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 2 

In this Supplementary Note, we provide details on our physical model for the 19 

morphogenesis of intestinal organoids. The organoid is treated as a closed epithelial monolayer 20 

with two distinct regions, encapsulating an incompressible fluid lumen. We develop a three-21 

dimensional biophysical model to study the mechanics of organoids and use it to derive 22 

analytical results of specific morphologies, i.e., bulged and budded shapes, concentrating in 23 

particular on the impacts of crypt apical constriction and lumen volume changes on 24 

morphogenesis. 25 

1. Two-region vertex model 26 

The macroscopic shape of epithelial tissues and organs can be understood from 27 

mechanical interactions at the cellular level, such as cell-cell adhesion and actomyosin-28 

mediated tension along the cell membrane. Vertex models are a class of multiscale mechanical 29 

models to understand the interplay between cellular mechanical forces and tissue-scale 30 

deformation (1-3). In vertex models, tissue is described as a set of vertices, where each vertex 31 

represents a tri-cellular junction that cell edges meet at, and on which force balance is written 32 

(taking into account forces such as surface tensions, line tensions, internal fluid pressure, and 33 

external forces from surrounding environment).  34 

An intestinal organoid is initially a spherical epithelial monolayer with a central luminal 35 

fluid cavity. After symmetric breaking which creates segregated stem cell and differentiated 36 

cell regions, the organoid will evolve towards pear-shaped configurations composed of two 37 

regions, crypt and villus. For simplicity, each region in the model is treated as a spherical cap. 38 

In the following, we first discuss the free energy of a single cell in the monolayer, then get the 39 

total energy of the whole organoid.   40 

1.1.  Free energy of a single cell 41 

Consider a single cell with three surface tensions a , b , and l , and three surface areas 42 

aA , bA , and lA , where the subscripts a , b , and l  respectively represent apical, basal, and 43 

lateral surfaces/domains (Fig. 2A). Then, the free energy of a single cell is  44 

 
1

2
a a b b l lf A A A=  +  +  , (1) 45 

The apical and basal surfaces are simplified as squares with side lengths ad  and bd  (although 46 

more complex shape would give identical results up to pre-factors). With the height of a cell 47 

as h , the free energy (1) becomes  48 
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 ( )2 2

a a a b l a bf d d h d d=  + + + . (2) 49 

Each region is treated as a part of a homogeneous sphere shell, which has total cell number 50 

N  . In the spherical region, the side lengths are related to the region radii, i.e. 4a ad N R = , 51 

4b bd N R = , where aR  and bR  are the inner (apical) and outer (basal) radii, respectively. 52 

Moreover, we have 2aR R h= − , 2bR R h= + , where R  is the neutral radius (see Extended 53 

Data Fig. 2A for a schematic). Then, the free energy can be rewritten as 54 

 ( ) ( )24 4
2a b b a lf R Rh Rh

N N

 
 =  + +  − +   

. (3) 55 

For simplicity, a thin-film assumption is employed, which means the thickness of the 56 

spherical sheet is much smaller than its radius, i.e. ( )
2

/ 1h R   ( /R h  is typically larger than 57 

2, as we subsequently measure this ratio to fit the morphogenetic evolution and organoid lumen 58 

inflation, see Subsection 4.2.1 for further details), which leads to 
2

2 2

e0

1
4 1 4

12

h
N V R h R h

R
 

  
 = +   

  
, 59 

where e0V  is the cell volume. This greatly simplifies the analytics, as it yields 60 

( )2

e0 4h N V R . Given that cell volume is under osmotic regulation, involving stresses 61 

much larger than the ones produced by actomyosin  (4), it is reasonable to assume that the 62 

volume e0V  is independent from tension forces. However, cell volume may change during 63 

villus cell differentiation, due to active osmotic regulation, which will be discussed in 64 

Subsection 1.4. Under these assumptions, the free energy is only related to radius R : 65 

 ( ) ( ) ( )2 e04
2

4
a b b a l

VN
f R R

N R





 
  + +  − +  

  

, (4) 66 

and the corresponding neutral radius in free state R  should satisfy 0
R

f

R


=


, which leads to 67 

 

11

33
e0 4

1+
4 2

l b a

a b l

VN
R

N





     −
=      +     

. (5) 68 

Using Eq. (5), free energy (4) can be recast as  69 

 ( )
3

24
1 2a b

R
f R

N R

   
   + +  

    

. (6) 70 

Using Eq. (6) and introducing the deformation ratio /R R = , we can further get the free 71 

energy density
( )

( )
2

2 1

e0

e0

4
+2

a b R
f V

N V


  −

 +
=


, which indicates that ( ) ( )

2 2

e04 /a b R N V  +  acts 72 
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as the stiffness of the spherical epithelium. For a large spherical monolayer ( N  is a large 73 

number), we can neglect the term of apico-basal difference in Eq. (5), and approximate the 74 

stiffness as ( )
1/3 2/3 1/3

e0a b l V − +  , emphasizing the crucial role for the sum of apical and basal 75 

tensions in setting in-plane resistance to deformations (which will become crucial to compare 76 

the respective responses of villus and crypt regions to lumen inflation, see Fig. 5 of the main 77 

text).  78 

1.2.  Free energy of a two-region organoid epithelium  79 

The free energy of the whole organoid is the sum of free energies in two regions. For 80 

simplicity, every cell in each region is assumed to be the same. Then, the free energy of a two-81 

region epithelium is c c v vF N f N f= + , where iN  and if  are respectively cell number and 82 

cellular free energy in region i , with the index c, vi =  denoting respectively crypt and villus. 83 

Using Eq. (6), the free energy of a single cell in region i is 84 

( )( ) ( )
3

24 / 1 2 /i i a b i i ii
f N R R R    +  +

  
, and corresponding free energy of the whole 85 

epithelium yields 86 

 ( ) ( )
3 3

2 2c c v v
c vc v

c c v v

4 1 2 4 1 2a b a b

N R N R
F R R

N R N R
 

      
     + + +  + +   

          

. (7) 87 

A number of parameters in Eq. (7) can be eliminated as many geometric variables (such 88 

as iN , iN  , and iR ) are related. Firstly, we have organoid volume c vV V V= + , where 89 

( )3 32 3cos cos / 3i i i iV R  = + −  is the volume of region i. For simplicity, we introduce an 90 

equivalent organoid radius tR  satisfying 
3

t4 / 3V R= , and considering the geometric relation 91 

c c v vsin sinR R = , then the region radius iR  is related to radius tR  and polar angles i  (see 92 

Extended Data Fig. 2B for schematic) by 93 

 
1/3

ti iR R g −= , (8) 94 

with 95 

 

3

3 3c
c c c v v

v

3

c
v c

v

sin1 3 1 3 1
1 cos cos 1 cos cos

2 2 2 sin 2 2

sin

sin

g

g g


   







−

     
 = + − + + −    
      

 
=  
 

. (9) 96 
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Secondly, considering cells in one region have the same geometric shape, the ratio of cell 97 

number in the region (which is a spherical cap) to that in the whole spherical shell is 98 

proportional to the ratio of surface areas, that is / /i i i iN N A A =  , where the surface area of 99 

region i is ( )2 2 2cosi i iA R = + , and the surface are of corresponding spherical shell is 100 

24i iA R = . Then we can get  101 

 
1

4

i
i

i

N
s

N
=


, (10) 102 

where ( ) 2 2cosi i is  = + . 103 

An intestinal organoid evolves from an initial spherical shape toward a two-region 104 

configuration. Crypt apical constriction is found to initiate intestinal morphogenesis in vivo, 105 

and apical surface areas of crypt cells also reduce during the development of intestinal 106 

organoids (Fig. 1B). In view of these, we consider that tensions in crypt cells may be distinct 107 

from those of villus cells, and evaluate the role of crypt mechanics in organoid morphogenesis. 108 

Given that intestinal organoid initially contains identical cell types, prior to the symmetry 109 

breaking of fate (5), we take all cells to initially have the same surface tensions. For simplicity, 110 

we assume that there is no apical-basal tension difference for an initial spherical organoid, and 111 

further assume that lateral tensions are unchanged everywhere during development, i.e. 112 

c vl l l =  =  . This assumption was experimentally verified by examining Myosin levels on 113 

the lateral surfaces of villus and crypt cells at different time points (Fig. 3B), which makes our 114 

choice of non-dimensionalizing tension by lateral tensions natural. We also note that even if 115 

lateral tensions did change, e.g. crypt budding driven by increased lateral tension in crypts, this 116 

would still be encapsulated in the three classes of mechanisms discussed in the main text (in 117 

the case of increased lateral tension in crypts, all things equals otherwise, this is similar to 118 

decreasing the in plane contraction in crypts). Then, we can non-dimensionalize Eq. (7) by 119 

introducing four dimensionless parameters:  120 

- relative region size of the crypt  ( )c t t c vN N N N N = = + , which can evolve at 121 

different stages (spherical, bulged, budded) given the preferential proliferation of 122 

crypt cells. 123 

- in-plane contraction ratio ( ) ( )
c 0

/a b a b =  +  + , which quantifies the relative 124 

changes in crypt stiffness due to changes of apical/basal tensions. 125 

- normalized organoid radius t 0/R R = , where 0R  is the radius of the initial spherical 126 
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organoid in free state,  127 

