Supporting Information

Optimal His-tag design for efficient $[^{99m}Tc(CO)_3]^+$ and $[^{188}Re(CO)_3]^+$ labeling of proteins for molecular imaging and radionuclide therapy by analysis of peptide arrays.

Jennifer D. Williams,¹ Florian Kampmeier,¹ Adam Badar,¹ Kevin Howland,² Margaret S. Cooper,¹ Gregory E. D. Mullen,¹ Philip J. Blower^{1*}

¹King's College London, School of Biomedical Engineering and Imaging Sciences, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK

²Biomolecular Science Facility, University of Kent, Canterbury, CT2 7NJ, UK

*Corresponsing Author: Prof Phil Blower; Philip.blower@kcl.ac.uk

Background

Ref.	Labelling Conditions	Labelling time	RY (%)	Purification required	RP (%)	Specific Activity
Mees et al. 2012 (1)	37°C, blown dry with N2	1-1.5 h	40-50%	Yes	>95%	8.9-10.4 MBq/µg
Shah et al. 2012 (2)	37°C, PBS at pH 7.4	2 h	98%			
Cortez- Retamozo et al. 2008 (3)	52°C, CO ₃ ²⁻ buffer pH 8 and PBS pH 7.4	1 h		Often	98%	
Teran et al. 2011 (4)	50°C, H_2O for	50 min	95%			20 mCi/µg
Orlova et al. 2006 (5)	50°C, PBS buffer	40 min	60%			
Deyev et al. 2003 (6)			95%			2GBq/mg
Tait et al. 2002 (7)	37°C, 0.5/0.1M HEPES pH 7.4	1 h	80%	Yes	98%	
Chen et al. 2008 (8)	37°C	3 h	90%	Yes	90%	
Tavare et al. 2009 (9)	37°С, PBS, pH 7.4	30 min	95%	Yes	100%	
Zahnd et al. 2010 (10)	37°C, 0.6M phosphate buffer, pH 7	1 h				
Tolmachev et al. 2010 (11)	50°C, PBS	1 h	80%	Yes	95%	2 MBq/µg
Bidlingmaier et al. 2009 (12)	37°C, PBS buffer	1 h		Yes		
Berndorff et al. 2006 (13)	37°C, 0.1M HEPES and PBS	1 h	54%	Yes	91%	21 MBq/μmol

Table S1. Summary of literature methods and radiochemical yields for labeling proteins with $[^{99m}Tc][Tc(CO)_3]^+$. RY = radiochemical yield; RP = radiochemical purity (post-purification where purification was required).

Results

Table S2 (continues over page). Peptide sequences in the Celluspots[™] Serine/Threonine Kinase Substrate I (STKS1) and their positions on the glass slide. Peptide sequences containing his residues are highlighted in red. The grid layout to which grid positions refer is shown in Table S3.

	Grid			
no	position	kinase	sequence	to array
1	A 1	control	N-W-S-H-P-Q-F-E-K-X-X-X-X	•
2	A 2	neg. control	.space	
3	A 3	70-kDakinase	Q-N-R-S-G-A-M-S-P-M-S-W-N-S-D	•
4	A 4	AFK	E-R-G-Y-S-F-T-T-T-A-E-R-E-I-V	•
5	A 5	AMPK_group	T-L-V-N-R-K-V-S-Q-R-R-V-D-F-C	•
6	A 6	AMPK_group	S-Q-R-Q-R-S-T-S-T-P-N-V-H-M-V	
7	A 7	AMPK_group	S-P-R-V-R-T-L-S-G-S-R-P-P-L-L	
8	A 8	AMPK_group	Y-V-A-S-N-R-R-S-I-F-F-R-T-S-H	•
9	A 9	AMPK_group	S-D-G-E-F-L-R-T-S-C-G-S-P-N-Y	
10	A10	AMPK_group	P-V-R-M-R-R-N-S-F-T-P-L-S-S-S	
11	A11	AMPK_group	S-S-G-S-P-A-N-S-F-H-F-K-E-A-W	
12	A12	AMPK_group	G-K-I-K-R-L-R-S-Q-V-Q-V-S-L-E	
13	A13	AMPK_group	S-P-R-R-R-R-R-ST-F-S-S-L-S-N-S	
14	A14	ATM	P-Y-P-G-I-D-L-S-Q-V-Y-E-L-L-E	
15	A15	ATM	S-L-A-F-E-E-G-S-Q-S-T-T-I-S-S	
16	A16	ATM	Q-K-G-E-L-S-R-S-P-S-P-F-T-H-T	
17	A17	ATM	E-N-V-K-Y-S-S-S-Q-P-E-P-R-T-G	
18	A18	ATM	K-D-L-K-L-G-V-S-Q-Q-T-I-F-S-V	
19	A19	ATM	E-Q-Q-L-F-Y-I-S-Q-P-G-S-S-V-V	•
20	A20	ATM	A-L-R-L-L-D-S-S-Q-I-V-I-I-S-A	
21	A21	ATM	S-Q-E-S-E-D-Y-S-Q-P-S-T-S-S-S	
22	A22	ATM	E-T-W-S-L-P-L-S-Q-N-S-A-S-E-L	•
23	A23	ATM	L-S-D-T-D-S-H-S-Q-D-L-G-S-P-E	•
24	A24	ATM	S-K-L-L-M-I-I-S-Q-K-D-T-F-H-S	
25	в 1	ATM	S-S-L-E-L-S-S-ST-Q-P-E-S-S-S-S	
26	в 2	ATR	L-V-Q-G-I-S-F-S-Q-P-T-C-P-D-H	•
27	в 3	AuroraAkinase	P-P-D-Q-R-R-L-S-E-T-S-V-N-T-E	
28	в 4	AuroraAkinase	K-A-E-F-C-N-K-S-K-Q-P-G-L-A-R	
29	в 5	AuroraAkinase	R-E-E-V-P-R-R-S-G-L-S-A-G-H-R	
30	в б	AuroraAkinase	D-R-N-T-F-R-H-S-V-V-V-P-Y-E-P	
31	в 7	AuroraAkinase	K-R-S-S-R-R-D-ST-K-L-P-A-L-K-R	
32	B 8	AuroraBkinase	A-P-S-L-R-R-K-T-M-C-G-T-L-D-Y	
33	в 9	AuroraBkinase	K-N-K-I-A-K-E-T-N-N-K-K-K-E-F	
34	B10	AuroraBkinase	I-T-S-A-A-R-R-S-Y-V-S-S-G-E-M	
35	B11	AuroraBkinase	A-T-K-A-A-R-K-S-A-P-A-T-G-G-V	
36	B12	AuroraBkinase	K-P-R-Y-H-K-R-T-S-S-A-V-W-N-S	
37	в13	AuroraBkinase	S-Q-N-H-K-R-K-T-I-S-K-I-P-A-P	

38	B14	AuroraBkinase	K-R-P-Q-S-A-T-S-N-V-F-A-M-F-D
39	B15	AuroraBkinase	I-T-S-A-A-R-R-ST-S-A-G-E-G-P-P
40	B16	BCKDK	T-Y-R-I-G-H-H-S-T-S-D-D-S-S-A
41	B17	CaM-KI group	R-F-I-I-G-S-V-S-E-D-N-S-E-D-E
42	B18	CaM-KI group	G-G-V-K-K-R-K-S-S-S-V-H-L-M
43	B19	CaM-KII group	N-V-A-S-R-M-E-S-T-G-V-M-G-N-I
44	B20	CaM-KII group	E-Q-L-S-R-E-L-S-T-L-R-N-L-F-K
45	B21	CaM-KII group	D-M-K-V-R-K-S-S-T-Q-E-E-I-K-K
46	В22	CaM-KII group	I-T-G-K-N-R-P-S-S-G-S-L-I-Q-V
47	В23	CaM-KII group	I-T-L-E-R-G-N-S-G-L-G-F-S-I-A
48	B24	_ CaM-KII group	V-T-G-P-R-L-V-S-N-H-S-L-H-E-T
49	C 1	_ CaM-KII_group	P-K-Y-S-R-Q-F-S-L-E-H-V-H-G-S
50	C 2	_ CaM-KII_group	A-R-I-R-A-A-K-S-G-S-A-N-A-Y-M
51	С З	CaM-KII_group	K-L-K-E-R-W-G-S-N-E-L-P-A-E-E
52	C 4	CaM-KII_group	R-R-K-R-R-V-V-T-K-A-Y-K-E-P-L
53	C 5	CaM-KII_group	A-G-L-R-R-Q-V-ST-L-E-E-P-A-Q-A
54	C 6	CaM-KIV	P-Q-L-A-S-K-Q-S-M-V-N-S-L-P-T
55	C 7	CaM-KIV	R-P-L-G-R-T-Q-S-A-P-L-P-Q-N-A
56	C 8	CaM-KIV	K-L-S-S-P-A-L-S-A-S-A-S-D-G-T
57	C 9	CaM-KIV	R-P-L-S-R-A-Q-ST-A-P-A-S-A-G-T
58	C10	CCDPK	S-A-I-R-R-A-S-T-I-E-M-P-Q-Q-A
59	C11	CCDPK	Q-Q-L-A-R-E-T-S-V-D-P-D-M-R-K
60	C12	CCDPK	T-D-G-N-F-L-K-T-S-C-G-S-P-N-Y
61	C13	CCDPK	D-P-G-S-V-L-S-T-A-C-G-T-P-G-Y
62	C14	CCDPK	D-P-G-S-R-L-S-ST-A-C-G-T-P-G-Y
63	C15	CDK	E-E-P-S-P-L-P-S-P-T-A-S-P-N-H
64	C16	CDK	E-P-G-V-E-R-S-S-P-S-K-C-P-S-L
65	C17	CDK	D-S-S-R-A-P-S-S-P-R-P-P-G-S-T
66	C18	CDK	R-P-N-P-C-A-Y-T-P-P-S-L-K-A-V
67	C19	CDK	T-P-A-P-R-Q-S-S-P-S-K-S-S-A-S
68	C20	CDK	F-P-P-L-N-S-V-S-P-S-P-L-M-L-L
69	C21	CDK	S-G-H-F-T-M-R-S-P-F-K-C-D-A-C
70	C22	CDK	D-V-S-P-Y-S-L-S-P-V-S-N-K-S-Q
71	C23	CDK	S-G-D-S-D-A-S-S-P-R-S-N-C-S-D
72	C24	CDK	A-E-N-S-R-L-Q-T-P-G-G-G-S-K-T
73	D 1	CDK	L-P-E-N-N-V-L-S-P-L-P-S-Q-A-M
74	D 2	CDK	G-T-N-R-C-F-G-S-F-R-H-S-P-Y-E
75	D 3	CDK	N-P-G-G-R-P-I-T-P-P-R-N-S-A-K
76	D 4	CDK	A-A-L-R-Q-L-R-S-P-R-R-A-Q-A-P
77	D 5	CDK	A-V-I-P-I-N-G-S-P-R-T-P-R-R-G
78	D 6	CDK	V-R-Y-I-K-E-N-S-P-C-V-T-P-V-S
79	D 7	CDK	N-S-S-D-T-V-T-S-P-Q-R-A-G-P-L
80	D 8	CDK	S-G-Y-S-S-P-G-S-P-G-T-P-G-S-R
81	D 9	CDK	S-S-P-S-T-P-S-ST-P-S-K-S-S-A-P
82	D10	CDK1	F-L-E-G-C-A-C-T-P-E-R-M-A-E-A
83	D11	CDK1	K-K-Y-Y-K-C-Y-'I'-Y-K-G-S-S-L-K
84	D12	CDK1	T-E-Y-S-Q-G-A-S-P-Q-P-Q-H-Q-L
85	D13	CDK1	K-P-V-S-S-A-A-S-V-Y-A-G-A-G-G

86	D14	CDK1	T-D-S-A-T-I-V-S-P-P-S-S-P-P
87	D15	CDK1	F-S-D-P-W-G-G-S-P-A-K-P-S-T-N
88	D16	CDK1	M-D-C-L-T-F-G-S-P-V-L-M-R-H-L
89	D17	CDK1	R-E-Y-Q-Q-R-N-S-P-G-V-P-T-G-A
90	D18	CDK1	S-L-P-Q-A-T-V-T-P-P-R-K-E-E-R
91	D19	CDK1	T-K-N-G-L-P-G-S-R-P-G-S-P-E-R
92	D20	CDK1	K-E-P-S-E-V-P-T-P-K-R-P-R-G-R
93	D21	CDK1	Q-E-P-T-G-E-P-S-P-K-R-P-R-G-R
94	D22	CDK1	P-N-K-E-L-P-P-S-P-E-K-K-T-K-P
95	D23	CDK1	T-Q-G-H-P-D-G-T-P-P-K-L-D-T-A
96	D24	CDK1	S-F-K-K-Q-E-K-T-P-K-T-P-K-G-P
97	E 1	CDK1	T-S-C-A-S-L-D-S-P-G-R-I-K-R-K
98	E 2	CDK1	G-R-Y-L-T-Q-E-T-N-K-V-E-T-Y-K
99	Е З	CDK1	G-G-L-I-E-P-D-T-P-G-R-V-P-L-D
100	E 4	CDK1	S-L-I-V-P-G-K-S-P-T-R-K-K-S-G
101	E 5	CDK1	K-E-L-Q-R-Q-A-S-P-S-I-V-I-A-L
102	E 6	CDK1	G-A-G-G-Y-T-Q-S-P-G-G-F-G-S-P
103	E 7	CDK1	D-P-Q-Q-L-Q-L-S-P-L-K-G-L-S-L
104	E 8	CDK1	R-G-A-L-V-R-G-T-P-V-R-G-A-I-T
105	E 9	CDK1	L-F-Q-L-G-P-P-S-P-V-K-M-P-S-P
106	E10	CDK1	L-D-E-P-N-P-N-S-P-A-N-S-Q-A-A
107	E11	CDK1	T-E-P-S-L-P-G-ST-P-V-R-P-S-S-A
108	E12	CDK11	P-A-A-A-P-A-S-S-S-D-P-A-A-A-A
109	E13	CDK2	A-D-L-G-E-V-R-T-P-E-P-P-E-S-L
110	E14	CDK2	N-S-L-T-P-K-S-T-P-V-K-T-L-P-F
111	E15	CDK2	I-N-K-K-Q-A-T-S-P-A-S-K-K-P-A
112	E16	CDK2	R-V-K-A-L-P-L-S-P-R-K-R-L-G-D
113	E17	CDK2	N-E-E-A-K-R-K-S-P-K-K-K-E-K-C
114	E18	CDK2	R-N-K-L-K-P-K-ST-P-S-K-K-L-K-A
115	E19	CDK4	K-R-S-F-A-P-S-T-P-L-T-G-R-R-Y
116	E20	CDK4	E-R-G-K-L-P-E-S-P-K-R-A-E-E-I
117	E21	CDK4	S-K-A-L-R-I-S-T-P-L-T-G-V-R-Y
118	E22	CDK4	S-M-D-A-R-P-S-ST-P-L-A-G-V-R-Y
119	E23	CDK5	S-I-K-S-E-P-I-S-P-P-R-D-R-M-T
120	E24	CDK5	T-R-K-S-A-P-S-S-P-T-L-D-C-E-K
121	F 1	CDK5	G-F-K-S-S-P-A-ST-P-K-A-D-G-A-A
122	F 2	CDK7	G-L-A-K-S-F-G-S-P-N-R-A-Y-T-H
123	FЗ	CDK7	P-E-E-F-I-S-L-S-P-P-H-E-A-L-D
124	F 4	CDK7	R-R-R-K-K-R-T-S-I-E-T-N-I-R-V
125	F 5	CDK7	E-I-V-P-S-P-P-S-P-P-L-P-R-I
126	F 6	CDK7	G-I-P-I-R-V-Y-T-H-E-V-V-T-L-W
127	F 7	CDK7	Y-S-Y-Q-M-A-L-T-P-V-V-T-L-W
128	F 8	CDK7	G-S-P-K-R-A-L-ST-P-E-V-V-T-L-W
129	F 9	CDPK	S-E-T-T-K-S-A-S-F-L-K-G-R-A-A
130	F10	CHK1	E-V-V-G-G-T-D-S-S-M-D-V-F-H-L
131	F11	CHK1	P-A-L-K-R-S-H-S-D-S-L-D-H-D-I
132	F12	CHK1	D-E-L-G-R-L-C-ST-G-A-F-V-E-S-L
133	F13	CHK2	P-L-L-S-R-M-G-S-L-R-A-P-V-D-E

