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Contributing cohorts 
 
23andMe 
Cohort description 
23andMe Inc. is a personal genetics company founded in 2006. Data for this study were 
available for approximately 2,462,000 individuals of European ancestry who provided informed 
consent and answered surveys online according to a human subjects protocol approved by 
Ethical & Independent Review Services, a private institutional review board. In this study we 
included 1,301,549 females and 1,160,583 males. Male (coded ‘0’) or female (coded ‘1’) case-
control status was defined based on the concordance between the sex chromosomes and self 
reported sex. For configurations other than XX and XY, X0 was classified as female and XYY, 
XXY as male. 
 
Genotyping and imputation 
Genotyping 
Genotyping was performed on various genotyping platforms: V1 and V2 Illumina 
HumanHap550+Beadchip (560,000 markers), V3 Illumina OmniExpress+Beadchip (950,000 
markers), V4 custom (570,000 markers) and V5 Illumina Infinium Global Screening Array 
(~640,000 SNPs) supplemented with ~50,000 SNPs of custom content.  
 
Imputation 
We combined the May 2015 release of the 1000 Genomes Phase 3 haplotypes1 with the UK10K 
imputation reference panel2 to create a single unified imputation reference panel. To do this, 
multiallelic sites with N alternate alleles were split into N separate biallelic sites. We then 
removed any site whose minor allele appeared in only one sample. For each chromosome, we 
used Minimac33 to impute the reference panels against each other, reporting the best-guess 
genotype at each site. This gave us calls for all samples over a single unified set of variants. We 
then joined these together to get, for each chromosome, a single file with phased calls at every 
site for 6,285 samples. Throughout, we treated structural variants and small indels in the same 
way as SNPs. 
 
In preparation for imputation, we split each chromosome of the reference panel into chunks of no 
more than 300,000 variants, with overlaps of 10,000 variants on each side. We used a single 
batch of 10,000 individuals to estimate Minimac3 imputation model parameters for each chunk. 
To generate phased participant data for the v1 to v4 platforms, we used an internally-developed 
tool, Finch, which implements the Beagle graph-based haplotype phasing algorithm4, modified to 
separate the haplotype graph construction and phasing steps. Finch extends the Beagle model to 
accommodate genotyping error and recombination, in order to handle cases where there are no 
consistent paths through the haplotype graph for the individual being phased. We constructed 
haplotype graphs for all participants from a representative sample of genotyped individuals, and 
then performed out-of-sample phasing of all genotyped individuals against the appropriate graph. 
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UK Biobank       
 
Cohort description     
The UK Biobank cohort is a population-based cohort of approximately 500,000 participants that 
were recruited in the United Kingdom between 2006 and 20105. Invitations to participate were 
sent out to approximately 9.2 million individuals aged between 40 and 69 who lived within 25 
miles of one of the 22 assessment centers in England, Wales, and Scotland. The participation rate 
for the baseline assessment was about 5.5%. From these participants, extensive questionnaire 
data, physical measurements, and biological samples were collected at one of the assessment 
centers. In this study, we included 245,351 females and 206,951 males. 
 
Genotyping and imputation 
We used genotype data from the May 2017 release of imputed genetic data from the UK 
Biobank. The quality control and imputation were performed by UK Biobank and have been 
described elsewhere5. Briefly, genotyped variants were filtered based on batch effects, plate 
effects, departures from HWE, genotype platform, and discordance across control replicates. 
Participant samples were excluded based on missing rate, inconsistencies in reported versus 
genetic sex, and heterozygosity based on a set of 605,876 high-quality autosomal markers. 
Imputation was performed using IMPUTE4 with the HRC UK10K and 1000 Genomes Phase 3 
dataset used as the reference set. Male (coded ‘0’) or female (coded ‘1’) case-control status was 
defined based on the concordance between the sex chromomes and self reported sex. 
 
iPSYCH 
Cohort description 
The iPSYCH study is a population-based case-cohort sample extracted from a baseline cohort 
consisting of all children born in Denmark between May 1st, 1981 and December 31st, 20056. 
Those eligible were singletons born to a known mother and resident in Denmark on their one-
year birthday. Cases were identified from the Danish Psychiatric Central Research Register 
(DPCRR)7, which includes data on all individuals treated in Denmark at psychiatric hospitals 
(from 1969 onwards) as well as at outpatient psychiatric clinics (from 1995 onwards). Cases 
were identified with schizophrenia, bipolar affective disorder, affective disorder, ASD and 
ADHD up until 2012. The controls constitute a random sample from the set of eligible subjects. 
The average (standard deviation) age of the individuals at recruitment (1st January 2012) was 
18.3 (6.38) for males and 20.5 (6.16) for females. In this study, we included 31,012 females and 
34,879 males. 
 