- normalized apico-basal tension difference c

tc

1 4

2
b a

l
N




  −
=    

, which causes the crypt 128 

to have a spontaneous curvature.  129 

Submitting Eqs. (8) and (10) into Eq. (7), the dimensionless free energy 130 

( ) 2

00
ˆ

a bF F R =  +   becomes 131 

 

3 3

2 2/3 2 2/3c v
c c c v v v3 3

0 0

2 2ˆ 1 1
R R

F s g g s g g
R R

 
 

− −
      
     + +  +   
         

, (11) 132 

where ( ) ( )
3

1 3/2 3/2 1/2 1/2

c 0 c c c/ =8 1 2R R s s   − − −+ , ( ) ( )
3 3/2 3/2

v 0 v/ =8 1R R s −− . 133 

To simplify the expression, we redefine geometric parameters ( ) 3/2

c c v c c,G s g  −= ,134 

( ) 3/2

v c v v v,G s g  −= (which quantify the degree of opening of villus and crypt regions), and 135 

introduce the normalized volume 
3v = . The free energy then reads  136 

 ( ) ( )
3/22/3 2/3 2/3 1/3 3/2 1/3 1/3 1/3

c v c v c c

1ˆ 16 1
2

F v G G v G G g    − − −  
 + + + − + 

 
. (12) 137 

Eq. (12) shows that F̂  is a function of only two parameters, i.e. the polar angles c  and 138 

v , with the minima of F̂  (and corresponding c  and v ) determining the shape of organoids 139 

at mechanical equilibrium. In principle, in-plane contraction ( ), spontaneous curvature ( c ), 140 

lumen volume ( v ), and crypt size ( ) can all affect organoid morphogenesis, and we first 141 

sequentially explored the influence of each of these parameters separately, to gain intuitive 142 

insights into their influence on morphology, which can then be verified in experimental data. 143 

Finally, to avoid non-physical minima of this energy, we employed a penalty function to 144 

guarantee the inner radii of crypt and villus are always positive, i.e. 2 0ai i iR R h= −  . In the 145 

calculation, we use ( ) ( )( ) 1/3 2/3

0exp / 2 / /i iv g v G  
− −

 
 as a penalty function, where   is 146 

chosen as 510− , ( )3

0 0 t e04 /R N V =  is a shape factor that characterizes the initial volume ratio 147 

between the whole organoid and the epithelial monolayer.  148 

1.2.1. Organoid morphologies  149 

We first study the organoid morphologies with varied volume v  and spontaneous 150 

curvature c  (of crypt region), with 1 =  (equal in-plane contraction in villus and crypt 151 



 7 

regions). Setting 1 =  and crypt size 0.2 = , the phase diagram in Extended Data Fig. 2D 152 

not only highlights the influence of spontaneous curvature, but also intuitively reveals that the 153 

inflation of organoids tends to reopen both the crypt and villus and recover the original 154 

spherical shape. In other words, transformation from a budded shape to a bulged one may 155 

happen during organoid inflation. This is consistent with classical theoretical result on lipid 156 

vesicles with regions of spontaneous curvature, which shows that an increase in vesicle volume 157 

will reverse the budding induced by spontaneous curvature (6). Examining organoid 158 

morphology with c 0.25 = −  in the first graph of Extended Data Fig. 2D as an example, its 159 

crypt is fully closed under moderate volume expansion, but will open up when the lumen 160 

volume increases above a critical threshold. We employed the “degree of crypt opening”, 161 

defined as ( )c v/  − , to quantify the morphogenesis of intestinal organoid. This parameter 162 

ranges from 0 to 1, where 0 corresponds to the budded shape with crypt and villus fully closed 163 

and 1 to a fully spherical organoid shape.  164 

As shown in Extended Data Fig. 2D, the in-plane contraction in crypt also affects the 165 

organoid morphology. Interestingly, examining organoid morphology without spontaneous 166 

curvature (i.e. 𝛾c = 0), we can find weak in-plane crypt contraction ( 1  ) can lead to a 167 

partially closed crypt. Even without out-of-plane bending, a decrease in in-plane contraction 168 

will tend to expand the crypt (by increasing the rest length of crypt cells, or decrease their 169 

preferred height). However, the total volume enclosed by the organoid (lumen) is set, so that 170 

this mismatch between preferred cell area and lumen volume can engender compressive 171 

stresses inside the monolayer and result in a buckling instability (as discussed in Fig. 2B, 172 

Extended Data Fig. 3A and main text). Thus, although this cannot occur for swollen organoids, 173 

organoids with small lumen volume could conceivably undergo crypt cell-driven buckling 174 

from low in-plane contraction in crypts.  Importantly however, this then predicts features upon 175 

lumen expansion which are very different from the data (Fig. 5). Generally, in the presence of 176 

spontaneous curvature, for an organoid with weak in-plane crypt contraction ( 1  ), the 177 

original spherical shape is recovered by lumen volume expansion, while the recovery is harder 178 

when the crypt has strong in-plane contraction ( 1  ). Strikingly, we find that a crypt with a 179 

large enough spontaneous curvature may not open up even for arbitrarily large increases in 180 

lumen volume. This indicates critical mechanical forces in crypt may exist, beyond which the 181 

shape transformation back to spherical shapes never happens.  182 

 183 
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1.2.2. Morphometric parameters  184 

Upon organoid swelling, the crypt and villus sustain distinct in-plane and out-of-plane 185 

deformations, which respectively modulate the thickness and radius of each region. In other 186 

words, these geometric quantities can be employed as morphometric parameters to evaluate 187 

the mechanical deformations (and corresponding cell tensions) in two regions. For example, 188 

profiles of epithelial thickness and radius have been proposed as metrics to infer the nature of 189 

forces driving epithelial folds in epithelium-stroma structures (7). We thus examine thickness 190 

ratio c v/h h  and radius ratio c v/R R  to further quantify the morphological evolution during 191 

volume expansion. We find in particular that their dependence on two mechanical parameters, 192 

i.e., in-plane contraction   and spontaneous curvature c , is qualitatively different (Extended 193 

Data Fig. 2E-H). The thickness (or radius) ratio shows two distinct trends during organoid 194 

inflation. For an organoid with 1 = , c 0.25 = − , the thickness ratio increases almost linearly 195 

with volume expansion at the early stage, but drops abruptly at 2v  , while its radius ratio 196 

also undergoes both linear and nonlinear variations, but in an opposite way (Extended Data Fig. 197 

2F). These abrupt transitions of thickness and radius ratios are due to shape transformation of 198 

organoids (Extended Data Fig. 2D), and clearly indicate that, for organoids with different 199 

morphologies, the thickness (or radius) ratio is modulated by lumen volume in distinct ways. 200 

Furthermore, we find that crypts with strong in-plane contraction (i.e., 1  ) are always 201 

thicker than villi (Extended Data Fig. 2E and G), while crypts with 1   is usually thinner 202 

than villi (Extended Data Fig. 2E, H and 3A). This is intuitive as hydrostatic pressure is uniform 203 

within the organoid lumen, so that stiffer regions deform less than softer ones (resulting in less 204 

thinning). We also find that the inflation of organoids tends to widen the thickness difference 205 

between two regions (Extended Data Fig. 2E, G and H), as the softer region tends to 206 

accommodate the bulk of the pressure-induced deformation.  207 

Furthermore, as already shown in Fig. 2B, spontaneous curvature c  always tends to 208 

increase the crypt thickness. This is consistent with results in Drosophila gastrulation, where 209 

ventral cells are lengthened during furrow formation (8). However, Extended Data Fig. 2F-H 210 

further indicate that, for a swelling organoid, the influence of c  on the thickness ratio c v/h h  211 

is negligible when the spontaneous curvature is not large enough to close the crypt (as in 212 

budded shape). In other words, the thickness ratio of a swelling organoid with a partially 213 

opened crypt (e.g., a bulged organoid) is almost independent on c , although increasing crypt 214 

apical tension can influence thickness ratio by increasing  .  215 
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1.3. Line tension in neck zone 216 

So far, we have only considered changes in the bulk properties of each organoid region, 217 

such as in-plane contractions and spontaneous curvatures. However, mechanical forces at the 218 

boundary between these two regions may also drive the morphological evolution in biological 219 

systems (9-11). Here, we assume cells in the neck zone (connection part of crypt and villus) 220 

carry distinct surface tensions (and hence the free energy) with cells in two regions. Since the 221 

neck zone of organoid is rather narrow, and more like a hollow cylinder rather than a spherical 222 

shell, it is reasonable to model the neck zone as a short cylindrical monolayer, and neglect its 223 

volume contribution to organoid. 224 

Considering neck cells with longitudinal side length e , height h , and radial side lengths 225 

in the apical and basal surfaces ad  and bd (see Extended Data Fig. 2C for schematic), then the 226 

free energy (1) becomes ( )
1

2
a a b b l l a bf ed ed eh h d d=  + + +  + . The geometric 227 

relationship of a single cell and a cylindrical epithelium can be described by r2 /a ad R N= , 228 

r2 /b bd R N= , where rN  is the cell number in the radial direction. Letting R  be the neutral 229 

radius of the cylindrical epithelium, we obtain ( )r e0 / 2h N V eR= , which recasts the free 230 

energy as 231 

 ( ) ( ) e0 e0r

r

2 1
+

2 2
a b b a l l

V VN
f eR

N R e





 
=  + +  − +  

 
. (13) 232 

Eq. (13) indicates that the free energy depends on two geometric variables R  and e , i.e. 233 