134	F14	CHK2	P-P-L-F-P-I-K-S-F-V-K-T-K-C-K
135	F15	CHK2	S-G-L-Y-R-S-P-S-M-P-E-N-L-N-R
136	F16	CHK2	L-F-T-Q-R-Q-N-S-A-P-A-R-M-L-S
137	F17	CHK2	G-L-T-K-R-Q-K-ST-M-S-A-T-M-P-E
138	F18	CK	P-P-A-P-G-N-A-S-E-S-E-E-D-R-S
139	F19	CK	A-V-H-Y-L-D-E-T-E-Q-W-E-K-F-G
140	F20	CK	E-D-P-D-I-P-E-S-Q-M-E-E-P-A-A
141	F21	CK	A-D-D-Y-H-P-E-ST-E-M-E-E-H-A-A
142	F22	CK1delta	N-R-M-G-Q-A-G-S-T-I-S-N-S-H-A
143	F23	CK1delta	A-G-S-T-I-S-N-S-H-A-Q-P-F-D-F
144	F24	CKlepsilon	A-L-P-G-K-A-E-S-V-A-S-L-T-S-Q
145	G 1	CK1 group	S-R-C-S-S-L-S-S-L-S-S-A-E-D-E
146	G 2	CK1 group	G-A-T-T-T-A-P-S-L-S-G-K-G-N-P
147	G 3	CK1 group	R-M-G-Q-L-R-G-S-A-T-R-A-L-P-P
148	G 4	CK1 group	G-I-P-V-R-C-Y-S-A-E-V-V-T-L-W
149	G 5	CK1 group	G-D-D-D-A-Y-S-D-T-E-T-T-E-A
150	G 6	CK1 group	N-E-A-A-R-F-T-L-G-S-P-L-T-S
151	G 7	CK1 group	E-P-P-L-S-Q-E-T-F-S-D-L-W-K-L
152	G 8	CK1 group	S-T-L-S-S-S-S-ST-L-E-S-S-P-S-G
153	G 9	CK2	H-K-A-E-L-Q-G-S-D-E-D-E-H-V-R
154	G10	CK2	F-D-G-I-W-K-A-S-F-T-T-F-T-V-T
155	G11	CK2	D-Y-F-L-L-S-H-S-L-L-P-A-L-C-D
156	G12	CK2	K-E-R-D-K-E-V-S-D-D-E-A-E-E-K
157	G13	CK2	K-E-R-E-K-E-I-S-D-D-E-A-E-E-E
158	G14	CK2	T-S-G-E-D-T-L-S-D-S-D-D-E-D-D
159	G15	CK2	G-G-R-E-R-L-A-S-T-N-D-K-G-S-M
160	G16	CK2	G-P-R-V-W-Y-V-S-N-I-D-G-T-H-I
161	G17	CK2	G-Y-L-R-K-P-K-S-M-H-K-R-F-F-V
162	G18	CK2	S-K-E-S-E-H-D-S-D-E-S-S-D-D-D
163	G19	CK2	L-V-R-S-R-E-V-S-V-D-E-G-R-A-C
164	G20	CK2	K-R-G-W-I-P-A-S-F-L-E-P-L-D-S
165	G21	CK2	V-D-G-S-G-D-T-S-S-N-E-E-I-G-S
166	G22	CK2	V-D-G-T-G-D-T-S-S-E-E-D-E-D-E
167	G23	CK2	Y-G-G-F-T-E-E-S-G-D-D-E-Y-Q-G
168	G24	CK2	R-I-C-M-R-N-F-S-R-S-D-H-L-T-T
169	Н 1	CK2	I-Y-P-W-M-R-S-S-G-T-D-R-K-R-G
170	Н 2	CK2	E-F-D-T-N-Y-A-T-D-D-D-I-V-F-E
171	н З	CK2	A-S-S-S-T-S-V-T-P-D-V-S-D-N-E
172	Н 4	CK2	K-A-A-R-V-L-G-S-E-G-E-E-D-E
173	Н 5	CK2	G-K-K-T-K-F-A-S-D-D-E-H-D-E-H
174	Н 6	CK2	R-A-A-M-F-P-E-T-L-D-E-G-M-Q-I
175	Н 7	CK2	A-E-K-Y-A-K-E-S-L-K-E-E-D-E-S
176	Н 8	CK2	E-E-E-E-E-S-ST-D-D-E-E-E-E
177	Н 9	CK2alpha	D-K-E-N-G-S-V-S-T-S-E-T-P-P-P
178	H10	CSFR1	I-E-S-Y-E-G-N-S-Y-T-F-I-D-P-T
179	H11	DAPK_group	R-R-E-E-R-S-L-S-A-P-G-N-L-L-T
180	Н12	DAPK_group	A-R-K-K-W-K-Q-S-V-R-L-I-S-L-C
181	H13	DAPK_group	I-I-M-D-S-S-I-S-K-Q-A-L-S-E-I

182	H14	DAPK3	K-Q-T-A-R-K-S-T-G-G-K-A-P-R-K
183	H15	DAPK3	K-K-R-P-Q-R-A-T-S-N-V-F-A-M-F
184	H16	DAPK3	R-L-G-K-R-V-L-S-K-L-Q-S-P-S-R
185	H17	DAPK3	S-S-R-R-R-A-I-S-E-T-E-E-N-S-D
186	H18	DAPK3	Q-G-R-K-R-R-Q-T-S-M-T-D-F-Y-H
187	Н19	DAPK3	A-G-R-K-R-R-S-ST-S-G-V-E-F-S-D
188	Н20	DNA-PK	E-K-E-E-D-H-I-S-I-S-S-L-A-E-G
189	Н21	DNA-PK	L-S-P-I-D-M-E-S-Q-E-R-I-K-A-E
190	Н22	DNA-PK	L-T-P-M-F-V-E-T-Q-A-S-Q-G-T-L
191	Н23	DNA-PK	E-K-K-T-K-I-R-S-L-H-N-K-L-L-N
192	H24	DNA-PK	Q-Q-A-T-T-G-V-S-Q-E-T-S-E-N-P
193	I 1	DNA-PK	L-T-V-L-N-A-F-S-Q-A-P-S-T-M-Q
194	I 2	DNA-PK	L-S-E-T-D-I-S-ST-Q-E-E-S-S-A-G
195	I 3	Eg3kinase	V-Q-N-K-R-R-R-S-V-T-P-P-E-E-Q
196	I 4	ERA	L-G-Q-K-I-S-I-T-S-R-K-A-Q-T-T
197	I 5	ERTPK	R-E-L-V-E-P-L-T-P-S-G-E-A-P-N
198	I 6	ERTPK	P-G-E-T-P-P-L-S-P-I-D-M-E-S-Q
199	I 7	ERTPK	L-L-P-T-P-P-L-S-P-S-R-R-S-G-L
200	I 8	ERTPK	L-L-P-T-P-P-L-ST-P-S-R-R-S-G-L
201	I 9	GRK group	K-A-Y-G-N-G-Y-S-S-N-G-N-T-G-E
202	I10	GRK group	Q-E-A-P-E-R-A-S-S-V-Y-T-R-S-T
203	I11	GRK group	R-S-Q-E-L-R-K-T-F-K-E-I-I-C-C
204	I12	GRK group	V-A-N-Q-D-P-V-S-P-S-L-V-Q-G-R
205	I13	GRK group	E-S-G-E-D-E-S-ST-S-S-D-S-S-G-E
206	I14	GRK-1	P-L-G-D-D-E-A-S-A-T-V-S-K-T-E
207	I15	GRK-1	A-V-S-K-A-E-T-ST-Q-T-A-P-A-A-E
208	I16	GRK-2	K-D-E-K-K-E-E-S-E-E-S-D-D-D-M
209	I17	GRK-2	L-C-E-D-L-P-G-T-E-D-F-V-G-H-Q
210	I18	GRK-2	A-T-A-R-E-R-V-T-A-C-T-P-S-D-G
211	I19	GRK-2	E-R-A-L-T-E-D-S-T-Q-T-S-D-T-A
212	I20	GRK-2	P-G-M-E-G-L-G-T-D-I-T-V-I-C-P
213	I21	GRK-2	Y-E-D-D-E-E-S-E-A-Q-G-P-K
214	I22	GRK-2	G-M-D-E-M-E-F-T-E-A-E-S-N-M-N
215	I23	GRK-2	R-E-D-D-T-E-D-ST-E-D-T-S-G-S-G
216	I24	GRK-3	V-K-A-L-D-F-R-T-P-R-N-A-K-I-V
217	J 1	GRK-4	E-S-M-R-R-S-V-S-E-A-A-L-A-Q-P
218	J 2	GRK-5	V-L-D-I-E-Q-F-S-T-V-K-G-V-N-L
219	J 3	GRK-5	D-F-V-G-H-Q-G-T-V-P-S-D-N-I-D
220	J 4	GRK-6	V-A-K-L-L-E-G-T-G-S-E-A-S-S-T
221	J 5	GRK-6	P-A-L-V-R-S-A-S-S-D-T-S-E-E-L
222	J 6	GSK-3_group	Н-L-Q-Р-G-Н-Р-Т-Р-Р-Т-Р-V-Р
223	J 7	GSK-3_group	E-S-E-Q-S-M-D-S-E-E-P-D-S-R-G
224	J 8	GSK-3_group	R-V-K-E-E-P-P-S-P-P-Q-S-P-R-V
225	J 9	GSK-3_group	Q-Q-Q-S-Y-L-D-S-G-I-H-S-G-A-T
226	J10	GSK-3_group	N-A-S-G-S-T-S-T-P-A-P-S-R-T-A
227	J11	GSK-3_group	Q-K-R-R-E-I-L-S-R-R-P-S-Y-R-K
228	J12	GSK-3_group	E-E-V-D-L-A-C-T-P-T-D-V-R-D-V
229	J13	GSK-3_group	E-E-E-E-A-P-ST-P-P-S-P-P-G

230	J14	GSK-3beta	P-P-S-S-T-D-R-S-P-Y-E-K-V-S-A
231	J15	GSK-3beta	Y-R-Y-P-R-P-A-S-V-P-P-S-P-S-L
232	J16	GSK-3beta	V-E-V-D-A-A-V-T-P-E-E-R-H-L-S
233	J17	GSK-3beta	P-D-L-K-N-V-K-S-K-I-G-S-T-E-N
234	J18	GSK-3beta	D-E-G-H-S-N-S-S-P-R-H-S-E-A-A
235	J19	GSK-3beta	Q-A-R-A-H-G-L-S-L-I-P-S-T-G-L
236	J20	GSK-3beta	M-K-I-D-E-P-S-T-P-Y-H-S-M-M-G
237	J21	GSK-3beta	L-L-D-E-Y-N-V-T-P-S-P-P-G-T-V
238	J22	GSK-3beta	H-V-Q-R-V-M-R-T-P-G-C-Q-S-P-G
239	J23	GSK-3beta	V-P-P-S-V-P-L-ST-P-E-P-S-P-H-S
240	J24	HRI	I-E-G-M-I-L-L-S-E-L-S-R-R-R-I
241	K 1	IKK_group	A-K-E-L-D-Q-G-S-L-C-T-S-F-V-G
242	К 2	_ IKK group	S-D-E-F-R-P-R-S-K-S-Q-S-S-S-N
243	к З	_ IKK_group	T-E-S-I-T-A-T-S-P-A-S-M-V-G-G
244	K 4	 IKK_group	L-F-E-F-R-P-R-S-K-S-Q-S-S-G-S
245	К 5	_ IKK group	A-R-V-G-G-A-S-S-L-E-N-T-V-D-L
246	К б	 IKK_group	L-P-A-P-A-H-H-S-F-H-L-A-L-S-N
247	К 7	_ IKK group	D-E-L-R-D-S-D-S-V-C-D-S-G-V-E
248	K 8	_ IKK group	R-P-R-S-R-S-G-ST-P-S-S-S-S-S-S
249	к 9	_ IKK-beta	S-G-D-E-D-F-S-S-I-A-D-M-D-F-S
250	K10	IKK-beta	Q-D-V-L-G-E-E-S-P-L-G-K-P-A-M
251	K11	IKK-beta	P-G-D-E-D-F-S-ST-I-A-D-A-D-F-S
252	K12	ILK	Q-K-R-H-A-R-V-T-V-K-Y-D-R-R-E
253	K13	ILK	V-R-R-Q-G-K-V-T-V-K-Y-D-R-K-E
254	K14	ILK	S-M-A-D-V-K-F-S-F-Q-C-P-G-R-M
255	K15	ILK	R-H-Q-Q-G-K-V-T-V-K-Y-D-R-K-E
256	K16	ILK	R-P-H-F-P-Q-F-S-Y-S-A-S-S-T-A
257	K17	ILK	R-K-Q-H-A-R-V-ST-V-K-Y-D-R-R-E
258	K18	IPL1	S-N-N-Q-R-R-K-T-I-F-V-E-D-F-P
259	K19	IPL1	V-N-L-Q-K-I-D-S-N-L-S-F-C-F-H
260	K20	IPL1	L-R-L-K-K-N-I-S-M-D-D-D-D-A-L
261	K21	IPL1	K-D-I-R-L-K-E-S-L-A-P-F-D-N-H
262	K22	IPL1	R-N-S-V-S-R-L-S-I-N-Q-L-G-S-L
263	K23	IPL1	S-A-T-E-Y-R-L-S-I-G-S-A-P-T-S
264	K24	IPL1	N-S-I-N-R-R-K-ST-I-L-S-F-A-T-H
265	L 1	JNK_group	F-S-F-D-T-D-R-S-P-A-P-M-S-C-D
266	L 2	JNK_group	D-T-E-G-R-P-P-S-P-P-T-S-T-P
267	L 3	JNK_group	I-H-F-W-S-S-L-S-P-V-A-P-L-S-P
268	L 4	JNK_group	G-L-G-G-G-A-A-S-P-P-A-A-S-P-F
269	L 5	JNK_group	D-L-F-A-S-S-ST-P-P-A-A-S-P-P
270	L 6	KIS	V-R-V-S-N-G-S-P-S-L-E-R-M-D-A
271	L 7	KIS	G-S-H-G-Q-T-P-S-P-G-A-L-P-L-G
272	L 8	KIS	G-R-D-S-R-S-G-S-P-M-A-R-R
273	L 9	MAP2K_group	S-R-G-G-A-R-A-S-P-A-T-Q-P-P-P
274	L10	MAP2K_group	P-S-D-L-L-P-M-S-P-S-V-Y-A-V-L
275	L11	MAP2K_group	A-N-L-D-S-A-Q-S-P-G-P-S-W-P-A
276	L12	MAP2K_group	H-D-H-T-G-F-L-T-E-Y-V-A-T-R-W
277	L13	MAP2K_group	A-G-T-S-F-M-M-T-P-Y-V-V-T-R-Y