Genotyping and imputation 
Genotyping 
Genotyping was performed at the Broad Institute (Cambridge, MA, USA) using the PsychChip 
array from Illumina (CA, San Diego, USA) according to the instructions of the manufacturer. 
Genotyping was carried out on the full iPSYCH sample in 23 waves and so was the subsequent 
data processing. Genotype calling of markers is described elsewhere 
(https://sites.google.com/a/broadinstitute.org/ricopili/utilities/merge-calling-algorithms). Prior to 
the subsequent QC and imputation SNPs were excluded when they were on either of two lists: a) 
a global blacklist comprising SNPs for which genotyping failed in 4 cohorts genotyped at the 
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Broad as part of the PsychChip project (Psychiatric Genomics Consortium) with Illumina’s 
PsychChip and/or b) a local blacklist of SNPs for which the MAF in the GenCall and Birdseed 
call sets where substantially different (∆MAF > 5%) prior to the merging of variants. 
 
Imputation 
Before subsequent imputation, the data was (strand) aligned with the respective reference 
sample. Phasing was achieved using SHAPEIT v28 and imputation was done by IMPUTE29 with 
haplotypes from the 1000 Genomes Project, phase 3 (1kGP3) as reference.  
 
Finngen 
Cohort description 
FinnGen is a public-private partnership project combining genotype data from Finnish biobanks 
and digital health record data from Finnish health registries (https://www.finngen.fi/en). Six 
regional and three country-wide Finnish biobanks participate in FinnGen. Finngen also includes 
data from previously established populations and disease-based cohorts. However, since we are 
interested in “passive” participation, we excluded individuals enrolled via epidemiological 
studies and only considered “passive”, hospital-based recruitments. We used genotype and 
phenotype data of 150,831 participants (86,694 females and 64,137 males), excluding population 
outliers via PCA. Finngen participants ages ranged from 18 to 110 years.  
 
Genotyping and imputation 
Genotyping 
Samples were genotyped with Illumina (Illumina Inc., San Diego, CA, USA) and Affymetrix 
arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with 
GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for Affymetrix data. 
Genotyping data produced with previous chip platforms and reference genome builds were lifted 
over to build version 38 (GRCh38/hg38) following the protocol described here: 
dx.doi.org/10.17504/protocols.io.nqtddwn. In sample-wise quality control, individuals with 
ambiguous sex, high genotype missingness (>5%), excess heterozygosity (+-4SD) and non-
Finnish ancestry were removed. In variant-wise quality control variants with high missingness 
(>2%), low HWE P-value (<1e-6) and minor allele count, MAC<3 were removed. Chip 
genotyped samples were pre-phased with Eagle 2.3.5 
(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the number 
of conditioning haplotypes was set to 20,000. 
 
Genotype imputation with a population-specific reference panel 
High-coverage (25-30x) WGS data (N= 3,775) were generated at the Broad Institute and at the 
McDonnell Genome Institute at Washington University; and jointly processed at the Broad 
Institute. Variant call sets were produced using the GATK HaplotypeCaller algorithm by 
following GATK best-practices for variant calling. Genotype-, sample- and variant-wise QC was 
applied in an iterative manner by using the Hail framework (https://github.com/hail-is/hail) v0.1 
and the resulting high-quality WGS data for 3,775 individuals were phased with Eagle 2.3.5 as 
described above. Genotype imputation was carried out by using the population-specific SISu v3 
imputation reference panel with Beagle 4.1 (version 08Jun17.d8b, 
https://faculty.washington.edu/browning/beagle/b4_1.html) as described in the following 
protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. Post-imputation quality-control involved 
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non-reference concordance analyses, checking expected conformity of the imputation INFO-
values distribution, MAF differences between the target dataset and the imputation reference 
panel and checking chromosomal continuity of the imputed genotype calls. 
 