( ),f f R e= . Considering the free state of cells, which satisfies / 0f R  = , / 0f e  = , we 234 

can get radius R and length e  in the free state 235 

 

1 2 1 1

3 3 3 3
e0 e0r

r r

2 2
1+ 1+

2 2 2

l b a l b a

a b l a b l

V VN
R e

N N

 



−

         −   −
= =       

 +   +        
， . (14) 236 

Using Eq. (14), the free energy of a cell in the neck can finally be expressed as 237 

 ( )
r

2
a b

R e
f eR eR

N R e

   
=  + + +  

  

. (15) 238 

For an organoid with two regions (crypt and villus) and a neck zone, the total free energy 239 

are contributed by three parts, i.e. c c v v n nF N f N f N f= + + , where nN  and nf  are respectively 240 

the cell number and cellular free energy in the neck zone ( nf  follows the expression in Eq. 241 

(15). 242 
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Since the neck zone is mainly constrained by other regions in its radial direction, we 243 

assume a stress-free state in the longitudinal direction, i.e., 0f e  = , which leads to 244 

n n/e e R R= . Then the free energy of neck zone yields 245 

 ( )
3/2

n
n n n e n nn

n

= 2 2a b

R
F N f N e R R

R


  
 =  + +  
   

, (16) 246 

where eN  is the cell number in the longitudinal direction (therefore we have n r eN N N= ).  247 

The in-plane contraction ratio ( ) ( )
n 0

/a b a b =  +  +  is introduced to characterize 248 

the ‘line tension’ between two regions. The geometric relationship n c csinR R = implies 249 

1/3

n t nR R g −= , with 
3

n c c/ sing g = . Then, we have 250 

( ) ( )
3/2

2 1/2 3/2 1/6 1/2 1/3 1

n n 0 e n 0 n n n 00
ˆ 2 2 /a bF F R N eR R g g R R  − − −  =  + =  +    

. To further 251 

simplify 
nF̂ , we need to determine rN , which affects both e  and nR . The radial cell number 252 

of the neck depends on the total cell number of organoid tN  and the position of neck 253 

(dominated by crypt size  ), that is ( )r r t= ,N N N . Specific expression of rN  can be 254 

estimated as follows: A narrow neck in a spherical organoid in free state satisfies 255 

r 0 n=2 sinN d R  , where n  is the polar angle of neck, 
t 04d N R=  is the side length of a 256 

single cell. Further considering the geometric relation257 

( ) ( ) ( )2 2

0 n 0 n2 1 cos / 4 1 cos / 2R R    = − = − , we can get 
r t= 4N N  , where 258 

2  = − . To focus on the in-plane contraction in the neck, the difference of apical and 259 

basal tensions (i.e., spontaneous curvature) is neglected, which finally leads to a simplified free 260 

energy of the neck  261 

 ( )1/2 1/2 1/2 1/6 2 1 1/3

n e n n

t

2ˆ =8 2F N g g
N


 − −  +  . (17) 262 

By adding free energy (17) into Eq. (12), we can evaluate the influence of the overall line 263 

tension, arising from the in-plane contraction of cells in the neck, on organoid morphogenesis. 264 

Fig. 2B and Extended Data Fig. 3A’’ shows that, although a contractile neck can promote the 265 

bulging and budding of organoids (i.e., decreased radius ratio c v/R R ), it has negligible effects 266 

on the thickness ratio c v/h h . This is in contrast with our experimental findings (Fig. 2C), 267 

where bulging of organoids is robustly accompanied by thickness increases on the crypts 268 
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compared to villi. This implies that the line tension in neck is not the major driving force for 269 

crypt bulging. However, it would be interesting in the future to study its potential effect on 270 

longer-term crypt shape maintenance, which would require an extension of the model to 271 

consider more complex non-spherical crypt shapes. 272 

1.4.   Cell volumes and villus mechanics 273 

The model in Subsection 1.2 considers the influence of crypt mechanics and lumen 274 

volume on morphogenesis. However, mechanical contributions from the villus could also 275 

impact intestinal organoid development. For example, in the late stage of organoid 276 

morphogenesis, the villus shows both cell swelling (Fig. 7B and Extended Data Fig. 8B) and 277 

increased intensity of basal myosin (Fig. 3A), which might result in elevated basal tensions 278 

(Fig. 2E). To explore this, we extended the previous model, which assumes a constant cell 279 

volume in both regions and constant cell tensions in villus during morphogenesis, to 280 

incorporate potential variations in cell volumes and villus tensions. We thus introduce 281 

normalized cell volumes ec ec e0/v V V= , ev ev e0/v V V= , where ecV  and evV  are respectively the 282 

volumes of a crypt cell and a villus cell. In analogy to the definitions in crypt mechanics, in-283 

plane contraction ratio ( ) ( )v v 0a b a b =  +  + , and spontaneous curvature 284 

v

tv

1 4

2
b a

l
N




  −
=    

 are introduced to examine the effects of villus tensions. With these 285 

extensions of the model, this rescaled organoid energy F̂  now reads: 286 

 
( ) ( )

( )

3/22/3 2/3 2/3 1/3 3/2 1/3 1/3

c c v v ec c ev v

1/3 1/3 1/3

ec c c ev v v

ˆ 16 1

8 1

F v G G v v G v G

v v g v g

   

   

− − −

−

 = + + + −
 

 + + − 

. (18) 287 

1.4.1. Influence of cell swelling on morphogenesis 288 

We first evaluate the dependence of organoid morphologies on cell swelling in either crypt 289 

or villus. As shown in Extended Data Fig. 2I, both the swelling of crypt cells and villus cells 290 

can promote budding. Furthermore, crypt size   impacts the efficiency of cell swelling on 291 

budding. Given the fact that the villus is usually much larger than the crypt, swelling of villus 292 

cells is more efficient to promote budding. Furthermore, even when both regions have an equal 293 

size, the cell swelling in villus is still more efficient. For a crypt undergoing both cell swelling 294 

and tension-modulated deformations, the in-plane contraction will limit the extension of crypt 295 

region, while the crypt bending will be hindered by cell swelling. Overall, cell swelling is less 296 

efficient on budding when it happens in the tension-enhanced region (i.e., the crypt) than in the 297 
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normal region (i.e., the villus). Moreover, Extended Data Fig. 2J shows that the effect of cell 298 

swelling on budding can be reversed by lumen expansion (for low crypt apical tension). This 299 

is different from the influence of strong mechanical differences in crypts such as high apical 300 

actomyosin tension, which leads to maintained closure of the crypt even under infinite lumen 301 

expansion. 302 

1.4.2. Influence of villus mechanics on morphogenesis 303 

We then examine the influence of spontaneous curvature of villus v  on organoid 304 

morphology. Unlike spontaneous curvature c , which is negative due to the enhanced apical 305 

tension in crypt, spontaneous curvature v  is chosen to be positive in Extended Data Fig. 2K-306 

L, in light of the elevated basal tension and myosin accumulation observed in villus (Fig. 2E 307 

and Fig. 3A) as well as basal constriction observed in wild-type cells next to cells with reduced 308 

Myosin levels (Extended Data Fig. 4G-G’’). Interestingly, the spontaneous curvature v  will 309 

promote the opening of two regions only when c  is quite small ( c 0.05   or estimated value 310 

in initial bulging phase), while the out-of-plane bending of villus will facilitate the closure of 311 

two regions when the crypt engenders notable spontaneous curvature and strong in-plane 312 

contraction (Extended Data Fig. 2K). Importantly, the dependence of thickness (or radius) ratio 313 

on v  is negligible for an organoid with either equal or stronger in-plane contraction in crypt 314 

than in villus (Extended Data Fig. 2L), which we show from Fig. 5 is the relevant case for us. 315 

This argues that although basal enrichment of Myosin in the villus region is expected to help 316 

and contribute to bulging and budding, it cannot be the dominant/sole driving force (otherwise 317 

in-plane contraction of villi would be larger than crypts and lumen inflation would cause crypt 318 

dilation), so that we neglect v  in first approximation for the fits discussed in Section 4. 319 

1.5.   Preferential proliferation of crypt cells 320 

Besides the three mechanical mechanisms hypothesized in Fig. 2B, and additional 321 

discussions of cell volumes and villus mechanics in Section 1.4, another possible mechanism 322 

of crypt budding is the over-proliferation of crypt cells, which in principle, can also extend the 323 

crypt epithelium (like the effect of decreasing in-plane contraction or cell swelling) and thus 324 

promote organoid morphogenesis. Indeed, differential cell proliferation is observed in 325 

experiments, with cell division occurring predominantly occurs in the crypt region. Although 326 

our model is quasi-static (i.e. it predicts an equilibrium shape at time t only based on the value 327 

of mechanical parameters at that timepoint, independent of their dynamics, which is reasonable 328 