278	L14	MAP2K group	S-S-M-S-T-E-Q-T-L-A-S-D-T-D-S
279	L15	MAP2K group	D-G-S-A-V-N-G-T-S-S-A-E-T-N-L
280	L16	MAP2K group	E-P-I-C-S-V-N-T-P-R-E-V-T-L-H
281	L17	MAP2K group	E-Y-P-E-P-Y-A-S-P-P-Q-P-G-L-P
282	L18	MAP2K group	V-S-G-Q-L-I-D-S-M-A-N-S-F-V-G
283	L19	MAP2K group	S-S-G-Q-L-P-A-ST-P-A-V-S-T-L-A
284	L20	MAP2K1	P-E-V-L-R-P-E-T-P-R-P-V-D-I-G
285	L21	MAP2K1	P-F-R-D-S-P-L-S-S-R-L-L-D-D-G
286	т.22	MAP2K1	I-L-P-F-T-P-P-V-V-K-R-L-L-G-W
287	т.2.3	MAP2K1	D-F-P-K-K-P-L-T-P-Y-F-R-F-F-M
288	1,2,4	MAP2K1	D-G-R-M-V-Q-L-S-P-P-A-L-A-A-P
289	M 1	MAP2K1	V-A-P-P-V-P-A-T-P-Y-E-A-F-D-P
290	M 2	MAP2K1	K-K-K-S-E-P-S-S-P-D-H-G-S-S-T
291	M .3	MAP2K1	D-T-P-A-A-P-K-ST-P-P-P-L-D-G-V
292	M 4	MAP2K2	G-S-R-T-A-P-Y-T-P-N-L-P-H-H-Q
293	M 5	MAP2K2	S-A-L-S-Y-L-Q-S-P-I-T-T-S-P-S
294	M 6	MAP2K2	T-E-L-E-P-L-C-T-P-V-V-T-C-T-P
295	м 7	MAP2K3	R-Q-A-D-S-E-M-T-G-Y-V-V-T-R-W
296	M 8	MAP2K4	I-S-G-Q-L-V-D-S-I-A-K-T-R-D-A
290	M Q	MAD2KA	L-V-D-S-I-A-K-T-R-D-A-G-C-R-P
298	M1 0	MAD2K6	K-R-K-S-L-V-G-T-P-Y-W-M-A-P-E
290	M1 1	MAR 2100	N-C-E-L-P-L-L-T-P-C-S-K-A-V-M
300	M1 2	MALJILI MADJK7	G-S-P-S-I-R-C-S-S-V-S
301		MAPSK/	
			C-D-I-O-I-H-M-I-N-N-K-G-S-A-A
303	M1 4	MAP3K7	S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A
302	M13 M14 M15	MAP3K7 MAP3K7	S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E
302 303 304	M13 M14 M15 M16	MAP3K7 MAP3K7 MAP3K8	S-D-I-I-Q-I-A-M-I-N-N-K-G-S-A-A S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-O-S-V
302 303 304	M13 M14 M15 M16	MAP3K7 MAP3K7 MAP3K8 MAP4K4	S-D-I-I-Q-I-A-M-I-N-N-K-G-S-A-A S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-O-T-P-A
302 303 304 305 306	M13 M14 M15 M16 M17	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group	S-D-I-I-I-H-G-ST-A-A-K-G-S-A-A S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K
302 303 304 305 306	M13 M14 M15 M16 M17 M18	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group	S-D-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K
302 303 304 305 306 307	M13 M14 M15 M16 M17 M18 M19	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group	S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L
302 303 304 305 306 307 308	M13 M14 M15 M16 M17 M18 M19 M20	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-I-I-H-G-ST-A-A-K-G-S-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M
302 303 304 305 306 307 308 309 210	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-Q-I-R-M-I-N-N-K-G-S-A-A S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M K-I-K-O-E-V-E-S-P-T-D-K-S-G-N
302 303 304 305 306 307 308 309 310	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-I-I-H-G-ST-A-A-K-G-S-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L
302 303 304 305 306 307 308 309 310 311	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-Q-I-R-M-I-N-N-K-G-S-A-A S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L L-H-P-P-D-L-S-P-F-L-O-P-H-G
302 303 304 305 306 307 308 309 310 311 312	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-Q-I-R-M-I-N-N-K-G-S-A-A S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L L-H-P-P-Q-L-S-P-F-L-Q-P-H-G I-D-E-N-C-L-L-S-P-L-A-G-E-D-D
302 303 304 305 306 307 308 309 310 311 312 313	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-Q-I-R-M-I-N-N-R-G-S-A-A S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L L-H-P-P-Q-L-S-P-F-L-Q-P-H-G I-D-E-N-C-L-L-S-P-L-A-G-E-D-D W-N-L-V-S-P-D-S-P-R-S-I-D-S-N
302 303 304 305 306 307 308 309 310 311 312 313 314 215	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L L-H-P-P-Q-L-S-P-F-L-Q-P-H-G I-D-E-N-C-L-L-S-P-L-A-G-E-D-D W-N-L-V-S-P-D-S-P-R-S-I-D-S-N A-P-P-P-Q-D-S-P-T-P-A-T-P-H-P-P
302 303 304 305 306 307 308 309 310 311 312 313 314 315 216	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-Q-I-R-M-I-N-N-R-G-S-A-A S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A K-M-K-N-K-P-R-S-P-V-V-E-L-S-K S-S-S-S-P-P-G-T-P-S-P-A-D-A-K R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L C-A-D-V-P-L-L-T-P-S-S-K-E-M-M K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L L-H-P-P-P-Q-L-S-P-F-L-Q-P-H-G I-D-E-N-C-L-L-S-P-L-A-G-E-D-D W-N-L-V-S-P-D-S-P-R-S-I-D-S-N A-P-P-P-Q-P-P-T-P-A-L-P-H-P-P
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 217	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	$ \begin{array}{l} \mathbf{S} - \mathbf{D} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{H} - \mathbf{G} - \mathbf{S} \mathbf{T} - \mathbf{A} - \mathbf{A} - \mathbf{K} - \mathbf{G} - \mathbf{A} - \mathbf{A} \\ \mathbf{T} - \mathbf{G} - \mathbf{D} - \mathbf{Y} - \mathbf{I} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{E} - \mathbf{T} - \mathbf{H} - \mathbf{M} - \mathbf{A} - \mathbf{P} - \mathbf{E} \\ \mathbf{S} - \mathbf{T} - \mathbf{E} - \mathbf{V} - \mathbf{K} - \mathbf{E} - \mathbf{D} - \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{S} - \mathbf{Q} - \mathbf{S} - \mathbf{V} \\ \mathbf{S} - \mathbf{R} - \mathbf{D} - \mathbf{P} - \mathbf{V} - \mathbf{A} - \mathbf{R} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{L} - \mathbf{Q} - \mathbf{T} - \mathbf{P} - \mathbf{A} \\ \mathbf{K} - \mathbf{M} - \mathbf{K} - \mathbf{N} - \mathbf{K} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{P} - \mathbf{V} - \mathbf{V} - \mathbf{E} - \mathbf{L} - \mathbf{S} - \mathbf{K} \\ \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{P} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{P} - \mathbf{A} - \mathbf{D} - \mathbf{A} - \mathbf{K} \\ \mathbf{R} - \mathbf{R} - \mathbf{L} - \mathbf{K} - \mathbf{G} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{A} - \mathbf{F} - \mathbf{P} - \mathbf{H} - \mathbf{Y} - \mathbf{L} \\ \mathbf{C} - \mathbf{A} - \mathbf{D} - \mathbf{V} - \mathbf{P} - \mathbf{L} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{E} - \mathbf{V} - \mathbf{E} - \mathbf{S} - \mathbf{P} - \mathbf{T} - \mathbf{D} - \mathbf{K} - \mathbf{S} - \mathbf{G} - \mathbf{N} \\ \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{L} \\ \mathbf{L} - \mathbf{H} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{Q} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{L} - \mathbf{A} - \mathbf{G} - \mathbf{E} - \mathbf{D} - \mathbf{D} \\ \mathbf{W} - \mathbf{N} - \mathbf{L} - \mathbf{V} - \mathbf{S} - \mathbf{P} - \mathbf{D} - \mathbf{S} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{I} - \mathbf{D} - \mathbf{S} - \mathbf{N} \\ \mathbf{A} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{P} - P$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	$ \begin{array}{l} \mathbf{S} - \mathbf{D} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{H} - \mathbf{G} - \mathbf{S} \mathbf{T} - \mathbf{A} - \mathbf{A} - \mathbf{K} - \mathbf{G} - \mathbf{A} - \mathbf{A} \\ \mathbf{T} - \mathbf{G} - \mathbf{D} - \mathbf{Y} - \mathbf{I} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{E} - \mathbf{T} - \mathbf{H} - \mathbf{M} - \mathbf{A} - \mathbf{P} - \mathbf{E} \\ \mathbf{S} - \mathbf{T} - \mathbf{E} - \mathbf{V} - \mathbf{K} - \mathbf{E} - \mathbf{D} - \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{S} - \mathbf{Q} - \mathbf{S} - \mathbf{V} \\ \mathbf{S} - \mathbf{R} - \mathbf{D} - \mathbf{P} - \mathbf{V} - \mathbf{A} - \mathbf{R} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{L} - \mathbf{Q} - \mathbf{T} - \mathbf{P} - \mathbf{A} \\ \mathbf{K} - \mathbf{M} - \mathbf{K} - \mathbf{N} - \mathbf{K} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{P} - \mathbf{V} - \mathbf{V} - \mathbf{E} - \mathbf{L} - \mathbf{S} - \mathbf{K} \\ \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{P} - \mathbf{A} - \mathbf{D} - \mathbf{A} - \mathbf{K} \\ \mathbf{R} - \mathbf{R} - \mathbf{L} - \mathbf{K} - \mathbf{G} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{A} - \mathbf{F} - \mathbf{P} - \mathbf{H} - \mathbf{Y} - \mathbf{L} \\ \mathbf{C} - \mathbf{A} - \mathbf{D} - \mathbf{V} - \mathbf{P} - \mathbf{L} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{E} - \mathbf{V} - \mathbf{E} - \mathbf{S} - \mathbf{P} - \mathbf{T} - \mathbf{D} - \mathbf{K} - \mathbf{S} - \mathbf{G} - \mathbf{N} \\ \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{S} - \mathbf{I} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{Q} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{I} - \mathbf{D} - \mathbf{S} - \mathbf{N} \\ \mathbf{A} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{P} - P$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 6	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-I-I-I-H-G-ST-A-A-K-G-S-A-A $S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A$ $T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E$ $S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V$ $S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A$ $K-M-K-N-K-P-R-S-P-V-V-E-L-S-K$ $S-S-S-S-P-P-G-T-P-S-P-A-D-A-K$ $R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L$ $C-A-D-V-P-L-L-T-P-S-S-K-E-M-M$ $K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N$ $S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L$ $L-H-P-P-P-Q-L-S-P-F-L-Q-P-H-G$ $I-D-E-N-C-L-L-S-P-L-A-G-E-D-D$ $W-N-L-V-S-P-D-S-P-R-S-I-D-S-N$ $A-P-P-P-Q-P-P-T-P-A-L-P-H-P-P$ $Y-S-H-K-G-H-L-S-E-G-L-V-T-K-W$ $L-S-L-P-S-T-Q-S-L-N-I-K-S-E-P$ $N-F-D-F-V-T-E-T-P-L-E-G-D-F-A$ $D-D-I-F-Q-W-E-T-E-D-D-C-P-D-E$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 4 N 5 N 6 N 7	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	$ \begin{array}{l} \mathbf{S} - \mathbf{D} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{H} - \mathbf{G} - \mathbf{S} - \mathbf{A} - \mathbf{A} - \mathbf{K} - \mathbf{G} - \mathbf{A} - \mathbf{A} - \mathbf{A} \\ \mathbf{T} - \mathbf{G} - \mathbf{D} - \mathbf{Y} - \mathbf{I} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{E} - \mathbf{T} - \mathbf{H} - \mathbf{M} - \mathbf{A} - \mathbf{P} - \mathbf{E} \\ \mathbf{S} - \mathbf{T} - \mathbf{E} - \mathbf{V} - \mathbf{K} - \mathbf{E} - \mathbf{D} - \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{S} - \mathbf{Q} - \mathbf{S} - \mathbf{V} \\ \mathbf{S} - \mathbf{R} - \mathbf{D} - \mathbf{P} - \mathbf{V} - \mathbf{A} - \mathbf{R} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{L} - \mathbf{Q} - \mathbf{T} - \mathbf{P} - \mathbf{A} \\ \mathbf{K} - \mathbf{M} - \mathbf{K} - \mathbf{N} - \mathbf{K} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{P} - \mathbf{V} - \mathbf{V} - \mathbf{E} - \mathbf{L} - \mathbf{S} - \mathbf{K} \\ \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{P} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{A} - \mathbf{F} - \mathbf{P} - \mathbf{H} - \mathbf{Y} - \mathbf{L} \\ \mathbf{C} - \mathbf{A} - \mathbf{D} - \mathbf{V} - \mathbf{P} - \mathbf{L} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{E} - \mathbf{V} - \mathbf{E} - \mathbf{S} - \mathbf{P} - \mathbf{T} - \mathbf{D} - \mathbf{K} - \mathbf{S} - \mathbf{G} - \mathbf{N} \\ \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{G} - \mathbf{U} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{Q} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{D} - \mathbf{P} - \mathbf{D} \\ \mathbf{W} - \mathbf{N} - \mathbf{L} - \mathbf{V} - \mathbf{S} - \mathbf{P} - \mathbf{D} - \mathbf{S} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{I} - \mathbf{D} - \mathbf{D} \\ \mathbf{W} - \mathbf{N} - \mathbf{L} - \mathbf{V} - \mathbf{S} - \mathbf{P} - \mathbf{D} - \mathbf{P} - \mathbf$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	$ \begin{array}{c} C - D - I - Q - I - R - M - I - N - N - R - G - S - A - A \\ \hline S - D - I - I - I - H - G - S - A - Y - G - S - Q - A - A \\ \hline T - G - D - Y - I - P - G - T - E - T - H - M - A - P - E \\ \hline S - T - E - V - K - E - D - S - A - Y - G - S - Q - S - V \\ \hline S - R - D - P - V - A - R - T - S - P - L - Q - T - P - A \\ \hline K - M - K - N - K - P - R - S - P - V - V - E - L - S - K \\ \hline S - S - S - S - P - P - G - T - P - S - P - A - D - A - K \\ \hline R - R - L - K - G - P - G - T - P - A - F - P - H - Y - L \\ \hline C - A - D - V - P - L - L - T - P - S - S - K - E - M - M \\ \hline K - I - K - Q - E - V - E - S - P - T - D - K - S - G - N \\ \hline S - A - Y - G - G - L - T - S - P - G - L - S - Y - S - L \\ \hline L - H - P - P - Q - L - S - P - F - L - Q - P - H - G \\ I - D - E - N - C - L - L - S - P - F - L - Q - P - H - G \\ I - D - E - N - C - L - L - S - P - L - A - G - E - D - D \\ \hline W - N - L - V - S - P - D - S - P - R - S - I - D - S - N \\ \hline A - P - P - P - Q - P - P - T - P - A - L - P - H - P - P \\ \hline Y - S - H - K - G - H - L - S - E - G - L - V - T - K - W \\ L - S - L - P - S - T - Q - S - L - N - I - K - S - E - P \\ \hline N - F - D - F - V - T - E - T - P - L - E - G - D - F - A \\ \hline D - D - I - E - Q - W - F - T - E - D - P - G - P - D - E \\ \hline E - S - P - L - C - P - L - S - P - L - E - A - G - D - L \\ \hline H - S - M - S - V - D - T - T - T - D - P - T - D - Z = T - D - D - I = E - S - P - L - S - P - L - E - A - G - D - L \\ \hline H - S - M - S - V - D - T - T - T - D - T - E - A - G - D - L \\ \hline H - S - M - S - V - D - T - T - T - D - T - E - A - G - D - L \\ \hline $
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	S-D-I-I-I-I-H-G-ST-A-A-K-G-S-A-A $ S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A $ $ T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E $ $ S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V $ $ S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A $ $ K-M-K-N-K-P-R-S-P-V-V-E-L-S-K $ $ S-S-S-S-P-P-G-T-P-S-P-A-D-A-K $ $ R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L $ $ C-A-D-V-P-L-L-T-P-S-S-K-E-M-M $ $ K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N $ $ S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L $ $ L-H-P-P-P-Q-L-S-P-F-L-Q-P-H-G $ $ I-D-E-N-C-L-L-S-P-L-A-G-E-D-D $ $ W-N-L-V-S-P-D-S-P-R-S-I-D-S-N $ $ A-P-P-P-Q-P-P-T-P-A-L-P-H-P-P $ $ Y-S-H-K-G-H-L-S-E-G-L-V-T-K-W $ $ L-S-L-P-S-T-Q-S-L-N-I-K-S-E-P $ $ N-F-D-F-V-T-E-T-P-L-E-G-D-F-A $ $ D-D-I-E-Q-W-F-T-E-D-P-G-P-D-E $ $ E-S-P-L-C-P-L-S-P-L-E-A-G-D-L $ $ H-S-M-S-V-P-T-T-P-T-L-G-F-S-T $ $ D-T-E-R-F-T-S-P-R-R-D-S-P-C-L$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 4 N 5 N 6 N 7 N 8 N 9 N10	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	C-D-I-Q-I-R-M-I-N-N-R-G-S-A-A $S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A$ $T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E$ $S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V$ $S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A$ $K-M-K-N-K-P-R-S-P-V-V-E-L-S-K$ $S-S-S-S-P-P-G-T-P-S-P-A-D-A-K$ $R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L$ $C-A-D-V-P-L-L-T-P-S-S-K-E-M-M$ $K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N$ $S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L$ $L-H-P-P-P-Q-L-S-P-F-L-Q-P-H-G$ $I-D-E-N-C-L-L-S-P-L-A-G-E-D-D$ $W-N-L-V-S-P-D-S-P-R-S-I-D-S-N$ $A-P-P-P-Q-P-P-T-P-A-L-P-H-P-P$ $Y-S-H-K-G-H-L-S-E-G-L-V-T-K-W$ $L-S-L-P-S-T-Q-S-L-N-I-K-S-E-P$ $N-F-D-F-V-T-E-T-P-L-E-G-D-F-A$ $D-D-I-E-Q-W-F-T-E-D-P-G-P-D-E$ $E-S-P-L-C-P-L-S-P-L-E-A-G-D-L$ $H-S-M-S-V-P-T-T-P-K-D-S-P-G-I$ $E-L-L-K-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N10 N11	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group MAPK_group	$ \begin{array}{l} \mathbf{C} - \mathbf{D} - \mathbf{I} - \mathbf{Q} - \mathbf{I} - \mathbf{R} - \mathbf{M} - \mathbf{I} - \mathbf{N} - \mathbf{N} - \mathbf{N} - \mathbf{K} - \mathbf{G} - \mathbf{A} - \mathbf{A} \\ \mathbf{S} - \mathbf{D} - \mathbf{I} - \mathbf{I} - \mathbf{I} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{E} - \mathbf{T} - \mathbf{H} - \mathbf{M} - \mathbf{A} - \mathbf{P} - \mathbf{E} \\ \mathbf{S} - \mathbf{T} - \mathbf{E} - \mathbf{V} - \mathbf{K} - \mathbf{E} - \mathbf{D} - \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{S} - \mathbf{Q} - \mathbf{S} - \mathbf{V} \\ \mathbf{S} - \mathbf{R} - \mathbf{D} - \mathbf{P} - \mathbf{V} - \mathbf{A} - \mathbf{R} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{L} - \mathbf{Q} - \mathbf{T} - \mathbf{P} - \mathbf{A} \\ \mathbf{K} - \mathbf{M} - \mathbf{K} - \mathbf{N} - \mathbf{K} - \mathbf{P} - \mathbf{R} - \mathbf{S} - \mathbf{P} - \mathbf{V} - \mathbf{V} - \mathbf{E} - \mathbf{L} - \mathbf{S} - \mathbf{K} \\ \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{S} - \mathbf{P} - \mathbf{P} - \mathbf{G} - \mathbf{T} - \mathbf{P} - \mathbf{A} - \mathbf{F} - \mathbf{P} - \mathbf{H} - \mathbf{Y} - \mathbf{L} \\ \mathbf{C} - \mathbf{A} - \mathbf{D} - \mathbf{V} - \mathbf{P} - \mathbf{L} - \mathbf{L} - \mathbf{T} - \mathbf{P} - \mathbf{S} - \mathbf{S} - \mathbf{K} - \mathbf{E} - \mathbf{M} \\ \mathbf{K} - \mathbf{I} - \mathbf{K} - \mathbf{Q} - \mathbf{E} - \mathbf{V} - \mathbf{E} - \mathbf{S} - \mathbf{P} - \mathbf{T} - \mathbf{D} - \mathbf{K} - \mathbf{S} - \mathbf{G} - \mathbf{N} \\ \mathbf{S} - \mathbf{A} - \mathbf{Y} - \mathbf{G} - \mathbf{G} - \mathbf{L} - \mathbf{T} - \mathbf{S} - \mathbf{P} - \mathbf{G} - \mathbf{L} - \mathbf{S} - \mathbf{S} - \mathbf{S} \\ \mathbf{L} - \mathbf{H} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{Q} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{Q} - \mathbf{P} - \mathbf{H} - \mathbf{G} \\ \mathbf{I} - \mathbf{D} - \mathbf{E} - \mathbf{N} - \mathbf{C} - \mathbf{L} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{R} - \mathbf{I} - \mathbf{D} - \mathbf{S} - \mathbf{N} \\ \mathbf{A} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{P} - \mathbf{P} - \mathbf{P} - \mathbf{A} - \mathbf{L} - \mathbf{P} - \mathbf{H} - \mathbf{P} - \mathbf{P} \\ \mathbf{Y} - \mathbf{S} - \mathbf{H} - \mathbf{K} - \mathbf{G} - \mathbf{H} - \mathbf{S} - \mathbf{S} - \mathbf{R} - \mathbf{S} - \mathbf{I} - \mathbf{D} - \mathbf{S} - \mathbf{N} \\ \mathbf{A} - \mathbf{P} - \mathbf{P} - \mathbf{Q} - \mathbf{P} - \mathbf{P} - \mathbf{P} - \mathbf{P} - \mathbf{A} - \mathbf{L} - \mathbf{P} - \mathbf{H} - \mathbf{P} - \mathbf{P} \\ \mathbf{Y} - \mathbf{S} - \mathbf{H} - \mathbf{K} - \mathbf{G} - \mathbf{H} - \mathbf{S} - \mathbf{S} - \mathbf{I} - \mathbf{D} - \mathbf{S} - \mathbf{P} - \mathbf{N} \\ \mathbf{L} - \mathbf{S} - \mathbf{L} - \mathbf{P} - \mathbf{S} - \mathbf{T} - \mathbf{Q} - \mathbf{S} - \mathbf{L} - \mathbf{P} - \mathbf{P} - \mathbf{P} \\ \mathbf{D} - \mathbf{D} - \mathbf{I} - \mathbf{E} - \mathbf{Q} - \mathbf{W} - \mathbf{T} - \mathbf{T} - \mathbf{P} - \mathbf{L} - \mathbf{G} - \mathbf{G} - \mathbf{F} - \mathbf{A} \\ \mathbf{D} - \mathbf{D} - \mathbf{I} - \mathbf{E} - \mathbf{P} - \mathbf{L} - \mathbf{S} - \mathbf{P} - \mathbf{I} - \mathbf{D} - \mathbf{P} - \mathbf{E} - \mathbf{P} - \mathbf{I} - \mathbf{E} - \mathbf{P} - \mathbf{D} - \mathbf{I} \\ \mathbf{H} - \mathbf{S} - \mathbf{M} - \mathbf{S} - \mathbf{V} - \mathbf{P} - \mathbf{T} - \mathbf{P} - \mathbf{T} - \mathbf{L} - \mathbf{G} - \mathbf{F} - \mathbf{S} - \mathbf{T} \\ \mathbf{D} - \mathbf{T} - \mathbf{E} - \mathbf{F} - \mathbf{S} - \mathbf$
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N10 N11 N12	MAP3K7 MAP3K7 MAP3K8 MAP4K4 MAPK_group	C-D-I-Q-I-R-M-I-N-N-R-G-S-A-A $S-D-I-I-I-I-H-G-ST-A-A-K-G-A-A-A$ $T-G-D-Y-I-P-G-T-E-T-H-M-A-P-E$ $S-T-E-V-K-E-D-S-A-Y-G-S-Q-S-V$ $S-R-D-P-V-A-R-T-S-P-L-Q-T-P-A$ $K-M-K-N-K-P-R-S-P-V-V-E-L-S-K$ $S-S-S-S-P-P-G-T-P-S-P-A-D-A-K$ $R-R-L-K-G-P-G-T-P-A-F-P-H-Y-L$ $C-A-D-V-P-L-L-T-P-S-S-K-E-M-M$ $K-I-K-Q-E-V-E-S-P-T-D-K-S-G-N$ $S-A-Y-G-G-L-T-S-P-G-L-S-Y-S-L$ $L-H-P-P-P-Q-L-S-P-F-L-Q-P-H-G$ $I-D-E-N-C-L-L-S-P-L-A-G-E-D-D$ $W-N-L-V-S-P-D-S-P-R-S-I-D-S-N$ $A-P-P-P-Q-P-P-T-P-A-L-P-H-P-P$ $Y-S-H-K-G-H-L-S-E-G-L-V-T-K-W$ $L-S-L-P-S-T-Q-S-L-N-I-K-S-E-P$ $N-F-D-F-V-T-E-T-P-L-E-G-D-F-A$ $D-D-I-E-Q-W-F-T-E-D-P-G-P-D-E$ $E-S-P-L-C-P-L-S-P-L-E-A-G-D-L$ $H-S-M-S-V-P-T-T-P-T-L-G-F-S-T$ $D-T-E-F-T-S-R-T-P-K-D-S-P-G-I$ $E-L-I-L-K-P-P-S-P-I-S-E-A-P-R$ $N-F-S-S-S-P-S-T-P-V-G-S-P-Q-G$