Biobank Japan 
 
Cohort description 
The BioBank Japan Project (https://biobankjp.org/english/index.html) is a national hospital-
based biobank started in 2003 as a leading project of the Ministry of Education, Culture, Sports, 
Science and Technology, Japan. The BBJ collected DNA, serum and clinical information from 
approximately 200,000 patients with any of 47 target diseases between 2003 and 2007. Patients 
were recruited from 66 hospitals of 12 medical institutes throughout Japan (Osaka Medical 
Center for Cancer and Cardiovascular Diseases, the Cancer Institute Hospital of Japanese 
Foundation for Cancer Research, Juntendo University, Tokyo Metropolitan Geriatric Hospital, 
Nippon Medical School, Nihon University School of Medicine, Iwate Medical University, 
Tokushukai Hospitals, Shiga University of Medical Science, Fukujuji Hospital, National 
Hospital Organization Osaka National Hospital, and Iizuka Hospital). All patients were 
diagnosed by physicians at the cooperating hospitals. Details of study design, sample collection, 
and baseline clinical information were described elsewhere10,11. 
 
Genotyping and Imputation 
We genotyped samples using i) the Illumina HumanOmniExpressExome BeadChip or ii) a 
combination of the Illumina HumanOmniExpress and the HumanExome BeadChip. We applied 
standard quality-control criteria for samples and variants as described elsewhere15. The 
genotypes were prephased using Eagle and imputed using Minimac3 with a reference panel 
using a combination of the 1000 Genomes Project Phase 3 (version 5) samples (n = 2,504) and 
whole-genome sequencing data of Japanese individuals (n = 1,037)12. 
 
 
 

 

 

Participation bias simulations 
To assess the effects of sex-differential participation bias we devised a sampling strategy to 
modulate the degree of bias and applied it to simulated data. 
We used genotype data of 350,000 unrelated individuals of European ancestry from UKBB and 
1,159,813 common HapMap variants to generate two synthetic phenotypes, y0 and y1. To ensure 
the phenotypes were uncorrelated with sex and had the same proportion of males and females, 
we first assigned to each individual a dummy variable representing sex, drawing values from a 
binomial distribution with p=0.5. 
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The phenotypes were simulated using the infinitesimal model13 as implemented in Hail version 
0.2.24, which assumes that the genetic component of a trait comes from a large number of small 
effects: 
 
𝑦𝑦𝑖𝑖 = 𝛴𝛴𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗 + 𝜀𝜀𝑖𝑖, 
 
where 𝑦𝑦𝑖𝑖 is the phenotype of individual i, 𝑋𝑋𝑖𝑖𝑖𝑖is the genotype of individual i at SNP j, 𝛽𝛽𝑗𝑗 is the 
effect size of SNP j and 𝜀𝜀𝑖𝑖 is environmental noise. SNP effect sizes are modelled as normally 
distributed with mean 0 and variance equal to the imposed SNP-heritability divided by the 
number of SNPs, M: 
 
𝛽𝛽 ∼ 𝑁𝑁(0, ℎ2/𝑀𝑀). 
 
We looked at the effects of moderate and higher heritability, with values of ℎ2 =0.1 and ℎ2 =0.3 
for both traits. In both cases the traits were simulated as genetically uncorrelated. 
 
 
Sampling strategy 
 
We aimed at simulating the effects for all 3 models reported in figure S1. 
 
Participation bias on a trait which shows differences between males and females (Model A) 
We verified if the observed effects could be generated by simple selection bias on a trait which 
shows differences between males and females (Extended Figure 1 model A). We simulated a 
trait X with different heritability values of 0.1, 0.3 and 0.8 as described above. We then added an 
effect of 0.5 and 1 standard deviations in one sex as follows: 
 

𝑋𝑋 = 𝑋𝑋 +  𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜀𝜀, 
 
where 𝜀𝜀 is random normally-distributed noise, 𝜀𝜀 ∼ 𝑁𝑁(0, 0.01). We then sampled the population 
as described above but applying selection only on one trait (X) and without sex-differential 
effects: 
 

𝑧𝑧 = 𝑋𝑋 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂) + 𝜀𝜀, 
𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑)  = 1

1+𝑒𝑒(−𝑧𝑧 ) , 
 
with OR=[1.2, 1.5, 2, 3, 5]. 
 