 13 

here as morphogenetic timescales of hours/days are very long compared to the timescales of 329 

shape relaxation for cells under actomyosin tension – typically minutes), we incorporate this 330 

preferential cell division via its effect on the crypt size. For instance, if the cell number in the 331 

crypt increases from cN  to cgN , while the cell number in the villus is still vN , to keep 332 

everything consistent with the previous definition, we still keep the relative region size as non-333 

dimensionalized by the original total cell number t c vN N N= + , so that the current crypt size 334 

is g cg tN N = (  ), while the villus size is still 1 − . The free energy (18) of the system 335 

then becomes 336 

 
( ) ( )

( )

3/22/3 2/3 2/3 1/3 3/2 1/3 1/3

c c v v g ec c ev v

1/3 1/3 1/3

g ec c c ev v v

ˆ 16 1

8 1

F v G G v v G v G

v v g v g

   

   

− − −

−

 = + + + −
 

 + + − 

. (19) 337 

Importantly, in Eq. (19), the crypt size g  always multiplies the cell volume in crypt ecv , which 338 

indicates that the crypt size (or cell number) may modulate the free energy (and thus the 339 

morphology of an organoid) in a similar way as the cell volume. Hence, according to the 340 

analysis in Subsection 1.4.1, one can also expect that crypt growth also promotes budding, 341 

although its effect will be eliminated by volume expansion. Further theoretical discussion on 342 

the influence of crypt growth, combined with specific crypt mechanics, is given in Subsection 343 

3.3.1. In experiments, blocking mitotic cell division shows negligible effects on organoid 344 

morphologies (Extended Data Fig. 4F), implying preferential proliferation of crypt cells is not 345 

a major promotor of the morphogenesis of intestinal organoids. Thus, to summarize, we take 346 

into account differential proliferation of cells in crypt indirectly (as it sets the value of crypt 347 

size  , which we independently measure prior to fitting the data to the model), but can assume 348 

that it does not in itself maintain budded shapes (for instance by creating residual stresses in 349 

crypts).    350 

1.6. Summary of two-region vertex model 351 

In the subsections above, we have thus proposed a three-dimensional two-region vertex 352 

model to describe the morphogenesis of intestinal organoids. The model shows that, altered 353 

cell tension, with emphasis on crypt apical constriction, can modulate in-plane contraction and 354 

induce out-of-plane bending of the epithelium. As a closed epithelium filled with lumen fluid, 355 

the overall volume of an organoid can also modulate its morphology. Other potential 356 

mechanisms, including active contraction at the neck zone, cell swelling, altered contractility 357 

of villus cells, preferential proliferation of crypt cells, are also evaluated by extending the 358 
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model. By combining experimental observations with theoretical results, we find cell swelling 359 

also plays an important role in the morphogenesis of intestinal organoids. 360 

2. Analytic approximations 361 

Experimentally, crypt regions are much smaller than villus regions, in particular during 362 

the first phases of bulging/budding which we explore here. Based on this, we can simplify the 363 

model by considering 𝑉c ≪ 𝑉v  and v 0 → . The volumetric relation c vV V V= +  can be 364 

expressed as 
3 3 3

t c c vR p R R + , where ( )3

c c c2 3cos cos 4p  = + − . Considering  𝑉c ≪ 𝑉v (or 365 

𝑝c𝑅c
3 ≪ 𝑅v

3) leads to ( )( )
3

v t c c t1 / 3 /R R p R R  −
 

. Combined with Eq. (10), free energy (7) 366 

can be rewritten as 367 

 368 

( ) ( )
3 3 3 3

2 2c v v c
c c v t cc v

c t t t

2
1 2 1 2 1

3
a b a b

R R R R
F s R s R p

R R R R
 

            
     + + +  + + + −        
               

369 

. (20) 370 

Letting c c 0/R R =  be the normalized crypt radius, one obtains  371 

 

( ) ( )

( )

3/22 3/2 1/2 1 2 1/2 1

c c c c c v v

3/2 1/2 3 3 1

v v c c

ˆ 16 8 16 1

2
8 1

3

F s s s s

s s p

       

   

− − − −

− − −

 + + + + −

 + − −
 

, (21) 372 

For a small v , using c c v vsin sinR R = ,we have ( )v c v c/ sinR R  ,which leads to373 

( )
2 2

v c c4 / sins    − . With these approximations, the free energy F̂  only depends on c  374 

and c : 375 

 

( ) ( )

( )

3/22 1 2 3/2 1/2 1

c c c c c

3/2 3 2 2 3 1

c c c c

ˆ 4 8 1 16 8

8
1 1 sin

3

F s s

p

       

     

− − −

− −

 + − + + +

  + − − +    

. (22) 376 

In the following, based on this simplified free energy (22), we will analyze specific 377 

organoid morphologies and get corresponding analytical expressions of morphometric 378 

parameters. As a limiting case, crypt morphologies under infinite organoid expansion will be 379 

discussed. Besides, the influence of cell volumes will be explicitly explored with analytic 380 

formulation. 381 

 382 
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2.1.  Scaling laws for thickness and radius modulations  383 

As aforementioned, after the initial symmetric breaking event, an intestinal organoid will 384 

evolve towards non-spherical configurations. The organoid first undergoes a bulging phase 385 

with the crypt gradually bulges out, then enters into a budded phase. Here, we focus on these 386 

two typical morphologies, the bulged shape and the budded one, during the development of 387 

intestinal organoids, and make use of their shape features to further simplify the free energy 388 

shown in Eq. (22) and get analytical expressions of the radius ratio c v/R R  and the thickness 389 

ratio c v/h h . 390 

2.1.1. Bulged organoid  391 

In the bulging stage, the crypt just begins to form and is rather small (i.e.,  is small). 392 

These indicate 𝜃∗ = 𝜋 − 𝜃c ∼ 𝜑1/2can be served as a small parameter (i.e., * 0 → ), and 393 

functions of c  in Eq. (22) can be approximated as 
2

c *s  , 
2 2

c *sin   , and c 0p  .Then, the 394 

free energy (22) is simplified as  395 

 ( )2 1 3 2 3/2 1 1

* * c c
ˆ 4 8 1 16 8F         − − − − + + − + + + , (23) 396 

where * c *  = , and the radius ratio and thickness ratio are respectively approximated as 397 

c v c/R R    and 
2 2

c v */ 4h h   − . One obtains ( )
1/3

1/2 3

* 2 1   
−

−= − + from 398 

*
ˆ / 0F   = . To get an estimate of the normalized crypt radius c , we need to expand the 399 

functions of c ( or * ) in Eq. (22) to a higher order ( )4

*O  , i.e. 
2 4

c * * /12s   − , 400 

2 2 4

c * *sin / 3   − , and 
4

c *3 /16p  , which yield an additional sequence of terms in free 401 

energy (23) as ( ) ( )( ) 3/2 2 4 2 3 2 1 1

c * * c c c2 / 3 /12 1 / 3 / 2        − − − − − −+ − + − − + . Using the 402 

extended free energy and considering c
ˆ / 0F   =  yield ( )1 1 4 3

c c *16 1    − − − −= − − . Thus, 403 

the radius ratio and thickness ratio of a bulged organoid can be finally estimated as   404 

 
( )

4/3

1v
c

c

1 1
1

1

vR

R v


 −

− +  
 −

−
, ( )

2/3
c

v

1 1
h

v
h

 − +   . (24) 405 

Eq. (24) thus predicts that the thickness ratio depends only, at first order, on the in-plane 406 

contraction ratio  . We found excellent agreement between numerical solutions of the full 407 

model, and the analytical criteria of Eq. (24), and confirmed in particular that the thickness 408 

ratio depends crucially on  , while it is almost independent on c (Extended Data Fig. 3E). 409 
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Furthermore, the radius ratio of a bulged organoid is expected to depend on 1

c −  and   from 410 

Eq. (24). In a bulging crypt, the apical actomyosin accumulation is initially small (Fig. 2C), so 411 

that it is expected to engender weak in-plane contraction and out-of-plane bending, and 412 

corresponding mechanical parameters 1 −  and c  can both be considered small. However, Eq. 413 

(24) indicates that the radius ratio is less dependent on 1 −  than c , and the only leading 414 

parameter of c v/R R  is 
1

c −
. As verified in Extended Data Fig. 3E, the crypt size   and 415 

spontaneous curvature c  are indeed combined to affect the crypt radius, and the resulting 416 

parameter 
1

c −
 can modulate c v/R R  . Besides, Eq. (24) can fit well with the numerical 417 

results of a bulged organoid with varying volumes (Extended Data Fig. 3E).  418 

2.1.2. Budded organoid 419 

For a budded organoid (which is equivalent to a near-closed organoid in our simplified 420 

spherical region models), we can take the converse limit of small c  (i.e. c 0 → ), which 421 

results in c 4s  , 
2

csin 0  , and c 1p  . Then the full expression of free energy (22) reduces 422 

to   423 

( ) ( ) ( )
3/2 3/22 1 2 3/2 1 3 3 1

c c c c

8ˆ 4 8 1 4 8 8 1 1
3

F           − − − −  + − + + + + − −
 

, (25) 424 

which only depends on the normalized crypt radius c . Minimizing this energy with respect 425 

to crypt radius (i.e. c
ˆ / 0F   = ) leads to  ( ) ( )