326	N14	MAPK1	G-P-L-A-P-P-A-S-P-G-P-F-A-T-R
327	N15	MAPK1	D-G-P-Q-L-P-A-S-P-N-P-T-T-T-A
328	N16	MAPK1	G-G-L-P-E-V-A-T-P-E-S-E-E-A-F
329	N17	MAPK1	Y-P-S-M-P-A-F-S-P-G-P-G-I-K-E
330	N18	MAPK1	A-I-K-V-E-P-A-S-P-P-Y-Y-S-E-K
331	N19	MAPK1	G-A-P-T-E-P-A-ST-P-P-P-Y-K-G-S
332	N20	MAPK10	G-D-R-C-P-H-G-S-P-Q-G-P-L-A-P
333	N21	MAPK10	P-G-P-F-A-T-R-S-P-L-F-I-F-V-R
334	N22	MAPK10	D-K-S-T-Q-T-P-S-P-P-C-Q-A-F-N
335	N23	MAPK10	D-S-A-I-D-T-W-S-P-S-E-W-Q-M-A
336	N24	MAPK10	G-D-L-A-P-T-A-ST-P-G-F-F-A-A-R
337	01	MAPK11	G-F-S-K-N-C-G-S-P-G-S-S-Q-L-S
338	02	MAPK12	G-W-D-S-P-P-A-S-P-L-Q-R-Q-P-S
339	03	MAPK12	P-L-Q-R-Q-P-S-S-P-G-P-T-P-R-N
340	04	MAPK12	G-L-D-R-P-P-S-ST-P-G-P-R-P-P-N
341	Ο 5	MAPK13	G-T-E-E-K-C-G-S-P-R-V-R-T-L-S
342	06	MAPK14	I-H-F-W-S-T-L-S-P-I-A-P-R-S-P
343	07	MAPK14	Q-A-T-Q-P-L-A-T-P-V-V-S-V-T-T
344	08	MAPK14	M-P-W-P-E-P-Q-S-P-R-V-L-P-N-G
345	09	MAPK14	E-E-K-E-R-T-F-S-F-C-G-T-I-E-Y
346	010	MAPK14	K-E-D-L-P-V-I-T-I-D-P-A-S-P-Q
347	011	MAPK14	Q-M-V-N-G-A-H-S-A-S-T-L-D-E-A
348	012	MAPK14	T-P-T-E-P-P-A-ST-P-V-L-P-P-Q-G
349	013	MAPK4	L-V-T-K-W-Y-R-S-P-R-L-L-L-S-P
350	014	MAPK6	M-T-I-L-Q-A-P-T-P-A-P-S-T-I-P
351	015	MAPK7	S-A-L-Q-G-F-N-S-P-G-M-L-S-L-G
352	016	MAPK7	A-N-P-S-P-P-S-P-S-Q-Q-I-N-L
353	017	MAPK8	Q-T-E-P-Q-D-R-S-P-A-P-M-S-C-D ►
354	018	MAPKAPK2	S-R-S-L-Y-A-S-S-P-G-G-V-Y-A-T
355	019	MAPKAPK2	K-G-F-R-R-A-V-S-E-L-D-A-K-Q-A
356	020	MAPKAPK2	F-S-L-L-R-G-P-S-W-D-P-F-R-D-W
357	021	МАРКАРК2	T-A-L-Y-K-S-L-S-V-P-A-A-S-T-A ►
358	022	МАРКАРК2	K-L-I-D-R-T-E-S-L-N-R-S-I-E-K
359	023	MAPKAPK2	R-L-T-G-R-S-T-S-L-V-E-G-R-S-C
360	024	MAPKAPK2	C-S-L-E-R-Q-L-S-L-E-Q-E-V-Q-Q
361	P 1	MAPKAPK2	T-T-S-T-R-T-Y-S-L-G-S-A-L-R-P
362	P 2	MAPKAPK2	G-Q-G-A-P-G-P-S-L-T-G-S-P-W-P
363	Р3	MAPKAPK2	P-R-L-L-R-S-L-S'I-L-G-G-S-S-A-P
364	P 4	MARK_group	N-V-R-S-K-V-G-S-T-E-N-I-K-H-Q
365	P 5	MARK_group	K-A-Q-A-K-V-G-S-L-D-N-V-G-H-L
366	P 6	MFPK	S-T-S-T-P-A-P-S-R-T-A-S-F-S-E
367	P 7	MHCK	
368	P 8	MHCK	G-A-G-A-K-K-M-S-T-Y-N-V-P-Q-N
369	P 9	MHCK	K-A-G-D-E-K-A-ST-K-Y-K-E-P-Q-D
370	P10	MLCK	
371	P11	MLCK	
372	P12	MLCK	
373	P13	MST1	

374	P14	NEK	E-E-G-T-F-R-S-S-I-R-R-L-S-T-R	•
375	P15	NEK2	L-G-Y-P-F-A-L-S-K-S-S-M-Y-T-V	•
376	P16	NEK2	E-K-K-K-P-N-A-T-R-P-V-T-P-P-R	•
377	P17	NEK6	P-P-F-N-P-N-V-S-G-P-N-E-L-R-H	•
378	P18	NEK6	E-G-G-Q-L-N-E-S-M-D-H-G-G-V-E	•
379	P19	NEK6	P-D-D-T-L-N-D-ST-A-D-A-E-S-L-E	•
380	P20	NEK9	S-K-T-T-A-A-H-S-L-V-G-T-P-Y-Y	•
381	P21	NLK	S-H-A-V-H-P-L-T-P-L-I-T-Y-S-D	•
382	P22	NLK	T-Y-S-D-E-H-F-S-P-G-S-H-P-S-H	•
383	P23	control	A-W-R-H-P-Q-F-G-G-X-X-X-X	
384	P24	neg. control	Bio-X-X-X-X-X-X-X-X-X-X-X	

Figure S1. (A) Phosphor image of the $[^{99m}Tc][Tc(CO)_3]^+$ radiolabeled STKS-1 CelluspotsTM peptide array post 48 hour wash in 70% acetonitrile in H₂O. The black dots represent the peptides that have been radiolabelled. **(B)** An overlay of the phosphor image on the CelluspotsTM template.

Rationale for design of bespoke His-tagged peptide array

Sequences were included to evaluate classes of peptides to address pre-existing questions and questions arising from analysis of the STKS-1 array, loosely classified as follows:

His/Cys Peptides: 10 peptide sequences for comparison with homogeneous solution phase labeling. These were based on the CKLAAALEHHHHHH labeling sequence engineered at the C-terminal of the C2A protein for [^{99m}Tc][Tc(CO)₃]⁺ labelling (9). These 10 sequences contained different His-tags and are present in duplicate with and without an adjacent CK dipeptide: CKLAAALEHHHHHH, LAAALEHHHHHH, CKLAAALEHHHHH, LAAALEHHHHH, CKLAAALEHAHAA, CKLAAALEHAHA, LAAALEHAHAA, LAAALEHAHA, CKLAAALEHAAH, LAAALEHAAH. Each of these was synthesized separately as described elsewhere in this Supplementary Information for homogeneous labeling in solution.

