615 5 2.808 26523.621 9444.559 0.983 0.944
24 CHB 1.0 6.615 50 1.437 13567.595 9444.559 0.983 0.944
25 CHB 2.0 26.458 5 0.619 5842.710 9444.559 0.989 0.944
26 CHB 2.0 26.458 50 0.804 7591.070 9444.559 0.989 0.944
27 CHB 2.0 13.229 5 1.117 10552.498 9444.559 0.989 0.944
28 CHB 2.0 13.229 50 1.077 10171.559 9444.559 0.989 0.944
29 CHB 2.0 6.615 5 1.872 17678.527 9444.559 0.989 0.944
30 CHB 2.0 6.615 50 1.298 12255.344 9444.559 0.989 0.944

(a) Common variant GWAS-type analysis
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Pop Cov Per-X-cost Pheno-cost GR Gimp Ggsa r2 imp r2 gsa
1 CHB 0.1 26.458 5 3.377 16374.772 4848.488 0.421 0.485
2 CHB 0.1 26.458 50 1.287 6241.239 4848.488 0.421 0.485
3 CHB 0.1 13.229 5 3.959 19194.348 4848.488 0.421 0.485
4 CHB 0.1 13.229 50 1.320 6397.976 4848.488 0.421 0.485
5 CHB 0.1 6.615 5 4.332 21002.297 4848.488 0.421 0.485
6 CHB 0.1 6.615 50 1.336 6479.293 4848.488 0.421 0.485
7 CHB 0.25 26.458 5 3.232 15671.161 4848.488 0.581 0.485
8 CHB 0.25 26.458 50 1.653 8016.249 4848.488 0.581 0.485
9 CHB 0.25 13.229 5 4.338 21032.561 4848.488 0.581 0.485

10 CHB 0.25 13.229 50 1.753 8501.326 4848.488 0.581 0.485
11 CHB 0.25 6.615 5 5.233 25372.687 4848.488 0.581 0.485
12 CHB 0.25 6.615 50 1.808 8766.230 4848.488 0.581 0.485
13 CHB 0.5 26.458 5 2.500 12120.865 4848.488 0.678 0.485
14 CHB 0.5 26.458 50 1.733 8402.588 4848.488 0.678 0.485
15 CHB 0.5 13.229 5 3.774 18300.355 4848.488 0.678 0.485
16 CHB 0.5 13.229 50 1.931 9361.158 4848.488 0.678 0.485
17 CHB 0.5 6.615 5 5.066 24561.253 4848.488 0.678 0.485
18 CHB 0.5 6.615 50 2.048 9927.617 4848.488 0.678 0.485
19 CHB 1.0 26.458 5 1.689 8186.860 4848.488 0.768 0.485
20 CHB 1.0 26.458 50 1.628 7891.320 4848.488 0.768 0.485
21 CHB 1.0 13.229 5 2.829 13715.390 4848.488 0.768 0.485
22 CHB 1.0 13.229 50 1.961 9507.965 4848.488 0.768 0.485
23 CHB 1.0 6.615 5 4.271 20707.805 4848.488 0.768 0.485
24 CHB 1.0 6.615 50 2.185 10592.638 4848.488 0.768 0.485
25 CHB 2.0 26.458 5 1.022 4957.452 4848.488 0.840 0.485
26 CHB 2.0 26.458 50 1.328 6440.910 4848.488 0.840 0.485
27 CHB 2.0 13.229 5 1.847 8953.637 4848.488 0.840 0.485
28 CHB 2.0 13.229 50 1.780 8630.416 4848.488 0.840 0.485
29 CHB 2.0 6.615 5 3.094 14999.966 4848.488 0.840 0.485
30 CHB 2.0 6.615 50 2.145 10398.476 4848.488 0.840 0.485

(b) Rare variant GWAS-type analysis
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Pop Cov Per-X-cost Pheno-cost BR Bimp Bgsa r2 imp r2 gsa
1 CHB 0.1 26.458 5 1.071 1.000 0.933 0.857 0.944
2 CHB 0.1 26.458 50 1.059 0.990 0.935 0.857 0.944
3 CHB 0.1 13.229 5 1.069 1.000 0.936 0.857 0.944
4 CHB 0.1 13.229 50 1.063 0.994 0.935 0.857 0.944
5 CHB 0.1 6.615 5 1.066 1.000 0.938 0.857 0.944
6 CHB 0.1 6.615 50 1.061 0.994 0.937 0.857 0.944
7 CHB 0.25 26.458 5 1.070 1.000 0.934 0.942 0.944
8 CHB 0.25 26.458 50 1.068 0.997 0.933 0.942 0.944
9 CHB 0.25 13.229 5 1.069 1.000 0.936 0.942 0.944