3/21 3/2 3 3

c c c 1 1       − − −  = − + − −
   

, 426 

which can be recast as  427 

 ( )
3

3/21 1c c

c t

1 1 1
R R

v
R R

 

−

− − 
 − = − −   

 
. (26) 428 

Experiments indicate that a budding organoid undergoes sustaining apical actomyosin 429 

accumulation in the crypt, which will lead to an enhanced in-plane contraction, i.e. 1  . 430 

Besides, considering the crypt volume is usually much smaller than the overall volume of the 431 

organoid, i.e. cV V , where 
3

c c4 / 3V R=  and 
3

t4 / 3V R=  for a budded organoid, we can 432 

find that c t/ 1R R   always holds. Thus, the value of the right side of Eq. (26) is usually close 433 

to 0, which indicates that c c/ 1R R   (i.e. c cR R ). Further considering v tR R , then the 434 

radius/thickness ratio of a budded organoid can be approximated as  435 
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 1/3c
c

v

R
w v

R

− , ( )
1 2 2/3c

c

v

1
h

w v
h

 
− − − , (27) 436 

where ( )
1/3

1/2 1/3 1/2

c c 0 c/ 1w R R    − −= = + . Eq. (27) indicates that the thickness (or radius) 437 

ratio of a budded organoid depends only on the crypt size   and ( )
1

1/2

c1u   
−

−= +  , a 438 

parameter coupling the in-plane contraction and spontaneous curvature of crypt. As verified in 439 

Extended Data Fig. 3F, the mechanical modulation of the thickness (or radius) ratio can be 440 

depicted by a single parameter u . Besides, Eq. (27) indicates a simple scaling law between 441 

organoid morphometrics and lumen volume for budded organoids: 𝑅c/𝑅v ∼ 𝑣−1/3,ℎc/ℎv ∼442 

𝑣2/3 , which again shows excellent agreement with numerical solutions to the full model 443 

(Extended Data Fig. 3F). 444 

Strikingly, this predicts a key difference between the inflation of bulged vs budded 445 

organoids. In the former, the radius ratio is an increasing function of lumen volume (leading to 446 

near-spherical shapes upon inflation), while in the latter, the radius ratio always decreases with 447 

lumen volume (as the crypt never opens up, and the bulk of the deformation is born by the 448 

villus region). As discussed in the main text, we challenged this prediction via two different 449 

types of inflation experiments, and found good qualitative and quantitative agreement (Fig. 450 

5B-C, Extended Data Fig. 7A-B), see also Section 4 for details on the fitting strategy used. 451 

Although the above derivations are based on Eq. (22), which can only describe organoids 452 

with small crypts, Eq. (27) actually holds for budded organoids with varied crypt sizes. In the 453 

following, we will directly use Eq. (7), a generic formulation of free energy, to derive Eq. (27). 454 

For a budded organoid, both c  and v  are close to 0, which lead to c c/ 1N N   , v v/ 1N N   . 455 

Then, Eq. (7) reduces to  456 

 ( ) ( ) ( ) ( )
3 3

2 2

c c c v v vc v
4 1 2 / 4 1 2 /a b a bF R R R R R R      + + +  + +

      
, (28) 457 

which is a function of two radii cR  and vR . These two radii should also satisfy the volumetric 458 

constraint, which is simplified as 
3 3 3

t c vR R R= +  in the budded case. Hence, the radii can be 459 

determined by constructing an auxiliary function that contains both free energy (28) and the 460 

volumetric constraint. For the normalized radii c c c/R R R=  and v v v/R R R= , the auxiliary 461 

function can be written as ( ) 2 3 3 3 3 3

0 c v t v0a by F R L w R R R R   =  + + + −    , where L  is a 462 

Lagrange multiplier, c v/w R R= . That is  463 

 ( ) ( )2 2 3 2 3 3 3 3 3 3

c c v v c v t v1 2 1 2y w R R R R L w R R R R − −  = + + + + + −  . (29) 464 
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Calculating c/ 0y R  =  and v/ 0y R  =  lead to ( )( )3 1 3

c c v v1 / 1R w R R R− − −− = − , which will 465 

further result in Eq. (27) by using c 1R   and 1/3

v 0 v/R v R R .  466 

2.2. Infinite volume expansion 467 

As discussed above and in the main text, a key experimental finding is that budded 468 

organoids tend to stay closed upon volume expansion, while bulged organoids do not. To 469 

further explore the difference between the two morphologies, we examine the limit of infinite 470 

organoid inflation (i.e.,  → ), for which the boundary between these two morphologies in 471 

phase-space can be derived analytically.  472 

We compare the free energies of organoids in partially open vs fully closed crypts. Since 473 

the partially open and fully closed crypt morphologies respectively belong to bulged and 474 

budded organoids discussed above, we can approximate their free energies by following the 475 

analysis in Subsection 2.1, and considering  → . Then, we have ( )
1/32

po
ˆ 4 12 1F    + −  476 

for a partially open case, and ( )
2/3

2 1/2 1/3

fc c
ˆ 4 12 1F     − + +  for a fully closed shape. The 477 

crypt in a budded organoid will stay closed when 
fc po

ˆ ˆF F , which holds for 478 

( )
2

1/2 1

c1 1  − −+  − , which specifies a critical value of crypt apical tension distinguishing 479 

the two configurations.  480 

A phase diagram of crypt morphologies under infinite lumen expansion are shown in 481 

Extended Data Fig. 3G. The effects of in-plane contraction   and spontaneous curvature c  482 

are examined in a representative parameter-regime: an initially large lumen (or thin monolayer) 483 

( 0 10 = ) and a large crypt region ( 0.2 = ). From the phase diagram, there also exists the 484 

third crypt shape: fully closed with vanishing apical surface (i.e. c 0aR = ). For a fully closed 485 

crypt in a budded organoid to get c 0aR = , it needs to satisfy ( )
11/2

c 02   
−

+ = .  486 

2.3. Dependence on cell volumes 487 

In aforementioned derivations, cell volumes were set to be constant and identical in crypt 488 

and villus regions, i.e., ec 1v =  and ev 1v = . However, this is typically not the case, as discussed 489 

in the main text: Intestinal organoids display increases in cell volume as the lumen volume 490 

decreases during morphogenesis (Fig. 7D). To consider effects of cell volumes on specific 491 

development stages listed in Subsection 2.1, we incorporate the possibility for varying and 492 

different cell volumes to the simplified free energy (22), which is then modified as:  493 
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( ) ( )

( )

3/22 1 2 3/2 1/2 1

ev c c c c ec c

3/2 3 2 2 3 1

ev c c c c

ˆ 4 8 1 16 8

8
1 1 sin

3

F v s s v

v p

       

     

− − −

− −

 + − + + +

  + − − +    

, (30) 494 

and follow the similar analysis in Subsections 2.1. In particular, we show that the generalized 495 

analytic expressions for the radius (or thickness) ratios, including Eqs. (24) and (27), become: 496 

( )
( )

( )

4/3

2/3ev1 1/3 1/3 1v c
c ec ec ev ev

c ev v

11/2 1/3 1/3 1/3 1/3 1 2/3 2/3c c
ec ec ev

v v

1
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Budded : , 1

v vR h
v v v v v

R v v h

R h
v u v v v u v

R h


  

 

− − −

−− − −

− +  
 −  − +  −

  −

.(31) 497 

In view of the fact that cell swelling typically happens during the later development phases 498 

(Fig. 1, 2 and Extended Data Fig. 8B), which correspond to the budding stage, we will discuss 499 

the dependence of cell volumes ecv and evv  on thickness (or radius) ratio only for budded 500 

organoids. For a budded organoid, scaling laws 𝑅c/𝑅v ∼ 𝑣ec
1/3

 and ℎc/ℎv ∼ 𝑣ec
1/3

𝑣ev
−1  are 501 

suggested by Eq. (31) and verified by numerical results in Extended Data Fig. 3H. It can be 502 

seen from the scaling laws that, cell swelling in crypt always results in an increased radius (or 503 

thickness) ratio, while cell swelling in villus decreases the thickness ratio.  504 

2.4. Summary of analytic results 505 

These analytic results provide insights into the physical mechanisms of crypt 506 

morphogenesis. As aforementioned, modulated by cell tensions, an epithelial sheet can 507 

engender two types of active deformations: in-plane contraction and spontaneous bending, 508 

which are respectively described by in-plane contraction ratio   and spontaneous curvature 509 

c . However, in-plane contraction and bending can both vary at the same time (for instance if 510 

only the apical tension in crypt increases, all other parameters being kept constant) which 511 

implies the two mechanical variables   and c  are combined to affect the geometric quantities 512 

of organoid epithelium, such as thickness (and radius) ratios. The analytic results in Subsection 513 