- Distance from Cys (N-terminal His-tag): His/Cys sequences in which the position of the Cys has been varied with respect to the His residues. Cys is positioned between 7 and 1 amino acids from the nearest His. The His-tag is at the N-terminus (Nt) of the sequence.
- C-terminal His-tag: His/Cys peptide sequences with a C-terminal His-Tag.
- His/Cys tag with no Lys: His/Cys sequences without the Lys residues.
- His-tag in the middle: His-tag is embedded within the sequence (i.e. non-terminal) and surrounded by amino acids on either side. The surrounding amino acids are based on the composition of the His/Cys peptide and include Leu, Ala, Glu, Cys or Lys.
- Double cysteine: Two Cys residues within a His containing peptide sequence. One is on the N-terminal and one is on the C-terminal side of the His.
- HHHCHHH: Sequences with a Cys separating two sets of 3 sequential His residues
- Proline: Proline has been included in the His containing sequences at different positions e.g. HHHPHHH, HHHHHP, HHHPHHHXXXP and HHHHHHXXXP, where X is another amino acid.
- Methionine: Methionine residues have been included in the His containing sequences to replace the Cys (based on the assumption that its interaction with Tc(I) or Re(I) would be similar to Cys but it cannot be oxidized to form disulfide bonds and hence may be more generally useful in proteins.
- Uncharged: His-containing sequences with no charged amino acids. Sequences include hydrophobic spacers such as Leu, Ala or Gly.
- Negatively charged amino acids: Sequences with 2 or more Glu and/or Asp residues surrounding the His.
- Positively charged amino acids: Sequences with 2 or more Arg and/or Lys residues surrounding the His.
- Serine: Sequences with multiple Ser residues surrounding the His.
- Catalytic sequences: Sequences with (His)₆-Tags and amino acid combinations that form catalytic triads that may affect the reactivity of His e.g. Ser, Asp and His.
- Controls: 4 spots on the CelluspotTM peptide array surface: 2 blank spots on the cellulose membrane and two randomly generated peptide sequences that contain no His. All other amino acids are included at least once in one of the sequences.
- HEHEHE Tag: Two His-containing labeling sequences previously published by Tolmachev et al.(11) for the radiolabeling of proteins with [^{99m}Tc(CO)₃]⁺.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
•	A24	B24	C24	D24	E24	F24	G24	H24	124	J24	K24	L24	M24	N24	024	P24	•
•	A2 3	B23	C23	D23	E23	F23	G23	H2 3	123	J23	K23	L23	M2 3	N2 3	023	P23	•
•	A22	B22	C22	D22	E22	F22	G22	H22	122	J22	K22	L22	M22	N22	022	P22	•
•	A21	B21	C21	D21	E21	F21	G21	H21	12 1	J21	K21	121	M21	N21	021	P21	•
•	A2 0	B20	C20	D20	E2 0	F20	G20	H2 0	12.0	J2 0	K20	120	M2 0	N20	020	P20	•
•	A19	B19	C19	D19	E19	F19	G19	HI 6	119	J19	K19	L19	MI 9	N19	010	P19	•
•	A18	B18	C18	D18	E18	F18	G18	H18	118	J18	K18	L18	M18	N18	018	P18	•
•	A17	B17	C17	D17	E17	F17	G17	HI17	11.7	J17	K17	L17	M17	N17	017	P17	•
•	AI6	BIG	CIE	DIG	EI 6	F16	G16	HI	116	J16	K16	L16	MI	NIC	016	P16	•
•	A15	B15	CIS	DIS	E15	F15	615	HI :	115	J15	K15	L15	MIS	N15	015	P15	•
•	A14	B14	C14	D14	E14	F14	G14	H14	114	J14	K14	L14	MIA	N14	014	P14	•
•	A13	B13	CI3	D13	E13	F13	G13	HI3	113	J13	K13	L13	MIS	N13	013	P13	•
•	A12	B12	CID	D12	E12	F12	GI3	H12	112	J12	K12	L12	MI2	N12	012	P12	•
•	A11	BII	CI	D	E11	FII	61	H	Ξ	E	KII	EII	W	ĨN	0	P11	•
•	A16	B10	C16	D16	E10	F10	G16	H16	110	J10	K16	L10	MIG	N16	016	P10	•
•	A 9	B 9	C 9	D 9	E 9	F 9	G 9	6 H 3	I 9	J 9	K 9	L 9	6 M 3	6 N 6	00	P 9	•
•	A 8	B 8	C 8	D 8	E 8	F 8	G 8	H 8	18	J 8	K 8	L 8	M 8	N 8	0 8	P 8	•
•	A 7	B 7	C 7	D 7	E 7	F 7	G 7	H 7	17	J 7	K 7	L7	M 7	N 7	0 7	P 7	•
•	A 6	B 6	C 6	D 6	E 6	F 6	G 6	9 H	16	J 6	K 6	L 6	9 W	N 6	0 6	P 6	•
•	A 5	. B 5	C S	D 5	E 5	F 5	. G5	H 5	I 5	J 5	K 5	L 5	M 5	N 5	0.5	P 5	•
•	A 4	B 4	C 4	D4	E4	F 4	6.4	H 4	14	J 4	K 4	L4	M 4	N	0	P 4	•
•	A 3	B 3	C 3	D 3	E3	F 3	G 3	H 3	13	J 3	К 3	L3	M 3	N 3	03	P 3	•
•	A 2	B 2	C 2	D 2	E 2	F 2	G 2	H 2	12	J 2	K 2	L 2	M 2	N 2	0 2	P 2	•
•	A 1	B 2	C	DI	E 1	F 1	61	H	Ξ	5	K1	L1	M	N N	0	P 1	•
•	V24 C	324 c	24)24 c	324 c	24 0	324	124 c	124	124	24 0	24	124 0	V24 C	24 c	24 0	•
•	V23 /	323 1	23 0	023 1	323 1	23 1	323 0	12.3	123	123	23 1	23 1	423 N	V23 7	023 0	23 1	0
•	V22	322	22 0	022	322	22	322 0	122 I	122	122	(22 1	22 1	422 N	V22 7	22 0	22 1	0
•	V21 /	321 I	21 0	021 1	E21 I	21	321	H2.1	121	121	112	21 1	121	N21 P	021	21	0
0	A20	B20	C2 0	020	E20	F2 0	G20	H2 0	12.0	120	K2 0	L20	120	N20	020	P20	•
•	A19	B19	C19	D19	E19	F19	G19	HI 9	611	61f	K19	L19	119 I	019	019	P19	0
•	A18	B18	C18	D18	E18	F18	G18	H18	118	118	K18	L18	M18 7	N18	018	P18	0
•	A17	B17	C17	D17	E17	F17	G17	HI 7	117	J17	K17	L17	M17	N17	017	P17	•
•	A16	B16	C16	D16	E16	F1 6	G1 6	H1 6	116	J16	K1 6	L16	M16	91N	910	P1 6	•
•	A15	B15	C15	D15	E15	F15	G15	HI5	115	J15	K15	L15	M15	N15	015	P15	0
•	A14	B14	C14	D14	E14	F14	G14	H14	114	J14	K14	L14	M14	N14	014	P14	•
•	A13	B13	C13	D13	E13	F13	G13	HI3	113	J13	K13	L13	M13	N13	013	P13	•
•	A12	B12	C12	D12	E12	FI 2	G12	HI 2	112	J12	KI 2	L12	M12	N12	012	P1 2	•
•	11V	B11	CII	D11	E11	FII	GI	Η	Ξ	Π	KI1	Н	IIM	IIN	011	P11	•
•	A10	B10	C10	D10	E10	F10	G10	H10	110	J10	K10	L10	M10	N10	010	P10	0
•	A 9	B 9	C9	D 9	E 9	F 9	G9	Н9	1 ð	9 f	K9	L 9	6 W	6 N 9	00	P 9	•
•	A 8	B 8	C 8	D 8	E 8	F 8	G 8	H 8	I 8	J 8	K 8	L 8	8 W	N 8	08	P 8	0
•	A 7	B 7	с 1	D 7	E 7	F 7	G 7	Н 7	17	1 L	К 7	L 7	M 7	N 7	07	P 7	0
•	A 6	B 6	C 6	D 6	E 6	F 6	9 9	9 H	1 6	J 6	K 6	L 6	9 W	9 N	90	P 6	•
•	A 5	B 5	C5	D 5	E 5	F 5	GS	ΗS	15	J 5	K5	L.5	M 5	N 5	05	P 5	•
•	A 4	B 4	C 4	D 4	E 4	F 4	G 4	Η4	14	J 4	K 4	L 4	M 4	N	04	P 4	0
•	A 3	B 3	С3	D 3	E 3	F3	G3	Н3	13	J 3	К3	L 3	M 3	N 3	03	P 3	0
•	A 2	B 2	C 2	D 2	E 2	F 2	G 2	H 2	12	J 2	K 2	L 2	M 2	N 2	02	P 2	0
•	A1	B 1	C	D 1	E 1	F1	61	H	Ξ	l ſ	K1	Г	I W	I.	0	P 1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table S4 (continued on following pages). Amino acid sequences in His-tagged peptide array. Position of each peptide in the array is given by the grid code which refers to Table S3. Doa = 3,6-dioxa-octanoic acid. Grid codes correspond to the layout shown in Table S3.

	Grid				
no	code	sequence		Reason for inclusion	N-terminus
1	A 1	HHHHHHELAAAL	Doa		acetylated
2	A 2	HHHHHHELAAALKC	Doa		acetylated
3	A 3	AHAHAHELAAAL	Doa		acetylated
4	A 4	AHAHAHELAAALKC	Doa		acetylated
5	A 5	HHHHELAAAL	Doa	10 SOLUTION PEPTIDES	acetylated
6	A 6	HHHHELAAALKC	Doa		acetylated
7	A 7	AHAHELAAAL	Doa		acetylated
8	A 8	AHAHELAAALKC	Doa		acetylated
9	A 9	HAAHELAAAL	Doa		acetylated
10	A10	HAAHELAAALKC	Doa		acetylated
11	A11	HHHHHHELAAALCK	Doa		acetylated
12	A12	HHHHHHELAAACLK	Doa		acetylated
13	A13	HHHHHHELAACALK	Doa		acetylated
14	A14	HHHHHHELACAALK	Doa		acetylated
15	A15	HHHHHHELCAAALK	Doa		acetylated
16	A16	HHHHHHECLAAALK	Doa		acetylated
17	A17	HHHHHHCELAAALK	Doa		acetylated
18	A18	AHAHAHELAAALCK	Doa		acetylated
19	A19	AHAHAHELAAACLK	Doa		acetylated
20	A20	AHAHAHELAACALK	Doa		acetylated
21	A21	AHAHAHELACAALK	Doa		acetylated
22	A22	AHAHAHELCAAALK	Doa		acetylated
23	A23	AHAHAHECLAAALK	Doa	N-TERMINAL CYSTEINE	acetylated
24	A24	AHAHAHCELAAALK	Doa		acetylated
25	в 1	AHAHELAAALCK	Doa		acetylated
26	в 2	AHAHELAAACLK	Doa		acetylated
27	В 3	AHAHELAACALK	Doa		acetylated
28	В4	AHAHELACAALK	Doa		acetylated
29	В5	AHAHELCAAALK	Doa		acetylated
30	в6	AHAHECLAAALK	Doa		acetylated
31	B 7	HAAHCELAAALK	Doa		acetylated
32	В 8	HAAHELAAALCK	Doa		acetylated
33	B 9	HAAHELAAACLK	Doa		acetylated
34	B10	HAAHELAACALK	Doa		acetylated
35	BII	HAAHELACAALK	роа Г		acetylated
36	B12	HAAHELCAAALK	Doa		acetylated
37	BI3	HAAHECLAAALK	Doa		acetylated
38	BI4 D15	HAAHCELAAALK	роа Б		acetylated
39	BT2	CKLAAALEHHHHHH	роа Б	C-TERMINAL CYSTEINE	acetylated
40	BT0	CKLAAALEHAHAHA	Doa		acetylated

acetylated		Doa	CKLAAALEHHHH	B17	41
acetylated		Doa	CKLAAALEHAHA	B18	42
acetylated		Doa	CKLAAALEHAAH	В19	43
acetylated		Doa	КСLАААLЕНННННН	B20	44
	DISTANCE FROM	5		D 01	4 5
acetylated	CYSTEINE (C-terminal	Doa	КLACAALEННННН	B21	45
acetylated	cysteine)	Doa	КLАААСLЕНННННН	B22	46
acetylated		Doa	KLAAALECHHHHHH	в23	47
acetylated		Doa	HHHHHHELAAALC	B24	48
acetylated		Doa	AHAHAHELAAALC	C 1	49
acetylated		Doa	HHHHELAAALC	C 2	50
acetylated		Doa	AHAHELAAALC	С З	51
acetylated		Doa	HAAHELAAALC	C 4	52
acetylated		Doa	HHHHHHELAACAL	C 5	53
acetylated		Doa	HHHHHHELCAAAL	C 6	54
acetylated		Doa	HHHHHHCELAAAL	C 7	55
acetylated		Doa	AHAHAHELAACAL	C 8	56
acetylated		Doa	AHAHAHELCAAAL	C 9	57
acetylated	NO LISINE	Doa	AHAHAHCELAAAL	C10	58
acetylated		Doa	HHHHELAACAL	C11	59
acetylated		Doa	HHHHELCAAAL	C12	60
acetylated		Doa	HHHHCELAAAL	C13	61
acetylated		Doa	AHAHELAACAL	C14	62
acetylated		Doa	AHAHELCAAAL	C15	63
acetylated		Doa	AHAHCELAAAL	C16	64
acetylated		Doa	HAAHELAACAL	C17	65
acetylated		Doa	HAAHELCAAAL	C18	66
acetylated		Doa	HAAHCELAAAL	C19	67
acetylated		Doa	LAAALEHHHHHH	C20	68
acetylated	No Cys/Lys	Doa	LAAALEHAHAHA	C21	69
acetylated	(C/N-term His-tag)	Doa	LAAALEHAHA	C22	70
acetylated		Doa	LAAALEHAAH	C23	71
acetylated		Doa	ALEHHHHHHELAKC	C24	72
acetylated		Doa	ALEHHHHHHELAC	D 1	73
acetylated		Doa	ALEHHHHHHELCAK	D 2	74
acetylated		Doa	ALEHHHHHHELCA	D 3	75
acetylated		Doa	ALEHHHHHHCELAK	D 4	76
acetylated	NON-TERMINAL HIS-	Doa	ALEHHHHHHCELA	D 5	77
acetylated	TAG, INCLUDING C, K	Doa	ALEAHAHAHELAKC	D 6	78
acetylated		Doa	ALEAHAHAHELAC	D 7	79
acetylated		Doa	ALEAHAHAHELCAK	D 8	80
acetylated		Doa	ALEAHAHAHELCA	D 9	81
acetylated		Doa	ALEAHAHAHCELAK	D10	82
acetylated		Doa	ALEAHAHAHCELA	D11	83

84	D12	ALEAHAHELAKC	Doa		acetylated
85	D13	ALEAHAHELCAK	Doa		acetylated
86	D14	ALEAHAHCELAK	Doa		acetylated
87	D15	ALEAHAHELAC	Doa		acetylated
88	D16	ALEAHAHELCA	Doa		acetylated
89	D17	ALEAHAHCELA	Doa		acetylated
90	D18	ALEHAAHELAKC	Doa		acetylated
91	D19	ALEHAAHELCAK	Doa		acetylated
92	D20	ALEHAAHCELAK	Doa		acetylated
93	D21	ALEHAAHELAC	Doa		acetylated
94	D22	ALEHAAHELCA	Doa		acetylated
95	D23	ALEHAAHCELA	Doa		acetylated
96	D24	ALEHHHHHHELAK	Doa		acetylated
97	E 1	ALEHHHHHHELA	Doa		acetylated
98	E 2	ALEAHAHAHELAK	Doa		acetylated
99	Е З	ALEAHAHAHELA	Doa	NON-TERMINAL HIS-TAG	acetylated
100	E 4	ALEAHAHELAK	Doa	(NO C, K)	acetylated
101	E 5	ALEAHAHELA	Doa		acetylated
102	E 6	ALEHAAHELAK	Doa		acetylated
103	E 7	ALEHAAHELA	Doa		acetylated
104	E 8	CLEHHHHHHELC	Doa		acetylated
105	E 9	KLCEHHHHHHECLK	Doa		acetylated
106	E10	KLECHHHHHHCELK	Doa	DOUBLE CYSTEINE	acetylated
107	E11	KLEHHHHHHELK	Doa		acetylated
108	E12	CKLEHHHHHHELKC	Doa		acetylated
109	E13	HHHCHHHELAAAL	Doa		acetylated
110	E14	HHHCHHHGLAAAL	Doa		acetylated
111	ए 15	υυυζυυυρτ λλλτ	Doo	CYSTEINE WITHIN HIS-	agentulated
	UT J		DUa	(compare E, D, K, R,	acelylaleu
112	E16	HHHMHHHGLAAAL	Doa	G, S, K, M)	acetylated
113	E17	HHHMHHHELAAAL	Doa		acetylated
114	E18	HHHCHHHDLAAAL	Doa		acetylated
115	E19	HHHCHHHSLAAAL	Doa		acetylated
116	E20	HHHCHHHKLAAAL	Doa		acetylated
117	E21	HHHHHHELAPALKC	Doa		acetylated
118	E22	HHHHHHELAPALC	Doa		acetylated
119	E23	HHHHHHELAPAL	Doa		acetylated
120	E24	HHHPHHHELAAALKC	Doa		acetylated
121	F 1	HHHPHHHELAAALC	Doa	PROLINE	acetylated
122	F 2	HHHPHHHELAAAL	Doa	_ 1.0 _ 1.1	acetylated
123	F 3	HHHPHHHELAPALKC	Doa		acetylated
124	F 4	HHHPHHHELAPALC	Doa		acetylated
125	F 5	HHHPHHHELAPAL	Doa		acetylated
126	F 6	HHHHHHGLAPALKC	Doa		acetylated

				1	
127	F 7	HHHHHHGLAPALC	Doa		acetylated
128	F 8	HHHPHHHGLAPALKC	Doa		acetylated
129	F 9	HHHPHHHGLAPALC	Doa		acetylated
130	F10	HHHPHHHGLAPAL	Doa		acetylated
131	F11	HHHPHHHGLAAALKC	Doa		acetylated
132	F12	HHHPHHHGLAAALC	Doa		acetylated
133	F13	HHHPHHHGGPGKC	Doa		acetylated
134	F14	HHHPHHHGGPGC	Doa		acetylated
135	F15	HHHHHHPGGGC	Doa		acetylated
136	F16	HHHPHHHPGGGC	Doa		acetylated
137	F17	HHHHHHRLAPALKC	Doa		acetylated
138	F18	HHHHHHRLAPALC	Doa		acetylated
139	F19	HHHPHHHRLAPALKC	Doa		acetylated
140	F20	HHHPHHHRLAPALC	Doa		acetylated
141	F21	HHHPHHHRLAPAL	Doa		acetylated
142	F22	HHHPHHHRLAAALKC	Doa		acetylated
143	F23	HHHPHHHRLAAALC	Doa		acetylated
144	F24	HHHHHHELAPAM	Doa		acetylated
145	G 1	HHHHHHELAPAKM	Doa		acetylated
146	G 2	HHHPHHHGGPGKM	Doa		acetylated
147	G 3	HHHPHHHGGPGM	Doa		acetylated
148	G 4	HHHPHHHPGGGM	Doa		acetylated
149	G 5	HHHHHHPGGGM	Doa		acetylated
150	G 6	HHHHHHPELAAALKC	Doa		acetylated
151	G 7	HHHHHHPELAAALC	Doa		acetylated
152	G 8	HHHHHHPELAAAL	Doa		acetylated
153	G 9	HHHHHHPELAAALM	Doa		acetylated
154	G10	HHHPHHHELAAALM	Doa		acetylated
155	G11	HHHPHHHPELAAAL	Doa		acetylated
156	G12	HHHPHHHPELAAALKC	Doa		acetylated
157	G13	HHHPHHHPELAAALC	Doa		acetylated
158	G14	HHHHHHELAAALKM	Doa		acetylated
159	G15	HHHHHHELAAALM	Doa		acetylated
160	G16	HHHHHHELAAMALK	Doa		acetylated
161	G17	HHHHHHELMAAALK	Doa		acetylated
162	G18	HHHHHHMELAAALK	Doa		acetylated
163	G19	HHHHHHELAAMAL	Doa		acetylated
164	G20	HHHHHHELMAAAL	Doa	METHIONINE	acetylated
165	G21	HHHHHHMELAAAL	Doa		acetylated
166	G22	MKLEHHHHHHELKM	Doa		acetylated
167	G23	KLEMHHHHHHMELK	Doa		acetylated
168	G24	MLEHHHHHHELM	Doa		acetylated
169	H 1	LEMHHHHHHMEL	Doa		acetylated
170	Н 2	MKLEAHAHELKM	Doa		acetylated