10 CHB 0.25 13.229 50 1.065 0.998 0.937 0.942 0.944
11 CHB 0.25 6.615 5 1.065 1.000 0.939 0.942 0.944
12 CHB 0.25 6.615 50 1.066 0.999 0.937 0.942 0.944
13 CHB 0.5 26.458 5 1.067 1.000 0.938 0.970 0.944
14 CHB 0.5 26.458 50 1.065 0.993 0.933 0.970 0.944
15 CHB 0.5 13.229 5 1.067 1.000 0.937 0.970 0.944
16 CHB 0.5 13.229 50 1.065 0.998 0.936 0.970 0.944
17 CHB 0.5 6.615 5 1.067 1.000 0.937 0.970 0.944
18 CHB 0.5 6.615 50 1.070 1.000 0.934 0.970 0.944
19 CHB 1.0 26.458 5 1.046 0.978 0.935 0.983 0.944
20 CHB 1.0 26.458 50 1.034 0.968 0.936 0.983 0.944
21 CHB 1.0 13.229 5 1.075 1.000 0.930 0.983 0.944
22 CHB 1.0 13.229 50 1.060 0.995 0.939 0.983 0.944
23 CHB 1.0 6.615 5 1.072 1.000 0.933 0.983 0.944
24 CHB 1.0 6.615 50 1.063 0.999 0.940 0.983 0.944
25 CHB 2.0 26.458 5 0.575 0.537 0.934 0.989 0.944
26 CHB 2.0 26.458 50 0.872 0.817 0.936 0.989 0.944
27 CHB 2.0 13.229 5 1.044 0.981 0.940 0.989 0.944
28 CHB 2.0 13.229 50 1.041 0.973 0.935 0.989 0.944
29 CHB 2.0 6.615 5 1.068 1.000 0.936 0.989 0.944
30 CHB 2.0 6.615 50 1.070 0.996 0.931 0.989 0.944

(c) Common variant burden-type analysis
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Pop Cov Per-X-cost Pheno-cost BR Bimp Bgsa r2 imp r2 gsa
1 CHB 0.1 26.458 5 6.307 0.990 0.157 0.421 0.485
2 CHB 0.1 26.458 50 1.885 0.318 0.169 0.421 0.485
3 CHB 0.1 13.229 5 6.060 0.998 0.165 0.421 0.485
4 CHB 0.1 13.229 50 1.987 0.328 0.165 0.421 0.485
5 CHB 0.1 6.615 5 6.053 1.000 0.165 0.421 0.485
6 CHB 0.1 6.615 50 2.065 0.343 0.166 0.421 0.485
7 CHB 0.25 26.458 5 6.179 0.990 0.160 0.581 0.485
8 CHB 0.25 26.458 50 3.928 0.631 0.161 0.581 0.485
9 CHB 0.25 13.229 5 6.015 1.000 0.166 0.581 0.485

10 CHB 0.25 13.229 50 4.294 0.692 0.161 0.581 0.485
11 CHB 0.25 6.615 5 6.321 1.000 0.158 0.581 0.485
12 CHB 0.25 6.615 50 4.361 0.716 0.164 0.581 0.485
13 CHB 0.5 26.458 5 6.105 0.964 0.158 0.678 0.485
14 CHB 0.5 26.458 50 4.269 0.726 0.170 0.678 0.485
15 CHB 0.5 13.229 5 5.823 1.000 0.172 0.678 0.485
16 CHB 0.5 13.229 50 5.164 0.829 0.160 0.678 0.485
17 CHB 0.5 6.615 5 5.914 1.000 0.169 0.678 0.485
18 CHB 0.5 6.615 50 5.156 0.874 0.170 0.678 0.485
19 CHB 1.0 26.458 5 4.713 0.757 0.161 0.768 0.485
20 CHB 1.0 26.458 50 4.400 0.719 0.163 0.768 0.485
21 CHB 1.0 13.229 5 6.298 0.993 0.158 0.768 0.485
22 CHB 1.0 13.229 50 5.333 0.870 0.163 0.768 0.485
23 CHB 1.0 6.615 5 6.325 1.000 0.158 0.768 0.485
24 CHB 1.0 6.615 50 5.556 0.931 0.168 0.768 0.485
25 CHB 2.0 26.458 5 1.658 0.279 0.168 0.840 0.485
26 CHB 2.0 26.458 50 3.348 0.546 0.163 0.840 0.485
27 CHB 2.0 13.229 5 5.458 0.863 0.158 0.840 0.485
28 CHB 2.0 13.229 50 5.083 0.829 0.163 0.840 0.485
29 CHB 2.0 6.615 5 6.248 0.998 0.160 0.840 0.485
30 CHB 2.0 6.615 50 5.769 0.946 0.164 0.840 0.485