2.1 indicates that the initial bulging morphology depends on   for the thickness ratio, 
1

c −
 514 

for the radius ratio, while the budding configuration is only controlled by ( )
1

1/2

c1u   
−

−= + .   515 

Here, we restricted ourselves to a two-region morphology (one crypt and one villus), 516 

although highly similar results are expected when considering more than one crypt region. 517 

Although in principle, budded shapes can arise even in the case of one-region organoids ( e.g. 518 

absence of mechanical differences between stem and differentiated cells, as explored by 519 
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Rozman et al. (12), who consider all cells of an organoid have equal properties, and budded 520 

shape can occur for remarkable apico-basal tension difference), we note that this unlikely to 521 

occur in intestinal organoids, as i) we experimentally observed strong region differences in 522 

both actomyosin patterns and apico-basal tensions (assessed both via laser ablation in Fig. 2D 523 

and micropipette aspiration in Fig. 2E), and ii) one-region organoids are predicted to become 524 

spherical when inflated above a critical size, which is not what we observed in our inflation 525 

experiments (Fig. 5B-C, Extended Data Fig. 7A-B).   526 

In view of the fact that shape transformation from budded to open seldom happens even 527 

though the lumen volume increases dramatically by ~5 times (Fig. 5C’), the diagrams of crypt 528 

morphology with infinite volume (Extended Data Fig. 3G) can be used to determine bounds 529 

for the parameters c  and  . We thus use these analyses and analytical criteria to guide the 530 

fitting of experimental data (both during normal organoid morphogenesis and upon organoid 531 

inflation).  532 

3. Morphogenesis with enhanced apical constriction and water uptake 533 

To evaluate the influence of specific parameters on organoid morphologies, parameters in 534 

crypt mechanics (e.g. in-plane contraction   and spontaneous curvature c ) and volumes (e.g. 535 

organoid volume v  and volume of a villus cell evv ) are usually analyzed separately in previous 536 

sections. Here, we focus on specific biophysical mechanisms uncovered by experiments, 537 

showing that these parameters may be coupled together to modulate organoid morphologies.  538 

3.1. Apical tension in crypts modulates both spontaneous curvature and in-plane 539 

contraction 540 

Firstly, experiments indicate that enhanced apical constriction of crypt is the leading 541 

mechanism in organoid morphogenesis. As assumed in Section 1, the initial spherical organoid 542 

has the same tension 0  on both apical and basal surfaces, and the lateral tensions in both 543 

regions are l . With the morphological evolution of organoids, the accumulation of 544 

actomyosin on crypt apical surface leads to an increase in crypt apical tension, that is 545 

c 0a m =   with m  the normalized crypt apical tension satisfying 1m  , while the other 546 

tensions are assumed to be constant, i.e. c v v 0b a b =  =  =  . Considering that the size of the 547 

initial spherical organoid are regulated by two tensions 0  and l , one can easily find the 548 
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relation between the shape factor 0  and these two tensions, i.e. t

0
0 2 4

l N





=


.Then, one can 549 

rewrite in-plane contraction   and spontaneous curvature of crypt c  as  550 

 
1

=
2

m


+
,

c

0

1
=

4

m




−
. (32) 551 

Eq. (32) shows that crypt apical tension can simultaneously modulate in-plane contraction   552 

and spontaneous curvature c , and that shape factor 0  is also important for the resulting shape. 553 

In this study, actomyosin accumulation is considered to be the sole mechanism that modulates 554 

cellular tensions, although other regulatory mechanisms, such as stretch-induced cortex 555 

dilation (13), are reported to be important for epithelia under deformation.  556 

3.2. Lumen/cell volume changes from villus differentiation 557 

Secondly, experiments verify that villus cells up-regulate apical ion pumps that lead to 558 

the swelling of villus cells and shrinkage of the lumen (Fig. 7). This water uptake of villus cells 559 

will modulate two parameters in our model: the organoid volume v , which is the sum of the 560 

lumen volume and half the epithelial volume in villus, and the volume of villus cell ev . For 561 

simplicity, we assume the organoid volume is only modulated by water uptake. Then, during 562 

the water uptake of villus cells, the organoid volume is related to volume of a single villus cell 563 

ev  as 564 

 
( )

( )ev

0

3 1
1 1

2
v






−
= − − . (33) 565 

Obviously, the water uptake from cells will lead to a decrease in organoid volume v . Before 566 

specific discussion on the influence of water uptake by villus cells on organoid morphogenesis, 567 

we reassess the efficiency of water uptake by different cell types, although the influence of cell 568 

swelling has been evaluated in Subsection 1.4.1.  569 

3.2.1. Efficiency for morphogenesis of different scenarios for volume changes 570 

Consider the relative reduction of lumen volume luv  is compensated by i) volume 571 

increase in all cells, which lead to ec ev 0 lu 3 1v v v= =  + , ii) volume increase in crypt cells 572 

only, which yields ( )ec 0 lu 3 1v v =  + , and iii) volume increase in villus cells only, which 573 

results in ( )ev 0 lu 3 1 1v v =  − +   . For the water uptake by cells, including all the three cases 574 

above, the overall volume is lu1 2v v − . Besides, we also consider the case that the 575 



 22 

reduction of luminal fluid is due to the leakage of epithelium, which corresponds to 576 

ec ev 1v v= = , and lu1v v= − . As shown in Fig. 7F, water uptake by villus cells is the most 577 

efficient mechanism for organoid budding. 578 

3.2.2. Relevance for in vivo morphogenesis 579 

Given that the geometry of the gut in vivo is that of a tube, rather than a closed sphere as 580 

in organoids, we next wish to discuss the relevance of these findings in the absence of lumen 581 

volume changes. From a mechanical perspective, we reason that villus swelling should still 582 

promote crypt budding, even in the absence of significant lumen changes, as this can also 583 

increase the compressive stresses exerted at the crypt/villus boundary. Indeed, simulating villus 584 

cell swelling in the absence of lumen shrinkage still contribute to crypt budding (Fig. 7G). 585 

Interestingly, we find a similar situation in vivo, with marked increase in villus cell volume in 586 

the first days of post-natal development (Extended Data Fig. 8C), which is concomitant to crypt 587 

morphogenesis. 588 

3.3. Combined effects of tension and volume changes  589 

Finally, we examine the influence of concomitant crypt apical constriction and water 590 

uptake of villus cells on organoid morphology in Extended Data Fig. 6. The water uptake is 591 

evaluated by the normalized volume of a villus cell ev , and causes variations in the lumen 592 

volume, as shown in Eq. (33).  593 

3.3.1. Efficiency for morphogenesis  594 

As expected, both the enhanced apical constriction in crypt and water uptake of villus 595 

cells can lead to budding (Extended Data Fig. 6A), and the critical apical tension and degree 596 

of water uptake are affected by the crypt size   and shape factor 0  (Extended Data Fig. 6B). 597 

It is hard to close a large crypt by apical constriction alone, since the in-plane contraction of 598 

the epithelium will lead to the elevation of luminal fluid pressure, which further hinders the 599 

bending of the crypt, and a larger contractile region (i.e., the crypt) will lead to a higher fluid 600 

pressure. As shown in Eq. (32), spontaneous curvature is inversely related to the shape factor 601 

0 , thus strong apical constriction is needed for the budding of an organoid with a thin 602 

epithelium or a big lumen (i.e. large shape factor in Extended Data Fig. 6B). Besides, as 603 

observed in experiments, an organoid usually undergoes enhanced apical constriction in the 604 

bulging stage, which is followed by the water uptake of villus cells. Setting the normalized 605 
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crypt apical tension to 2m = , we also examine the degree of water uptake that resulting in the 606 

closure of two regions in Extended Data Fig. 6B. 607 

Although the phase diagrams in Extended Data Fig. 6B clearly show that, a large crypt 608 

size is not favorable for apical constriction-driven budding, the results are obtained under the 609 

assumption that region sizes keep constant during development. If the organoid displays 610 

preferential proliferation of crypt cells, then one can expect that enlarging crypt size would 611 

promote budding, since an increase in cell number should have similar influence on 612 

morphogenesis with swelling of crypt cells, as discussed in Subsection 1.5. Indeed, with 613 

enhanced apical tension, crypt growth can promote budding (Extended Data Fig. 6C), although 614 

the cell number in the crypt needs to be doubled. An increase in cell number engenders an 615 

equivalent volume effect of lumen shrinkage, which compresses the crypt/villus boundary and 616 

thus promotes budding. After removing the volume effect by rescaling the organoid volume v  617 

in Extended Data Fig. 6D, we can find that the morphologies are all quite close to those in the 618 

scenario considering constant crypt size (i.e. ( )g 1   = +  with g   = − ), and the 619 

negative effect of crypt size on organoid morphologies uncovered in Extended Data Fig. 6B is 620 

restored. For a swollen organoid (e.g., the one with 1.2v = in Extended Data Fig. 6E), the 621 

volume effect is weakened, and an enlarging crypt no longer benefits organoid morphogenesis. 622 