171	н З	MLEAHAHELM	Doa		acetylated
172	H 4	KLEMAHAHMELK	Doa		acetylated
173	Н 5	LEMAHAHMEL	Doa		acetylated
174	Н б	KLMEHHHHHHEMLK	Doa		acetylated
175	Н 7	LMEHHHHHHEML	Doa		acetylated
176	H 8	MKLEAHAHAHELKM	Doa		acetylated
177	Н 9	KLMEAHAHAHEMLK	Doa		acetylated
178	H10	KLEMAHAHAHMELK	Doa		acetylated
179	H11	MLEAHAHAHELM	Doa		acetylated
180	H12	MLEAHAHAHELM	Doa		acetylated
181	H13	LEMAHAHAHMEL	Doa		acetylated
182	H14	ННННННАМАААМ	Doa		acetylated
183	H15	HMHHMHLAAAL	Doa		acetylated
184	H16	HHHHHHGMGGGM	Doa		acetylated
185	H17	HHHHHHGGGGM	Doa		acetylated
186	H18	АНАНАМАААМ	Doa		acetylated
187	H19	НААНАМАААМ	Doa		acetylated
188	H20	HHHHHHGLAAALM	Doa		acetylated
189	H21	HHHHHHELAAALM	Doa		acetylated
190	H22	HHHHHHRLAAALM	Doa		acetylated
191	H23	HHHHHHDLAAALM	Doa		acetylated
192	H24	HHHHHHSLAAALM	Doa		acetylated
193	I 1	HHHHHHRLAAALKM	Doa		acetylated
194	I 2	HHHHHHDLAAALKM	Doa		acetylated
195	I 3	HHHHHHGLAAALKM	Doa		acetylated
196	I 4	HHHHHHSLAAALKM	Doa		acetylated
197	I 5	KMLEHHHHHHELMK	Doa		acetylated
198	I 6	HHHHHHLAAAL	Doa		acetylated
199	I 7	HHHHHHLAAALKC	Doa		acetylated
200	I 8	HHHHHHLAAALC	Doa		acetylated
201	I 9	HHHHLAAAL	Doa		acetylated
202	I10	HHHHLAAALKC	Doa		acetylated
203	I11	HHHHLAAALC	Doa		acetylated
204	I12	AHAHAHLAAAL	Doa		acetylated
205	I13	AHAHAHLAAALKC	Doa	UNCHARGED RESIDUES	acetylated
206	I14	AHAHAHLAAALC	Doa		acetylated
207	I15	AHAHLAAAL	Doa		acetylated
208	I16	AHAHLAAALKC	Doa		acetylated
209	I17	AHAHLAAALC	Doa		acetylated
210	I18	HAAHLAAAL	Doa		acetylated
211	I19	HAAHLAAALKC	Doa		acetylated
212	I20	HAAHLAAALC	Doa		acetylated
213	I21	HHHHHHALEEELKC	Doa	NEGATIVE RESIDUES	acetylated
214	I22	HHHHHHALEEEL	Doa	(E)	acetylated

215	I23	HHHHHHALEEELC	Doa		acetylated
216	I24	EHEHEHELAAAL	Doa		acetylated
217	J 1	EHEHEHELAAALC	Doa		acetylated
218	J 2	EHEHEHELAAALKC	Doa		acetylated
219	J 3	EHEHEHGLAAAL	Doa		acetylated
220	J 4	EHEHEHGLAAALC	Doa		acetylated
221	J 5	EHEHEHGLAAALKC	Doa		acetylated
222	J 6	EHEHELAAAL	Doa		acetylated
223	J 7	EHEHELAAALC	Doa		acetylated
224	J 8	EHEHGLAAAL	Doa		acetylated
225	J 9	EHEHGLAAALC	Doa		acetylated
226	J10	HEEHELAAAL	Doa		acetylated
227	J11	HEEHELAAALC	Doa		acetylated
228	J12	ННННННЕЕААЕЕ	Doa		acetylated
229	J13	ННННННЕЕААЕЕС	Doa		acetylated
230	J14	HHHHHHGEGGE	Doa		acetylated
231	J15	HHHHHHGEGGEC	Doa		acetylated
232	J16	EHEHEHGEGGE	Doa		acetylated
233	J17	EHEHEHGEGGEC	Doa		acetylated
234	J18	HHHHHHEGGGE	Doa		acetylated
235	J19	HHHHHHEGGGEC	Doa		acetylated
236	J20	EHEHGGAAE	Doa		acetylated
237	J21	EHEHGGAAEC	Doa		acetylated
238	J22	EHEHEHGGAAE	Doa		acetylated
239	J23	EHEHEHGGAAEC	Doa		acetylated
240	J24	GEEHHHHHHEEG	Doa		acetylated
241	K 1	GEEHHHHHHEEGC	Doa		acetylated
242	К 2	GGEHHHEHHHEGG	Doa		acetylated
243	К З	GGEHHHEHHHEGGC	Doa		acetylated
244	K 4	HHHHHHDLAAAL	Doa		acetylated
245	K 5	HHHHHHDLAAALC	Doa		acetylated
246	K 6	HHHHHHDLAAALKC	Doa		acetylated
247	K 7	HHHHHALDDDLKC	Doa		acetylated
248	K 8	HHHHHHALDDDL	Doa		acetylated
249	К 9	HHHHHHALDDDLC	Doa		acetylated
250	K10	DHDHDHDLAAAL	Doa		acetylated
251	K11	DHDHDHDLAAALC	Doa	NEGATIVE RESIDUE (D)	acetylated
252	K12	DHDHDHDLAAALKC	Doa		acetylated
253	K13	DHDHDLAAAL	Doa		acetylated
254	K14	DHDHDLAAALC	Doa		acetylated
255	K15	HDDHDLAAAL	Doa		acetylated
256	K16	HDDHDLAAALC	Doa		acetylated
257	K17	HHHHHHDDAADD	Doa		acetylated
258	K18	HHHHHHDDAADDC	Doa		acetylated

259	K19	HHHHHHGDGGD	Doa		acetylated
260	K20	HHHHHHGDGGDC	Doa		acetylated
261	K21	DHDHDHGDGGD	Doa		acetylated
262	K22	DHDHDHGDGGDC	Doa		acetylated
263	K23	HHHHHHDGGGD	Doa		acetylated
264	K24	HHHHHHDGGGDC	Doa		acetylated
265	L 1	DHDHGGAAD	Doa		acetylated
266	L 2	DHDHGGAADC	Doa		acetylated
267	г 3	DHDHDHGGAAD	Doa		acetylated
268	L 4	DHDHDHGGAADC	Doa		acetylated
269	L 5	GDDHHHHHHDDG	Doa		acetylated
270	L 6	GDDHHHHHHDDGC	Doa		acetylated
271	L 7	GGDHHHDHHHDGG	Doa		acetylated
272	L 8	GGDHHHDHHHDGGC	Doa		acetylated
273	L 9	ННННННДАЕАД	Doa		acetylated
274	L10	HHHHHHDAEADKC	Doa		acetylated
275	L11	HHHHHHDAEADC	Doa		acetylated
276	L12	EHEHEHGGAADC	Doa		acetylated
277	L13	EHEHEHGGAAD	Doa		acetylated
278	L14	DHDHDHGGAAE	Doa		acetylated
279	L15	DHDHDHGGAAEC	Doa		acetylated
280	L16	HHHHHHDDAEE	Doa		acetylated
281	L17	HHHHHHDDAEEC	Doa		acetylated
282	L18	DHDHGGAAE	Doa	& D)	acetylated
283	L19	DHDHGGAAEC	Doa	/	acetylated
284	L20	EHEHGGAAD	Doa		acetylated
285	L21	EHEHGGAADC	Doa		acetylated
286	L22	НННННЕАААД	Doa		acetylated
287	L23	НННННЕАААDC	Doa		acetylated
288	L24	GEEHHHHHHDDGC	Doa		acetylated
289	M 1	GEEHHHHHHDDG	Doa		acetylated
290	M 2	GGEHHHDHHHEGG	Doa		acetylated
291	М З	GGEHHHDHHHEGGC	Doa		acetylated
292	M 4	HHHHHHRLAAAL	Doa		acetylated
293	M 5	HHHHHHRLAAALC	Doa		acetylated
294	M 6	HHHHHHRLAAALKC	Doa		acetylated
295	M 7	HHHHHHALRRRL	Doa		acetylated
296	M 8	HHHHHHALRRRLKC	Doa		acetylated
297	M 9	HHHHHHALRRRLC	Doa	POSITIVE RESIDUE (R)	acetylated
298	M10	RHRHRHRLAAAL	Doa		acetylated
299	M11	RHRHRHRLAAALC	Doa		acetylated
300	M12	RHRHRHRLAAALKC	Doa		acetylated
301	M13	RHRHRLAAAL	Doa		acetylated
302	M14	RHRHRLAAALC	Doa		acetylated

202	M1 E		Dee		a a a tulata d
203	MID M1C		Doa		acelylated
304 205	M17		Doa		acelylated
305	M1 0	HKKHKLAAALC	Doa		acelylated
300	MI 0	HHHHHHRKAARK	Doa		acelylated
307	MI9 MOO	HHHHHHRRAARRC	Doa		acetylated
308	MZU	HHHHHHGRGGR	Doa		acetylated
309	MZI	HHHHHHGRGGRC	Doa		acetylated
310	MZZ	HHHHHHRGGGR	Doa		acetylated
311	MZ3	HHHHHHRGGGRC	Doa		acetylated
312	MZ4	НННННКАКАК	Doa		acetylated
313	N 1	HHHHHHRARARC	Doa		acetylated
314	N 2	RHRHRHGRGGR	Doa		acetylated
315	N 3	RHRHRHGRGGRC	Doa		acetylated
316	N 4	RHRHGGAAR	Doa		acetylated
317	N 5	RHRHGGAARC	Doa		acetylated
318	N 6	RHRHRHGGAAR	Doa		acetylated
319	N 7	RHRHRHGGAARC	Doa		acetylated
320	N 8	GRRHHHHHHRRG	Doa		acetylated
321	N 9	CRRHHHHHHRRC	Doa		acetylated
322	N10	GGRHHHRHHHRGG	Doa		acetylated
323	N11	GGRHHHRHHHRGGC	Doa		acetylated
324	N12	HHHHHHSLAAAL	Doa		acetylated
325	N13	HHHHHHSLAAALKC	Doa		acetylated
326	N14	HHHHHHSLAAALC	Doa		acetylated
327	N15	HHHHHHALSSSL	Doa		acetylated
328	N16	HHHHHHALSSSLC	Doa		acetylated
329	N17	SHSHSHSLAAAL	Doa		acetylated
330	N18	SHSHSHSLAAALC	Doa		acetylated
331	N19	SHSHSHSLAAALKC	Doa		acetylated
332	N20	SHSHSLAAAL	Doa		acetylated
333	N21	SHSHSLAAALC	Doa		acetylated
334	N22	HHHHHHSSAASS	Doa	CEDINE C	acetylated
335	N23	HHHHHHSSAASSC	Doa	SERINE, S	acetylated
336	N24	SHSHSHGSGGS	Doa		acetylated
337	0 1	SHSHSHGSGGSC	Doa		acetylated
338	02	HHHHHHSGGGS	Doa		acetylated
339	03	HHHHHHSGGGSC	Doa		acetylated
340	04	HHHHHHSASAS	Doa		acetylated
341	05	HHHHHHSASASC	Doa		acetylated
342	06	GSSHHHHHHSSG	Doa		acetylated
343	07	GSSHHHHHHSSGC	Doa		acetylated
344	08	GGSHHHSHHHSGG	Doa		acetylated
345	09	GGSHHHSHHHSGGC	Doa		acetylated
346	010	HHHHHHKLAAAL	Doa	LYSINE, K	acetylated

acetylated		Doa	HHHHHHALKKKL	011	347
acetylated		Doa	HHHHHHALKKKLC	012	348
acetylated		Doa	KHKHKHKLAAAL	013	349
acetylated		Doa	KHKHKHKLAAALC	014	350
acetylated		Doa	НННННККААКК	015	351
acetylated		Doa	НННННККААККС	016	352
acetylated		Doa	KHKHKHGKGGK	017	353
acetylated		Doa	KHKHKHGKGGKC	018	354
acetylated		Doa	HHHHHHKGGGK	019	355
acetylated		Doa	HHHHHHKGGGKC	020	356
acetylated		Doa	НННННКАКАК	021	357
acetylated		Doa	НННННКАКАКС	022	358
acetylated		Doa	GKKHHHHHHKKG	023	359
acetylated		Doa	GKKHHHHHHKKGC	024	360
acetylated		Doa	GGKHHHKHHHKGG	P 1	361
acetylated		Doa	GGKHHHKHHHKGGC	P 2	362
acetylated	RANDOM	Doa	AHAAHELAAAL	Р3	363
acetylated		Doa	AHAAHELAAALKC	P 4	364
acetylated		Doa	REEVPRRSGLSAGHR	P 5	365
acetylated	INTER-ARRAY	Doa	GYLRKPKSMHKRFFV	P 6	366
acetylated	COMPARISON	Doa	EKKTKIRSLHNKLLN	P 7	367
acetylated		Doa	RRLKGPGTPAFPHYL	P 8	368
empty	UNMODIFIED CONTROL	pace	. S]	P 9	369
acotylatod	BLANK ACETYLATED	НЪС		₽10	370
acetylated	CONTROL	Doa	DGGHHHDHHHGGD	P11	371
acetylated		Doa	DGGHHHHHHGGD	P12	372
acetylated		Doa	HHHHHHGRCRG	P13	373
acetylated		Doa	RCRGHHHHHHGRCR	P14	374
acetylated		Doa	HHHHHHGDCDG	P15	375
acetvlated	CATALYTIC	Doa	DCDGHHHHHHGDCD	P16	376
acetylated		Doa	HHHHHHGQCSG	P17	377
acetylated		Doa	SCQGHHHHHHGQCS	P18	378
acetylated		Doa	SGGHHHHHHGGD	P19	379
acetylated		Doa	GGSHHHHHHDGG	P20	380
acetylated		Doa	GQLVNEREGASPPWY	P21	381
acetylated	KANDOM	Doa	RKNDDSTYAGMIMFE	P22	382
acetylated	UFUEUE COMDIDICON	Doa	GSSHHHHHHLQVDNK	P23	383
acetylated	HERERE COMPARISON	a	MHEHEHEAENKFNKE Do	P24	384

Figure S2. Phosphor image of the [^{99m}Tc(CO)₃]⁺ radiolabeled His-Tagged CelluspotTM peptide array. Each black spot represents a peptide sequence. **A)** Image after 15 minutes total incubation time, **B)** Image after 30 minute total incubation time, **C)** Image after 60 minute total incubation time and **D)** Image after 120 minute incubation time.

Figure S3. Radiochemical yield of all 384 peptides on the Celluspots[™] His-tagged peptide array post radiolabeling with [^{99m}Tc][Tc(CO)₃]⁺ (15 minutes incubation time) in PBS at pH 7.4. Results and standard deviations are calculated based on 6 normalized sets of data. The peptides are categorized and color-coded according to their characteristic features of the amino acids that surround the His residues and the arrangement of these amino acids with regards to the His residues. The black horizontal broken line on the graph emphasises the clear boundary between the ten His/Cys tag peptides labeled in solution (black category) and the peptides containing 2 or more Arg/Lys residues (purple category). The extent of the positive charge influence on labeling is highlighted in the two categories "Proline" (red) and "Catalytic Sequences" (lime green, extreme right). Within these categories it is possible to see some individual sequences with a superior radiochemical yield in comparison to all other sequences in that category. These "superior" sequences all contain at least 2 Arg residues. For example in the "Catalytic Sequences" category, of the 8 peptides only two contain multiple Arg residues, GRCRGHHHHHH and RCRGHHHHHHGRCR, and these are the two that show a preferential coordination to [^{99m}Tc(CO)₃]⁺.

Figure S4. Time dependence of radiochemical yield of all 384 peptides on the His-Tagged CelluspotTM peptide array post radiolabeling with $[^{99m}Tc(CO)_3]^+$ in PBS at pH 7.4, showing increased labeling with time. Trends evident at 120 min are already emerging by 15 min. Results and standard deviations are calculated based on 6 sets of data. A) 15 min, B) 30 min, C) 60 min, D) 120 min.

Fig. S5. Exemplar iTLC quality control of labeling of synthesized soluble peptides. iTLC-SA strips (7.5 x 90 mm) had an origin at 10 mm and a solvent front at 80 mm. A mobile phase of citrate buffer at pH 5.5 was used. **A)** Unbound [^{99m}Tc(CO)₃]⁺, Rf = 1; **B)** Unreduced ^{99m}TcO₄⁻, Rf = 1; **C)** Cys/His-Tag labelling reaction with [^{99m}Tc(CO)₃]⁺. The [^{99m}Tc(CO)₃-peptide] conjugate had Rf = 0 in all cases.

Figure S6. A comparison between the radiochemical yield and pl of the peptide sequences, classified according to types of His tag (number and position/interruption of His residues in the sequences). **A)** 6 His residues, HHHHH; **B)** 4 His residues, HHHH; **C)** 3 His residues in a HXHX motif; **D)** 2 His residues in a HXHX motif; and, **E)** 2 His residues in a HXXH motif.

Figure S7. Comparison between the radiochemical yield of labelling sequences containing an Arg, Lys, Gly, Ser, Glu and Asp amino acid adjacent to the His tag. A single amino acid has been "point-mutated" in the X position within each sequence **A:** MLAAALXHHHHHH, MKLAAALXHHHHHH and LAAALXHHHCHHH sequences, **B:** LAAALXHHHHHH, CLAAALXHHHHHH, CKLAAALXHHHHHH sequences. There is a significant enhancement (p < 0.001) when X = arginine.