(d) Rare variant burden-type analysis

Supplementary Table 10: Relative effective sample size and power of
lc-WGS and QUILT versus genotyping microarrays For the CHB popula-
tion, for imputation accuracy for either rare (0.1-0.2 percent) or common (20-50
percent) SNPs, ratio of effective sample sizes and powers for GWAS-type and
burden-type analyses are given. Per-X costs are converted from USD to GBP
assuming whole genome costs of 1000/30X, 500/30X and 250/30X. Columns
Gimp and Ggsa give the GWAS effective sample size for a given imputation
accuracy and cost for lc-WGS and QUILT (imp) and array (gsa), and GR gives
their ratio. Similarly the columns Bimp and Bgsa give the powers for burden
test analyses, also for imputation and array (GSA), and BR gives their ratio.
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3 Supplementary Figures
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Supplementary Figure 1: Effect of parameters on QUILT imputation
performance Effect of varying number of Gibbs samples and number of full
haploid iterations on imputation performance for NA12878
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Supplementary Figure 2: Run time and memory usage Top row gives
results for N=3 samples (NA12878), bottom row gives results for N=93 samples
(1000G). Left column gives speed, which is given as per-sample time (i.e. the
time plotted is the total time divided divided by the number of samples). Right
column gives memory per-job using /usr/bin/time -v for ”Maximum resident
set size” (i.e. the memory plotted is per job and not divided by the number of
samples). Results shown are average per region, where each region was 2 Mbp
long with 500 kbp buffer (a total of 200 Mbp was imputed). Results are shown
for 1X coverage. x-axis values are 1000, 5000, 10000, 20000, 30000, 40000, 50000
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(a) Haplotagged common SNPs (20-50% allele frequency)
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(b) Haplotagged rare SNPs (0.1-0.2% allele frequency)
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(c) Illumina common SNPs (20-50% allele frequency)
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(d) Illumina rare SNPs (0.1-0.2% allele frequency)
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(e) ONT common SNPs (20-50% allele frequency)
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Supplementary Figure 3: QUILT and GLIMPSE accuracy over parame-
ter values, for NA12878 data Shown are QUILT and GLIMPSE performance for
NA12878 for different data types as a function of run time given different parameter
settings. QUILT varies number of Gibbs sample iterations (1, 3, 7 (default), 10) and
iterative Gibbs sampling iterations (1, 2, 3 (default), 5), while GLIMPSE varies number
of burn in and Gibbs sampling iterations (5+5, 10+10 (default), 15+15) and pbwt-depth
(1, 2 (default), 4, 8). Analysis was performed using chromosome 20 0-26 Mbp to reduce
computational burden. We note that QUILT is computationally linear in the number
of samples to impute while GLIMPSE decreases, and so for moderate sample sizes, the
GLIMPSE values should be shifted to approximately 1/2 their current values for lower
coverages to 1/6 of their original values for higher coverage (i.e. leftwards).
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(a) Illumina 1000G common SNPs (20-50% allele frequency)
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(b) Illumina 1000G common SNPs (20-50% allele frequency)
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Supplementary Figure 4: QUILT and GLIMPSE accuracy over parameter
values, for 1000 Genomes data Shown are QUILT and GLIMPSE performance for
1000 Genomes for Illumina data as a function of run time given different parameter
settings. QUILT varies number of Gibbs sample iterations (1, 3, 7 (default), 10) and
iterative Gibbs sampling iterations (1, 2, 3 (default), 5), while GLIMPSE varies number
of burn in and Gibbs sampling iterations (5+5, 10+10 (default), 15+15) and pbwt-depth
(1, 2 (default), 4, 8). Analysis was performed using chromosome 20 0-26 Mbp to reduce
computational burden. This analysis was performed with N = 93 samples, and given
the relationship between sample size and run time for both QUILT and GLIMPSE,
results are indicative of performance expected at larger sample sizes.
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Supplementary Figure 5: HLA imputation accuracy as function of
coverage States only refers to performing HLA typing using only posterior
probabilities, while joint uses reads, and joint (> 0.90) is confidently called loci
only
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Supplementary Figure 6: Relative effective sample size and power
of lc-WGS and QUILT versus genotyping microarrays, as a function
of allele frequency Using imputation accuracy from the CHB population for
variable allele frequencies, the ratio of effective sample size or power is shown
for either GWAS-style or burden-style analyses. Results vary per-X sequenc-
ing costs and phenotyping costs. Per-X costs are done assuming $1000/30X,
$500/30X and $250/30X, and phenotyping costs of $5 or $50 per sample.
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