3.3.2. Influence on morphometric parameters 623 

The morphometric parameters, i.e., thickness ratio c v/h h  and radius ratio c v/R R , also 624 

evolve with apical constriction and water uptake. An organoid with enhancing crypt apical 625 

constriction may undergo three phases: Bulging, budding, and budding with vanishing crypt 626 

apical surface (i.e., c 0aR = ). In the first two phases, enhanced apical constriction in crypt leads 627 

to an increase in the thickness ratio and a decrease in the radius ratio (Extended Data Fig. 6F-628 

G), and the transformation from the bulged to the budded shape results in negligible variations 629 

in the trends of thickness ratios but notable changes in those of radius ratios. With continued 630 

enhancement of apical constriction, the apical surface of a closed crypt will contract towards a 631 

point, then the crypt will stop thickening and the thickness (or radius) ratio goes into a plateau, 632 

as shown in Extended Data Fig. 6F.  633 

Morphometric parameters in these three phases are also affected by shape factor 0  and 634 

region size  . As aforementioned, spontaneous curvature c  results in an increased thickness 635 

and decreased radius of the crypt. Considering c  is inversely proportional to shape factor 0  636 
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(Eq. (32)) , one can find that a larger 0  will leads to a smaller thickness ratio c v/h h  and 637 

larger radius ratio c v/R R  in the bulging and budding phases, as verified in Extended Data Fig. 638 

6F. While crypt size   has negligible influence on the thickness (or radius) ratio in these two 639 

phases (Extended Data Fig. 6G). However, both shape factor 0  and crypt size   are crucial 640 

on the third phase. Since the apical surface of an organoid with a thin epithelium/large lumen 641 

is hard to contract into a point, a large shape factor will delay the transition towards the third 642 

phase (Extended Data Fig. 6F). And a large crypt in the budding phase will become a closed 643 

sphere with large radius cR , which makes it hard to get c c c / 2 0aR R h= − =  and enter into the 644 

third phase (Extended Data Fig. 6G). After enhanced apical constriction in crypt, water uptake 645 

of villus cells will keep promoting the morphogenesis. As expected, water uptake of villus cells 646 

will decrease the thickness ratio and promote the closure of two region (Extended Data Fig. 647 

6H). Morphometric parameters show distinct trends in bulging and budding phases. With the 648 

water uptake, the thickness ratio decreases more sharply in a budded organoid than in a bulged 649 

one, while the radius ratio only shows notable changes in the bulging phase.  650 

We further explore the influence of crypt apical constriction on the evolution of thickness 651 

ratio c v/h h  and radius ratio c v/R R  during organoid expansion. As expected and shown in 652 

Extended Data Fig. 6I, the thickness ratio always increases with volume expansion for an 653 

organoid with enhanced crypt apical constriction, which prevents the crypt from inflating with 654 

organoid expansion. As already found in Extended Data Fig. 2 and analyzed in Subsection 2.1, 655 

for a bulged organoid with weak crypt apical constriction, the radius ratio increases with 656 

volume expansion, while the radius ratio of a budded organoid decreases with volume 657 

expansion (Extended Data Fig. 6I). Besides, the transformation from a budded shape to a 658 

bulged one can also happen, and will also affect the thickness (or radius) ratio. We also discuss 659 

morphologies of crypts with enhanced apical constriction under infinite volume expansion in 660 

Extended Data Fig. 6J. Setting crypt size 0.2 =  (which is the average value that we measured 661 

experimentally, see Section 4 for details), the crypt morphologies are modulated by two 662 

parameters: normalized crypt apical tension m and shape factor 0 . The phase diagram 663 

indicates that the three morphologies discussed in Extended Data Fig. 3G (partially open, fully 664 

closed, and fully closed with vanishing apical surface) still exist for crypts with enhanced apical 665 

constriction. Inserting Eq. (32) into the critical condition in Subsection 2.2, one obtains that 666 

the crypt will never open up if the normalized crypt apical tension m satisfies 667 

( ) ( ) ( )
2

1/2

01 1 / 4 2 / 1 1m m  + − + + 
 

(whose lower bound is named as critm afterwards), no 668 
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matter the lumen volume. However, when m is larger than 1/2

02  , the apical surface will 669 

contract into a point, resulting in c =0aR . The influence of cell swelling on thickness (or radius) 670 

ratio have been discussed in Subsection 2.3, and both numerical and analytic results indicate 671 

that the crypt morphologies under infinite organoid expansion are irrelevant to cell volume evv . 672 

4. Organoid morphometric measurements and fitting strategy 673 

To validate the theory and extract mechanical parameters, we measured the thickness (and 674 

radius) ratios of crypt and villus during normal organoid morphogenesis (Fig. 2C) and inflation 675 

experiments, when the lumen volume is increased by PGE treatment (Fig. 5B-C) or 676 

micropipette injection (Extended Data Fig. 7A-B). In the measurements, a dimensionless 677 

volume v , which is the current volume of a sample normalized by its originating volume, is 678 

used to characterize the organoid inflation. Let 0v  be the initial volume, v  be the volume in 679 

free mechanical state, which can be estimated as ( )
3/2

ev1v v −  by using ˆ / 0F   =  in Eq. 680 

(30), then v  is related to the volume v  employed in the model as ( )0/v v v v= . Considering 681 

the crypt apical constriction as the main mechanical cue of organoid morphogenesis in bulging 682 

phase, then the crypt mechanical parameters can be described by Eq. (32). Moreover, luminal 683 

volume decreases and swelling of villus cells occurs in the budding phase (Fig. 7). In view of 684 

these, one can find that the evolutions of thickness (and radius) ratios depend on four 685 

parameters: m , 0 ,  , and 0v , for bulged samples, and one more parameter evv  for budded 686 

ones. We can directly measure some of them, and determine the remaining parameters by 687 

fitting experimental data with analytic formulation or numerical results. 688 

4.1. Independently-measured geometric parameters 689 

Firstly, to estimate the shape factor of organoids, we can measure the shape factor of villus 690 

( )3

v v v ev v v4 /R N V R h =  , which is linearly dependent on v  as v v0v  , with the initial 691 

shape factor of villus v0  related to 0  as v0 0 0v   for bulged organoids and 692 

( )
1/2

v0 0 01 v   −  for budded ones. Secondly, we also directly measured the crypt size   of 693 

bulged organoids as ( )2 2

c c v v4h l h R  , where the arclength of crypt section is denoted cl , to 694 

further constrain the system.  695 

 696 

 697 
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4.2. Parameters extracted via direct fitting 698 

Analytic results in Section 2 provide guidance on the fitting of morphometric data. 699 

Replacing volume v  by the new normalized volume v  in Eq. (31) leads to 700 

( )
( )

( ) ( ) ( )

4/3

2/301 1/3 1/3v c
c e e 0

c 0 v
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1
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v vR h
v v v v

R v v h

R h
v uv v v uv v

R h


  

 

− −

− − −

− +  
 −  − +  −

 − 

, (34) 701 

where e ec ev/v v v=  is the volume ratio of a crypt cell to a villus cell. In this new formulation, 702 

thickness (or radius) ratio is only related to cell volumes by 
1/3

ev . As aforementioned, cell 703 

swelling is insignificant in the bulging phase, but the swelling of villus cells becomes important 704 

in the budding phase. Therefore, we have e 1v   for a bulged organoid, and 
1

e ev 1v v−=   for a 705 

budded one. During the bulging of organoids, the crypt mechanical parameters vary with time, 706 

while the lumen volume stays almost constant. In contrast, the inflation experiments provide a 707 

setting where lumen volumes change drastically while crypt mechanics can be considered 708 

constant. In view of these, based on the analytical expressions of Eq. (34), we further discuss 709 

specific relations between morphometric parameters, i.e. thickness (and radius) ratios, and 710 

bulging time or lumen volume in the following, and also derive the relation between thickness 711 

ratio and radius ratio. Using these analytical relations, we can fit and rescale the experimental 712 

data. 713 

4.2.1. Dynamics of organoid bulging 714 

First, we consider the bulging dynamics of organoids. Experiments show that the volume 715 

stays constant in this process, that is 1v  . According to Eq. (34), the morphometric parameters 716 

c v/R R  and c v/h h  are then linked to each other via a simple relation: 717 

 ( ) ( )
2 3/2v

c v c v

c

1 pm1 1
R

h h h h
R

  +  −
 

, (35) 718 

where pm1= ( )
1

v0 02 1v
−

−    is a single fitting parameter. Importantly, this expression is 719 

independent on the dynamics of how crypt apical tension varies in time, providing a simple 720 

and robust model prediction. The six samples in Fig. 2C have different characteristic sizes, we 721 

can get shape factor v0 : 2.7±1.8 (mean ± SD) and crypt size  : 0.2±0.06 (mean ± SD). The 722 

measurement result of v0 , which is obtained by using ( )v0 v v/R h v   as given in Subsection 723 

4.1, indicates that the radius to thickness ratio v v/R h is typically larger than 2 (volume 1v   724 
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for bulging organoids), providing a safety check on the “ thin-film assumption” employed in 725 