Figure S8. Effect of multiple arginine residues: number of Arg residues within a peptide sequence plotted against the radiochemical yield of the sequence (**A**) and pl (**B**, mean pl shown for each group). All sequences include a His-Tag, HHHHHH and the Arg residues are positioned on either side of the His₆-Tag, both sides of the His₆-Tag or in between the His residues. Increasing the number of Arg residues increases both labeling yield and pl compared to a single Arg residue.

Figure S9. Effect of lysine residues on labeling efficiency: number of Lys residues within a peptide sequence plotted against the radiochemical yield of the sequence (**A**) and pl (**B**). All sequences include a His-Tag, HHHHHH and the Lys are positioned: on either side of the His₆-Tag, both sides of the His₆-Tag or in between the His residues. Increasing the number of lysine residues enhances both labeling efficiency and pl.

Figure S10. Combined data for the number of Lys and Arg residues within a peptide sequence plotted against the radiochemical yield of the sequence (**A**) and pl (**B**). Arg containing sequences are better than Lys containing sequences at improving radiochemical yield. All sequences include a His₆-Tag, HHHHH.

Figure S11. Comparisons between positions of Arg residues with respect to the His amino acids. The sequences have been categorized according to the positioning of the His residues: **HHHHHH-(Arg/X)**, **HRHRHR-(X)** and **(Arg/X)-HHHHHH-(Arg/X)**. X = any amino acid other than Arg or His. Placing arginine residues either side of the histidine sequence increases labeling efficiency more effectively than interrupting the histidine sequence.

Table S5. Occurrence of Cys residues in the ten most efficiently labeled sequences of the His tagarray. Cysteine-containing residues are shaded.

Sequence	Labeling efficiency rank	Labeling efficiency, DLU
HHHHHALRRRLC	1	15049
HHHHHALRRRLKC	2	12308
CRRHHHHHHRRC	3	12029
GRRHHHHHHRRG	4	11858
HHHHHRRAARRC	5	10894
HHHHHALRRRL	6	10656
RCRGHHHHHHGRCR	7	9419
GGRHHHRHHHRGG	8	9107
HHHHHRGGGRC	9	8897
RHRHRHGRGGRC	10	8767

Figure S12. Labeling in citrate buffer: phosphor images of the $[^{99m}Tc(CO)_3]^+$ radiolabeled His-Tagged CelluspotsTM array after radiolabeling in citrate buffer at pH 5.1, rather than PBS. **A**) Image after radiolabeling for 15 min; **B**) Image after radiolabeling for 120 min; **C**) Image after incubation for 120 min followed by exposure to a His containing solution for 3h. Labeling at pH 5.1 leads to peptide labeling that is much less efficient than in PBS, much less selective for positively charged residues and much less stable towards loss of label.

Figure S13. Labeling in Tris-HCl buffer (pH 8.8): phosphor images of the $[^{99m}Tc(CO)_3]^+$ radiolabeled His-Tagged CelluspotsTM peptide array after radiolabeling in Tris-HCl buffer at pH 8.8, rather than PBS. **A)** Image after radiolabeling for 15 min; **B)** Image after radiolabeling for 120 min; **C)** Image after incubation for 120 min followed by exposure to Tris-HCl buffer for 3h. Labeling at pH 5.1 leads to peptide labeling that is much less efficient than in PBS and much less selective for positively charged residues.

Figure S14. Labeling in Tris-HCl buffer (pH 7.4): phosphor images of the $[^{99m}Tc][Tc(CO)_3]^+$ radiolabeled His-Tagged CelluspotTM peptide array after radiolabeling in Tris-HCl buffer at pH 8.8, rather than PBS. **A)** Image after radiolabeling for 15 min; **B)** Image after radiolabeling for 120 min; **C)** Image after radiolabeling for 120 min. Labeling is more efficient than in Tris-HCl buffer at pH 8.8 but is not comparable to labeling in PBS.

Figure S15: Comparison of $[^{99m}Tc][Tc(CO)_3]^+$ labeling of all sequences in tris-HCl pH 5.1 and in PBS. **A)** 120 min reaction time in citrate buffered solution at pH 5.1 and, **B)** 15 min reaction time in PBS solution. The graphs have been plotted to the same scale. Labeling is faster in PBS and dramatically more selective for positively charged sequences.

Figure S16: Comparisons of $[^{99m}Tc][Tc(CO)_3]^+$ labeling yields in tris-HCl buffer and PBS. **A)** After 120 min reaction time in Tris-HCl buffer, pH 7.4; **B)** After 120 min reaction time in Tris-HCl buffer, pH 8.8; **C)** After 15 min reaction time PBS. The graphs have been plotted to the same scale and the data normalized to the background values. Labeling in Tris-HCl is less efficient and less selective than in PBS.

Figure S17. Phosphor image of the $[{}^{99m}Tc][Tc(CO)_3]^+$ radiolabeled His-Tagged CelluspotsTM peptide array after 120 min labeling followed by incubation in PBS for up to 24 h. **A**) Image after radiolabeling for 120 min; **B**) Image after incubation of labeled array (A) in PBS buffer for 1 h; **C**) Image after incubation in PBS buffer for 2 h; **D**) Image after incubation in PBS buffer for 24 h.

Figure S18. Radiolabel stability in PBS. Calculated % $[^{99m}Tc][Tc(CO)_3]^+$ remaining on all peptide sequences (labeled in PBS) after exposure to fresh non-radioactive PBS buffer for 1 h, 2 h and 24 h. The data are presented according to the categories previously established based on the characteristics of the peptide sequences. A) Exposure to PBS buffer for 1 h; B) Exposure to PBS buffer for 2 h; C) Exposure to PBS buffer for 24 h. The peptides in the "Controls" category (white circles), which show major loss of radiolabel, correspond to 2 spots on the array with no peptide sequences and 2 that do not contain His residues.

Figure S19. Radiolabel stability in serum. Phosphor image of the [^{99m}Tc][Tc(CO)₃]⁺ radiolabeled His-Tagged Celluspot[™] peptide array (labeled in PBS for 120 min) and after incubation in human serum for up to 24 h. **A**) Image after radiolabeling for 120 min; **B**) Image after incubation of labeled array (A) in PBS for 1 h; **C**) Image after incubation in PBS for 2 h; **D**) Image after incubation in serum.

Figure S20. Serum stability. Calculated % [99m Tc][Tc(CO)₃]⁺ remaining on all peptide sequences (labeled in PBS for 120 min) after exposure to human serum for 1 h, 2 h and 24 h. The data are presented according to the categories previously established based on the characteristics of the peptide sequences. **A)** Exposure to human serum for 1 h; **B)** Exposure to human serum for 2 h; **C)** Exposure to human serum for 24 h. The peptides in the "Controls" category (white circles), which show major loss of radiolabel, correspond to 2 spots on the array with no peptide sequences and 2 that do not contain His residues. The labeled peptides are resistant to transchelation in serum over 24 h.

Figure S21. Resistance to transchelation with cysteine and histidine. Phosphor image of the $[^{99m}Tc][Tc(CO)_3]^+$ radiolabelled His-Tagged CelluspotTM peptide array (labeled for 120 min) followed by incubation in large excess of Cys and His containing solutions for 3 h consecutively. **A)** Image after radiolabeling for 120 min; **B)** Image after incubation of labeled array (A) in an excess Cys solution; and **C)** Image after incubation of Cys-treated array (B) in an excess His solution.

Figure S22. Resistance to transchelation with cysteine and histidine. Calculated % $[^{99m}Tc][Tc(CO)_3]^+$ remaining bound to all labeled (in PBS for 120 min) peptide sequences after exposure to excess Cys and His solutions for 3 h each consecutively. **A)** Exposure to a Cys rich solution for 3 h. **B)** Exposure to His rich solution for 3 h. Labeled peptides are highly resistant to transchelation with cysteine and histidine.

Figure S23: Comparison of phosphor images of the $[^{188}\text{Re}(\text{CO})_3]^+$ (left) and $[^{99m}\text{Tc}][\text{Tc}(\text{CO})_3]^+$ (right) labeling of the His-tagged CelluspotsTM peptide arrays. A) Image after 15 min total incubation time, B) Image after 30 min total incubation time, C) Image after 60 min total incubation time and D) Image after 120 min total incubation time. Despite the poorer resolution of the ¹⁸⁸Re images, the analogy between the two radionuclides in selectivity among the spots is evident.

Figure S24: Rhenium-188 labelling. Radiochemical yield of all 384 peptides on the His-Tagged Celluspots[™] peptide array post radiolabeling with [¹⁸⁸Re(CO)₃]⁺ in PBS at pH 7.4. Results and standard deviations are calculated based on 2 sets of data. The sequence categories are listed in the legend and a description is provided above. **A)** after 15 min incubation, **B)** after 30 min incubation, **C)** after 60 min incubation and **D)** after 120 min incubation. The similarity of the profiles in this figure with those of the ^{99m}Tc analogs shown in Fig. S5 is striking.

Figure S25. Serum stability of ¹⁸⁸Re-labeled peptides: the % of ¹⁸⁸Re bound to each spot in the array after labeling with [¹⁸⁸Re(CO)₃]⁺ in PBS that remained after exposure to human serum for 48 h is shown. The attachment of ¹⁸⁸Re to the peptides is highly resistant to transchelation in serum, as is the case for the ^{99m}Tc analogs.

Figure S26. Images obtained from the electrophoresis of $[^{99m}Tc][TcO_4]^-$, ^{99m}Tc -Sestamibi and $[^{99m}Tc][Tc(CO)^3]^+$ in various buffers after 1 h (4 mA current). The two black spots joined by a vertical red dashed line represent the starting point of the radioactive complexes before application of the electrical field and the black spot in the top right hand corner indicates the position of the anode during the experiment. Electrophoresis was performed in different buffers: **A**) Citrate buffer at pH 5.1, **B**) PBS at pH 7.4, **C**) Tris-HCl buffer at pH 7.4 and **D**) Tris-HCl buffer at pH 8.8. While $[^{99m}Tc][TcO_4]^-$ and ^{99m}Tc -sestamibi in all media behaved as expected as an anion and a cation, respectively, the " $[^{99m}Tc][Tc(CO)_3]^+$ " unexpectedly behaved as an anion in PBS and citrate buffer.

Figure S27. ³¹P NMR spectra of increasing concentrations of $[Re(CO)_3]^+$ in a 100 mM phosphate buffered solution at pH 7.4. **Stackplot A)** Spectra obtained after incubation for 30 min at RT. **Stackplot B)** Spectra obtained after 30 min incubation at 37°C. New species, most likely due to coordination of phosphate to Re, are formed when $[Re(CO)_3]^+$ and phosphate are combined; there is little difference in their rate of formation at room temperature and 37°C.

Expression and purification of model proteins

All scFv fragments were successfully constructed, expressed and purified. The sequence of each was confirmed by DNA sequencing. The "labeling sequences" were defined as the 13 amino acids at the C-terminal of the protein which includes the His₆-tag and 7 of its surrounding amino acid residues. A His₆-tag in combination with multiple Arg residues was successfully incorporated as the labeling sequence at the C-terminus of J591scFvJWT.

The control proteins were chosen due to the minimal number of Arg residues at the C- terminal in close proximity to the His₆-tag. Apart from the labeling sequence, the J591scFv protein has an identical amino acid composition to the J591scFvJWT fragment. Its labeling sequence, KRAAALEHHHHHH, with a pl of 8.79, contains 1 Arg and 1 Lys residue 6 and 7 amino acids away, respectively, from the His₆-tag. To analyze the effect of this Arg on labeling, an additional version of the J591scFv was used for comparison, humanized (hu) J591scFv, with a labeling sequence not containing the Arg. The huJ591scFvscFv labeling sequence, IKLAAALEHHHHHH, has a pl of 7.21. The Lys 7 amino acids away from the His₆- tag is still present. 6C7.1scFv and 6C7.1-CscFv have identical amino acid composition other than an additional Cys residue at the C-terminus of the His-tag in the 6C7.1-CscFvys scFv. The labeling sequences for 6C7.1scFv and 6C7.1-CscFv are PTAAALEHHHHHH and TAAALEHHHHHHC respectively and the pl is 6.53 for both.

The J591scFvJWT non-reduced and reduced samples revealed a single band representing the J591scFvJWT monomer at 28 KDa (Fig. S28). This implies that the protein folding has not been compromised and a homogenous J591scFvJWT protein has been formed. As a result of the successful expression, J591scFvJWT was reproduced and purified in parallel with the J591scFv control protein for further comparative studies including radiolabeling efficiencies and binding to PSMA.

The large scale production of J591scFvJWT and J591scFv produced 2 mg/L and 7 mg/L respectively of the purified proteins. The results suggest that the JWT Tag influences the expression of the J591scFv protein resulting in smaller yields of the protein. Production and purification steps were monitored by SDS PAGE and Western blotting and are displayed in Figs. S28 and S29 for the J591scFvJWT and J591scFv respectively. The J591scFvJWT appears as a monomer of 28 KDa. Lanes A-C in the SDS-PAGE monitor the progress of extracting J591scFvJWT from the culture supernatatant. His₆ recombinant proteins such as J591scFvJWT have a high affinity and selectivity for the Ni- NTA and as a result, the majority of protein impurities present in the supernatant, lane A, are discarded in the flowthrough of the Ni-NTA purification system. Other impurities from the culture media non-specifically bound to the NiNTA are removed with addition of the Ni-NTA washing buffer containing 35 mM imidazole, lane B. J591scFvJWT was eluted from the column by competition with a 250 mM imidazole solution in the Ni-NTA elution buffer, lane C.

Three peaks appeared in the SEC purification step of the J591scFvJWT and samples from each were loaded onto the SDS PAGE and can be seen in lanes D-F. The first peak corresponded to serum proteins from culture media, row D, whilst the second peak corresponded to dimeric aggregates of J591scFvJWT protein, row E. The dimeric aggregates formed were non-covalent dimers and on the SDS-PAGE appear as single monomers at 28 KDa due to the SDS procedure disrupting the secondary and tertiary structures of the protein. J591scFvJWT was eluted as a

purified protein in the third peak, lane F, and concentrated to 1.3 mg/ml, lane G. The corresponding western blot confirms the appearance of the J591scFvJWT as a single band at 28 KDa on the SDS-PAGE. The primary antibody used in the western blot, antiPentaHis, specifically detects the $(His)_6$ tag.

SEC HPLC analysis confirms that for J591scFvJWT, the protein exists as a monomer, retention time 9:10-9:30 min, with only small amounts of scFv dimers present (Fig. S30). J591scFv and huJ591scFv show a higher degree of dimer formation.

Row Sample

- A Culture Supernatant
- **B** 35mM imidazole wash of the NiNTA column
- **C** J591scFvJWT elution from NiNTA column (250 mM imidazole)
- **D** SEC Purification: Fraction 1 BSA Protein
- E SEC Purification: Fraction 2 Non-covalent dimers of J591scFvJWT
- **F** SEC Purification: Fraction 3 Purified monomeric J591scFvJWT
- G Concentrated J591scFvJWT 1.3 mg/ml

Figure S28. SDS-PAGE and Western Blot of the extraction and purification process of the J591scFvJWT protein from the culture supernatant. **Left**: SDS-PAGE with lanes from A-G. **Right**: Western blot of the SDS-PAGE with lanes from A-G. J591scFvJWT sample runs as a single band corresponding to the size of the monomer, 28 KDa.

Row S	Sample
-------	--------

- A Culture Supernatant
- **B** 35 mM imidazole wash of the NiNTA column
- **C** J591scFv elution from NiNTA column (250 mM imidazole)
- **D** SEC Purification: Fraction 1 BSA Protein
- E SEC Purification: Fraction 2 Non-covalent dimers of J591scFv
- **F** SEC Purification: Fraction 3 Purified monomeric J591scFv

Figure S29. SDS-PAGE and Western blot of the extraction and purification process of the J591scFv protein from the culture supernatant. **Left**: SDS-PAGE with lanes from A-F. **Right**: Western blot of the SDS-PAGE with lanes from A-F. J591scFv sample runs as a single band corresponding to the size of the monomer, 27 KDa.

Figure S30. HPLC SEC analysis of the scFv proteins shows elution primarily as a single monomeric species in the region of 9:10 - 9:30 min. The peak in the region between 8:15-8:30 min represents the non-covalent dimers of the scFv protein. **A)** J591scFvJWT protein; **B)** J591scFv protein; **C)** huJ591scFv protein.

Figure S31. Labeling efficiency of five His-tagged proteins with $[^{99m}Tc][Tc(CO)_3]^+$ in PBS during 120 min at 37°C, at protein concentrations from 0.9 to 28 mM. Only J591scFvJWT (top) contains an optimized His-tag. There are no data for the highest and the highest two concentrations respectively of 6C7.1scFv and 6C7.1scFvCys because restricted quantities were available.

Figure S32. Comparison of $[^{99m}Tc][Tc(CO)_3]^+$ radiolabeling efficiency of J591scFvJWT at 37°C and 25°C in PBS. The protein concentration for both experiments was 14.1 μ M.

Table S6. Protein concentrations and incubation times at which scFv proteins demonstrated a radiochemical yield greater than or equal to 95%. Only the proteins and radiochemical yield achieved that were greater than 95% have been included in the table.

	15min	30min	60min	90min	120min
28.2uM		J591scFvJWT	J591scFvJWT	J591scFvJWT	J591scFvJWT
		= 96%	= 99%	= 99%	= 100%
				J591scFv	J591scFv
				= 97%	= 99%
				huJ591scFv	huJ591scFv
				= 96%	= 98%
14.1uM			J591scFvJWT	J591scFvJWT	J591scFvJWT
			= 95%	= 98%	= 99%
7uM				J591scFvJWT	J591scFvJWT
				= 95%	= 99%
3.5uM					
1.76uM					
0.88uM					

Figure S33. SDS-PAGE Coomassie staining (left) and autoradiograph (right) for the serum stability analysis of J591scFvJWT for 4 hours at 37°C.

Figure S34. Cell binding competition assay using DU145 and DU145 PSMA positive cells. Competition is between 1 nM [99m Tc][Tc(CO)₃]⁺ labeled protein and the unlabeled protein as a cold competitor. **A)** J591scFvJWT protein, **B)** huJ591scFv protein.

Figure S35 Comparison of labeling efficiency of optimal (highest labeling efficiency, CLRRRLAHHHHH, green) sequence in the array with labeling efficiencies of comparable ^{99m}Tclabeled sequences from the literature which are featured in the array. Dark blue and light blue are pairs representing the effect of adding CK;⁹ Dark red and light red represent a comparison of HHHHHH with HEHEHE;¹¹ Dark purple and light purple represent the effect of substituting three negatively charged residues (aspartate and glutamate, respectively) for arginines in the optimized sequence. The optimized sequence has almost an order of magnitude higher labeling efficiency than the mean of the others.

Figure S36. TLC quality control of $[^{99m}Tc][TcO_4]^-$ conversion to $[^{99m}Tc][Tc(CO)_3]^+$ for use in the radiolabeling of the scFv fragments: **Rf = 0.9** for $^{99m}TcO_4^-$, **Rf = 0** for ^{99m}Tc colloids and **Rf = 0.2-0.8** for $[^{99m}Tc(CO)_3(H_2O)_3]^+$. Silica gel 60F₂₅₄ TLC plates (Merck Millipore, Darmstadt, Germany) with a mobile phase of 1% HCl in methanol were used.

Methods

Peptide synthesis

Peptides were synthesized in the Biomolecular Analysis Laboratory, University of Kent, using a PSSM-8 Multiple Peptide Synthesizer (Shimadzu). Analytical LC-ESMS was performed on a system comprising an Agilent 1200 Series Liquid Chromatography and an Agilent 6520 Accurate Mass Q-TOF mass spectrometer with a dual ESI ion source. Data analysis was carried out using the corresponding Agilent MassHunter Workstation Qualitative Analysis Software (Agilent Technologies, Cheshire, UK). Preparative HPLC was carried out using a LKB Bromma 2152 LC Controller Liquid Chromatography system (Rollabiotech, UK). The 10 Cys/His-Tag peptide analogs (Table S5) were synthesized on an automated peptide synthesizer using standard solidstate 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry on a 20 µmol scale. NovaSyn TGT resin 0.2mmol/g substitution, (Novabiochem) in dimethylformamide (DMF) was used. The Fmoc amino acids (NovaBioChem) were added in 8 fold excess. A combination of HBTU, HOBt + H₂O and DIEA were used as the coupling reagents in a 1:1, 1:1, and 1:2 stoichiometric ratio to the amino acids (amino acid-reagent) respectively. Fmoc deprotection was achieved with a 30% piperidine solution in DMF. Peptide sequences were removed from the resin using 2 ml of a cleavage cocktail containing TFA:H₂O:EDT:TIS in a 94:2.5:2.5:1 ratio. Incubation in the cleavage cocktail was carried out for 2 hours and precipitation of the peptide was then induced by addition of 3 x 20 ml of ice cold diethyl ether. The peptide precipitate was dried using a lyophilizer. Peptide purification was carried out by preparative RP HPLC LC-ESMS and a Vydac 218TP C-18 column using a 15 ml/min flow rate and the following gradient: time(min):%B 0:10,

5:10, 10:25, 40:75, 45:100, 50:100, 51:10, 70:10, 71:10 where A was H_2O with 0.1% TFA and B was 30% $H_2O/70\%$ ACN and 0.09% TFA. The purified fraction was lyophilized to provide a white solid that was stored at -80 °C. Electrospray mass spectroscopy (ESI-MS) analysis confirmed the correct molecular weight of each peptide as is shown in Table S6. The peptides were purified via HPLC and approximately 10 mg of the pure products were obtained in each case.

Table S7. Methodology and summary of the 10 Cys/His-tag peptide sequences synthesized for comparison of homogenous radiolabeling with array labeling. Each peptide was one of a pair with and without a CysLys dipeptide. For every pair a different number and arrangement of His residues was present. Each sequence has an identical counterpart in the solid phase array.

Peptide Sequence	Sequence "type"
LAAALEHHHHHH	Generic (His) ₆ -Tag – HHHHHH
CKLAAALEHHHHHH	Generic (His) ₆ -Tag – HHHHHH
LAAALEHAHAHA	НХНХНХ
CKLAAALEHAHAHA	НХНХНХ
LAAALEHHHH	Abbreviated His-Tag
CKLAAALEHHHH	Abbreviated His-Tag
LAAALEHAHA	НХНХ
CKLAAALEHAHA	НХНХ
LAAALEHAAH	НХХН
CKLAAALEHAAH	НХХН

Peptide	Peptide Sequence	Expected MW (g/mol)	Obtained MW (g/mol)
1	LAAALEHHHHHH	1408.69	1408.72
2	CKLAAALEHHHHHH	1639.79	1639.31
3	LAAALEHAHAHA	1210.62	1210.58
4	CKLAAALEHAHAHA	1441.72	1441.72
5	LAAALEHHHH	1134.57	1134.59
6	CKLAAALEHHHH	1365.67	1365.42
7	LAAALEHAHA	1139.58	1139.38
8	CKLAAALEHAHA	1370.69	1370.66
9	LAAALEHAAH	1139.58	1139.60
10	CKLAAALEHAAH	1370.69	1370.71

 Table S8.
 Summary of the ESI-MS data for the 10 synthesized Cys/His-Tag peptide sequences.

Model protein construction, expression and purification

Protein purification was carried out using the AKTA-FPLC-900 System with a fraction collector-950 (GE Healthcare Life Sciences) using a Ni-NTA column (Superflow Cartridge, Qiagen, Manchester, UK) and a Superdex 75 HR 10/30 column (GE Healthcare, Little Chalfont, UK) for gel filtration. All buffers were prepared in-house with chemicals and solvents obtained from Sigma-Aldrich (Dorset, UK) unless otherwise specified. Sterile water was used to prepare the buffers. Vivaspin2 ultracentrifugation tubes with a 5,000 molecular weight cut-off were purchased from Sartorius (Epsom, UK) for protein concentration and protein concentration measured by UV spectrometry using a Nanodrop 2000c spectrophotometer (ThermoScientific, UK). Proteins were analyzed using SDS-PAGE analysis with NuPAGE 12% gels (Invitrogen, Paisley, UK), MOPS buffer (Life Technologies, Paisley UK) and an Invitrogen Novex Mini Cell chamber (Life Technologies). For western blot development, antiPentaHis, goat anti mouse – horse radish peroxidise (Gam:HRP) and SigmaFastDAB were obtained from Qiagen, Millipore and Sigma-Aldrich respectively. The Novex Sharp prestained protein standard for SDS-PAGE and Western Blot was obtained from Life Technologies. High performance liquid chromatography (HPLC) analysis was carried out on an Agilent 1200 series system with an in-line UV (280 nm) detector and a BioSepSEC-s 2000 (Phenomenex, Cheshire, UK) size exclusion column (SEC). DNA sequencing was performed by Beckman Coulter Genomics, Takeley, UK. For radiolabelling experiments and quality controls, materials were obtained and equipment used as previously described for the radiolabeling of the Cys/His-Tag Peptides. DU145 cells and the DU145 cells expressing PSMA (DU145-PSMA) were described previously.(14)

A single chain fragment variable (scFv) of J591 in VH-VL orientation was PCR amplified from the SFG P28z vector and subcloned into a hybrid expression vector based on pSecTag2 (Life Technologies) and pIRES-eGFP (Clonetech) sequences.(15) J591JWT-CYS and J591JWT were generated by insertion of annealed overlapping oligonucleotides (Integrated DNA Technologies) with Notl/EcoRI overhangs replacing the original (His)6 sequence in the expression vector.

Oligo sequences:

JWT-CYS_forward: 5' ggccgcATGCCTGAGAAGAAGGCTGGCCCACCACCACCACCACTGAG 3'

JWT-CYS reverse: 5' AATTCTCAGTGGTGGTGGTGGTGGTGGTGGGCCAGCCTTCTTCTCAGGCATgc 3'

JWT-forward: 5' ggccgcACTGAGAAGAAGGCTGGCCCACCACCACCACCACTGAG 3'

JWT- reverse: 5' gcACTGAGAAGAAGGCTGGCCCACCACCACCACCACCACTGAGAATT 3'

A published, humanized sequence of the J591 scFv was synthesized (Geneart) and subcloned into the target expression vector. The sequence coding for the 6C7.1scFv was kindly provided by Prof S. Duebel, University of Braunscheig, Germany. The 6C7.1scFv sequence was PCR amplified from a source vector and subcloned into the target expression vector. 6C7.1scFv scFv with a C-terminal cysteine (6C7.1-CscFv) was used as an additional control. All sequences were verified by DNA sequencing.

For protein production, HEK393T cells were transfected with the respective expression vector and transfected cells were selected with 100 μ g/ml of Zeocin. Cells were then expanded to triple layer flasks and culture supernatants containing the recombinant protein were collected.

Purification was achieved by a combination of immobilized metal ion chromatography and size exclusion chromatography. The scFvs were extracted from HEK293T culture supernatant on the AKTA-FPLC using Ni-NTA chromatography with a 5 ml Ni-NTA column using a binding buffer of 50 mM NaH₂PO₄, 300 mM NaCl, 10 mM imidazole, pH8, and an elution buffer of 50 mM NaH₂PO₄, 300 mM NaCl, 250 mM imidazole, pH8.

A size exclusion gel filtration step (SEC, Superdex 75 HR 10/30, PBS pH 7.4) using the AKTA-FPLC further purified the antibody fragments. The purified monomeric proteins in PBS at pH 7.4 were concentrated using VivaSpin membrane spin filter columns with a 5,000 molecular weight cut-off to > 0.9 mg/ml. Protein concentration was measured by UV spectrometry with a UV absorption at 280 nm using a Nanodrop spectrophotometer. A molar extinction coefficient and molecular weight of the respective protein was determined from the primary amino acid sequence using the ProtParam online tool, assuming all cysteines are present as cystines. These data are displayed in Table S7. All aliquots were stored in PBS at pH 7.4 at -80°C.

Purity of the scFv protein fragments was assessed by SDS-PAGE/Coomassie brilliant blue staining, by analytical size exclusion HPLC and a Western blot. 12% precast polyacrylamide gels (Nu-PAGE) were used to separate and visualize the proteins. A Novex Sharp prestained protein standard was used as a reference. Gels were either visualized with Coomassie Brilliant blue G250 staining or proteins were transferred to nitrocellulose membranes for subsequent Western blot detection. For Western blotting, proteins were transferred to nitrocellulose membranes and detected with anti-Penta His and goat anti mouse:HRP, with SigmaFast DAB as the HRP substrate.

Table S9. Extinction coefficient and molecular weight data for the primary amino acid sequence for all 7 antibody fragments expressed. The labelling sequence of each protein is also listed and its pl. Data obtained using ExPASy ProtParam online tool assuming all cysteines are present as (reduced) cysteines.

Protein	Extinction Coefficient (E _{280nm}) (M ⁻¹ cm ⁻¹)	MW _{monomer} (kDa)	Labelling Sequence	pI of Labelling Sequence	Comments
J591scFvJWT	51130	28.23	ALRRRLAHHHHHH	12.40	scFv against J591mAb with JWT-tag
J591scFv	51130	27.07	KRAAALEHHHHHH	6.62	scFv against J591mAb with His ₆ -tag
huJ591scFv	51130	27.28	ІКАААLЕННННН	6.62	Humanised scFv against J591mAb with His6-tag
C67.1 scFv	48610	28.78	РТАААLЕННННН	6.62	scFv against VCAM-1 with His6 tag
C67.1-C scFv	48610	28.89	ТАААLЕННННННС	6.62	scFv against VCAM-1 with Cys/His6-tag

References

- Mees, G., Dierckx, R., Mertens, K., Vermeire, S., Van Steenkiste, M., Reutelingsperger, C., D'Asseler, Y., Peremans, K., Van Damme, N., Van de Wiele, C. (2012) ^{99m}Tc-labeled tricarbonyl his-CNA35 as an imaging agent for the detection of tumor vasculature. *J. Nucl. Med.*, *53*, 464-471.
- Shah, S. Q., Khan, A. U., Khan, M. R. (2012) ^{99m}Tc(CO)₃-Ibritumomab tiuxetan, a novel radioimmunoimaging (RII) agent of B cell non-Hodgkin's lymphoma (NHL). *Biol. Chem.*, 393, 71-75.
- 3. Virna Cortez-Retamozo, T. L., Caveliers, V., Olive, L., Gainkam, T., Hernot, S., Packeu, A., De Vos, F., Vanhove, C., Muyldermans, S., De Baetselier, P., et al. (2008) ^{99m}Tc-labeled nanobodies: a new type of targeted probes for imaging antigen expression, *Current Radiopharmaceuticals*, *1*, 37-41.

- Teran, M. A., Martinez, E., Reyes, A. L., Paolino, A., Vital, M., Esperon, P., Pacheco, J. P., Savio, E. (2011) Biological studies in animal models using [^{99m}Tc(CO)₃]⁺ recombinant annexin V as diagnostic agent of apoptotic processes. *Nucl. Med. Biol.*, *38*, 279-285.
- Orlova, A., Nilsson, F. Y., Wikman, M., Widstrom, C., Stahl, S., Carlsson, J., Tolmachev, V. (2006) Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors. *J. Nucl. Med.*, 47, 512-519.
- Deyev, S. M., Waibel, R., Lebedenko, E. N., Schubiger, A. P., Pluckthun, A. (2003) Design of multivalent complexes using the barnase-barstar module. *Nat. Biotechnol.*, 21, 1486-1492.
- 7. Tait, J. F., Smith, C., Gibson, D. F. (2002) Development of annexin V mutants suitable for labeling with Tc(I)-carbonyl complex. *Bioconjugate Chem.*, *13*, 1119-1123.
- Chen, W. J., Yen, C. L., Lo, S. T., Chen, K. T., Lo, J. M. (2008) Direct ^{99m}Tc labeling of Herceptin (trastuzumab) by ^{99m}Tc(I) tricarbonyl ion. *Appl. Radiat. Isot.*, *66*, 340-345.
- Tavare, R., Torres Martin De Rosales, R., Blower, P. J., Mullen, G. E. (2009) Efficient sitespecific radiolabeling of a modified C2A domain of synaptotagmin I with [^{99m}Tc(CO)₃]⁺: a new radiopharmaceutical for imaging cell death. *Bioconjugate Chem.*, 20, 2071-2081.
- Zahnd, C., Kawe, M., Stumpp, M. T., de Pasquale, C., Tamaskovic, R., Nagy- Davidescu, G., Dreier, B., Schibli, R., Binz, H. K., Waibel, R., et al. (2010) Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. *Cancer Res.*, 70, 1595-1605.
- Tolmachev, V., Hofstrom, C., Malmberg, J., Ahlgren, S., Hosseinimehr, S. J., Sandstrom, M., Abrahmsen, L., Orlova, A., Graslund, T. (2010) HEHEHE-tagged affibody molecule may be purified by IMAC, is conveniently labeled with [^{99m}Tc(CO)₃]⁺, and shows improved biodistribution with reduced hepatic radioactivity accumulation, *Bioconjugate Chem.*, *21*, 2013-2022.
- Bidlingmaier, S., He, J., Wang, Y., An, F., Feng, J., Barbone, D., Gao, D., Franc, B., Broaddus, V. C., Liu, B. (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. *Cancer Res.*, 69, 1570-1577.
- Berndorff, D., Borkowski, S., Moosmayer, D., Viti, F., Muller-Tiemann, B., Sieger, S., Friebe, M., Hilger, C. S., Zardi, L., Neri, D., et al. (2006) Imaging of tumor angiogenesis using ^{99m}Tc-labeled human recombinant anti-ED-B fibronectin antibody fragments. *J. Nucl. Med.*, 47, 1707-1716.
- 14. Kampmeier, F., Williams, J. D., Maher, J., Mullen, G. E., Blower, P.J. (2014) Design and preclinical evaluation of a Tc-99m-labelled diabody fragment of mAb J591 for SPECT imaging of prostate specific membrane antigen (PSMA). *EJNMMI Res.*, 4, 13.
- 15. Maher, J., Brentjens, R. J., Gunset, G., Riviere, I., Sadelain, M. (2002) Human Tlymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor, *Nat. Biotechnol.*, 20, 70-75.