Subsection 1.1. Extracting pm1 from these samples allows us to rescale the morphometric 726 

parameters of every sample to verify that, even for organoids with distinct initial shape factors 727 

and crypt sizes, their morphometric parameters can be well-fitted by Eq. (35), as shown in Fig. 728 

2C’’. In the fitting and rescaling, the initial volume 0v  is estimated as 2.5±0.5 (mean ± SD, 729 

from the analytical theory), which gave consistent values across different organoids. We note 730 

for instance that Sample 3 appears as an outlier in terms of thickness ratio (with a much larger 731 

value than others), but this is explained by the fact that it is larger in size ( v0 = 6.2), and larger 732 

organoids need larger crypt apical tension (which results in a thicker crypt monolayer) to bud, 733 

as discussed in Section 3. Despite its specific morphometric character, this sample can also be 734 

fitted by choosing a reasonable volume value ( 0 2.5v = ), consistent with other organoids.    735 

On the other hand, to reproduce the evolution of each morphological ratio in time, one 736 

must assume a specific dynamic relation for tension changes in time. For simplicity, we 737 

consider a linear increase of the normalized crypt apical tension m  with time t , that is 738 

0m m m t= + , where 0m  and m  are respectively the initial value and the slope. Then, the 739 

evolution of thickness ratio c v/h h  and radius ratio c v/R R  can be estimated as  740 

 ( )
2/3c

v

pm2 pm3 1
h

t
h

 +  + , ( )( )
4/3v

c

1 pm1 pm2 pm3 pm2 pm3 1
R

t t
R

 +  +  +  + ,(36) 741 

where pm2= ( )0 01 / 2m v− , pm3= 0 / 2m v . We can get pm2 and pm3 simultaneously by fitting 742 

the experimental data of thickness ratios, and obtain pm1 by fitting the data of radius ratios 743 

(both of the evolutions were well-fitted by these analytic forms, see Extended Data Fig. 3C-D). 744 

For the six samples we measured, by using analytic fitting, we can get their initial crypt apical 745 

tension 0m :1.2 ± 0.2 (mean ± SD). We can also get the enhanced crypt apical tension m at the 746 

end of the bulging phase (prior to water uptake by villus cells): 1.6 ± 0.4 (mean ± SD). Besides 747 

the data fitting using analytic equation (36), we also use full numerical results (e.g. those in 748 

Section 1 and 3) to fit the experimental data, as shown in Fig. 2C’ and Extended Data Fig. 3B. 749 

In this way, we can get the initial apical tension 0m :1.3 ± 0.3 (mean ± SD), and the apical 750 

tension m at the end of the bulging phase: 1.7 ± 0.6 (mean ± SD). We can find that both fittings 751 

get quite close estimations of apical tension m, providing a safety check on the fitting procedure. 752 

The estimation of m at the end of the bulging is interesting, as it remains significantly smaller 753 

(60%) of the critical value of m that leads to crypt budding (this proportion is calculated for 754 

three samples with representative crypt sizes and shape factors), and also argues that changes 755 
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in lumen volume will play a key role on crypt morphogenesis. Furthermore, m is also much 756 

smaller than the critical value critm that allows to remain budded upon infinite volume expansion 757 

(40%). 758 

4.2.2. Inflation of bulged organoids 759 

Our analysis of the dynamics of bulging organoid suggests that their apical tension m is 760 

below the critical point of Fig. 5A, so that these organoids would be expected to open up upon 761 

inflation, a key prediction we now test. For the inflation of bulged samples, we can assume that 762 

tensions remain constant, and eliminate volume from the equation to derive again a relation 763 

between c v/R R  and c v/h h : 764 

 
( )

( )

2

c vv

3/2
c c v

1
pg1

h hR

R h h 
 +
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 

, (37) 765 

where pg1= ( )
11

c 1 
−−− − . In contrast to the relation of morphometric parameters in Eq. (35) 766 

for bulging evolution, the thickness ratio c v/h h  and the radius ratio c v/R R  show similar 767 

trends during organoid inflation. The dependence of morphometric parameters on volume v  768 

yields 769 

 ( )
2/3c

v

pg2 1
h

v
h

  + , 
( )

( )

4/3

v

c 0

pg2 1
1

pg3 1

vR

R v v

 +
 +

 −
, (38) 770 

Where pg2= ( ) 01 2m v− , pg3= v02 pg2 . The experimental data again was in agreement 771 

with these analytic forms (Extended Data Fig. 7C), so that by fitting the experimental data of 772 

thickness ratios, we can get pg2, which can be further used to estimate pg3. Then, the initial 773 

volume 0v  is employed as the only fitting parameter to fit the data of radius ratios. Further 774 

using the relations between parameters in Eq. (37) and those in (38): pg1= 0 pg3 pg2v  , 775 

01 pg2 / v = + , we can find that the functional form of Eq. (37) predicts the evolution of all 776 

six bulged inflation samples (from PGE or pipette), as shown in Fig. 5D. For the six samples 777 

we measured, we can get estimates of the initial volume 0v : 1.5 ± 0.3 (mean ± SD) (i.e. always 778 

larger than 1, consistent with initially swollen organoids as found in the fits of the bulging 779 

evolution, see Subsection 4.2.1), and the normalized crypt apical tension m: 1.3 ± 0.05 (mean 780 

± SD), which is close to the initial tension 0m  estimated for the six bulging samples in 781 

Subsection 4.2.1, providing another consistency check of the fitting approach and model (and 782 
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showing in particular that the parameters used in the fits/collapse of Fig. 2 can be validated by 783 

independent datasets). 784 

4.2.3. Inflation of budded organoids 785 

Finally, as aforementioned, the morphometric parameters of budded samples obey a 786 

simple scaling law, and we can easily get the relation between c v/R R  and c v/h h : 787 

 ( )
1/2c

c v

v

pd1
R

h h
R

−
=  , (39) 788 

where pd1= ( )1

ev1 v − − , and their relation with v can be recast as  789 

 ( )
2/3c

v

pd2
h

v
h

  , ( )
1/3c

v

pd3
R

v
R

−
=  , (40) 790 

where pd2=
1/2

ev 0v uv−  , pd3=
2/3pd1 pd2 . These scaling relationships can in fact be derived from 791 

purely geometric considerations, under the assumption that near-spherical villi bear the 792 

deformation alone. As shown in Fig. 5E and Extended Data Fig. 7C’, they can fit the evolution 793 

of budded inflation samples (from PGE or pipette) very well. To estimate the normalized crypt 794 

apical tension m , we can further introduce the shape factor of crypt ( )3

c c c ec4 R N V = , which 795 

can be estimated either by directly using c c cR h   or by using its relation with other fitting 796 

parameters, that is ( )
1/3

2

c v0 pd2 pd3 
−

=  , then the normalized crypt apical tension is 797 

 

1/2

0

c

4 2
1

2 1
m

 



+
= −

+
. (41) 798 

Although 
1/2

0   is hard to get by direct measurement, we can use the analytic critical 799 

conditions of crypt morphologies under infinite volume expansion (discussed in Subsection 2.2 800 

and Section 3) to estimate the lower bound of m (i.e., critm ). Now we have 
3/2

c

1 11

1 21

mm

mm 

++ 
−  

−− 
 801 

to forbid the crypt to open up with volume expansion and c 0.5   to guarantee that c 0aR   802 

always holds. For the six samples we measured, we can get an estimation of critm : 3.6 ± 0.8 803 

(mean ± SD).  804 

4.3. Validation of tension estimation 805 

Finally, we can use our measurements of Myosin levels, as well as our laser ablation 806 

experiments on apical junctions (both measured for different times and regions) to semi-807 

quantitatively constrain the crypt apical tension. As aforementioned, lateral myosin intensity 808 
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does not show strong spatio-temporal changes (Fig. 3B), so that we consider constant lateral 809 

tension l  in the fitting. Furthermore, apical Myosin intensity in crypts increases by around 810 

50% from spherical to bulged shapes, and by around two-fold from bulged to budded shapes, 811 

leading us to hypothesize that tension increases is a key driver of the bulged-budded 812 

transformation. This is also consistent with laser ablation experiments on bulged vs. budded 813 

crypts, showing a roughly two-fold increase (Fig. 2D). We note that because these ablations 814 

are done in a highly local manner, they only probe the local tensions of the cell-cell junctions, 815 

whereas more global tissue-wide ablation, such as used in Drosophila notum, is used instead 816 

to estimate global tissue tensions (14), which would also depend on parameters like lumen 817 

swelling in our systems.  818 

Importantly, these magnitudes of apical crypt tensions for an organoid changes from 819 

spherical to bulged to budded shapes are consistent with the values extracted from 820 

aforementioned morphogenesis/inflation fittings (we had estimated critm : 3.6 ± 0.8 from 821 

budded sample inflation, and 1.7 ± 0.6 at the end of bulged state from Fig. 2, arguing that a 822 

doubling of tension estimated from laser-cutting/Myosin intensity would be sufficient to bud), 823 

providing an independent validation for the parameter set we propose here, and the range of 824 

the theoretical phase diagram proposed in Fig. 5A. 825 

 826 

  827 
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