For each subsample we estimated the heritability for sex on the liability scale and reported the 
results in Supplementary Figure 4.  
 
Additionally, we compared the educational attainment in the US census and in 23andMe, defined 
as years of education as follows: 
 
Less than high school: 10 
High school: 12 
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Associate/vocational/some college: 14 
Bachelor: 16 
Master/professional: 19 
Doctorate: 22 
 
Participation bias is influenced by a trait and sex independently (Model B) 
  
We verified if the observed effects could be generated by selection bias both on a trait X and 
sex  independently (Extended Figure 1 model B). We simulated a trait X with different 
heritability values of 0.1, 0.3 and 0.8 as described above. We then used the following model for 
selection:  
 
z=X ln(ORX)+SEX ln(ORSEX)+ε  
 
p(selected) =1/1+e(-z) 
 
With ORX=2, ORSEX=[1.2,1.5,2,3,5] and  ε∼N(0, 0.01). 
 
For each subsample we estimated the heritability for sex on the liability scale and reported the 
results in Supplementary Figure 2C. 
 
Participation bias is influenced by a trait in a sex specific manner (Model C) 
 
Supplementary Figure 1 shows the basic workflow to simulate the phenotypes 𝑦𝑦0 and 𝑦𝑦1 and 
induce sex-differential participation bias. 𝑦𝑦0 and 𝑦𝑦1 are simulated to be genetically uncorrelated 
in the full population. Each individual is then assigned to a probability of being selected as 
follows: 
 

1. A variable z is computed as the weighted sum of the phenotypes: 
 

𝑧𝑧 = 𝑦𝑦0 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂) + 𝑦𝑦1 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂) + 𝜀𝜀, 
 
where 𝜀𝜀 is random normally-distributed noise, 𝜀𝜀 ∼ 𝑁𝑁(0, 0.01), and the odd ratio (OR) 
represents the degree of participation bias. The higher the OR, the higher the participation 
bias since more individuals with greater values of the phenotypes will be selected. OR=1 
represents the case when no participation is induced. 
 

2. A sex-specific effect is given multiplying z by the parameter K in one sex: 
 
𝑧𝑧𝑚𝑚  = 𝐾𝐾 ∗ 𝑧𝑧, 𝑧𝑧𝑓𝑓  = 𝑧𝑧 
 
Lower (negative) values of K represent an higher sex-differential bias. K=0 and K=1 
represent two special cases where, respectively, one sex is sampled randomly and both 
sex are sampled equally (no sex-specific bias). 
 

3. The probability associated to each individual is computed as the logistic function of the 
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sex-specific z: 
 
𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑀𝑀)  = 1

1+𝑒𝑒(−𝑧𝑧𝑚𝑚) ,  

𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝐹𝐹)  = 1

1+𝑒𝑒(−𝑧𝑧𝑓𝑓). 
 
We used different combinations of the parameters K ([-0.5,-0.3,0,0.3,0.7,1,1.5]) and OR ([1.2, 1.5, 
1.8, 2, 3]) to control the degree of bias induced. At each step the subsampled population 
contained nearly half of the original population.  
 
Results for all 3 scenarios are reported in Supplementary Figure 2  
 
 
Results 
Heritability of sex and Mendelian Randomization 
Figure 3B shows how sex becomes heritable at the increasing of participation bias (keeping sex-
differential effect fixed.). Moreover, a causal effect between 𝑦𝑦0 and sex is induced, as shown is 
Figure 3C for OR=1.8. 
We reported the complete results from the simulations in Supplementary Table 9. As expected, 
with the increasing of participation bias also the SNP-heritability for sex increases and becomes 
significant. 
 
Genetic correlation between y0 and y1 
Extended Figure 3 shows that a spurious negative genetic correlation between the traits 𝑦𝑦0 and 
𝑦𝑦1 (simulated as genetically uncorrelated) is induced and this effect increases at the increase of 
both parameters. Moreover, as shown in Supplementary Figure 3, this effect is exacerbated 
when adjusting for sex. However, this is issue arises only when there is a substantial sex-
differential effect and in a realistic scenario (see Consistency between our simulation parameters 
and real data) corresponding to OR=1.2 and k=0.7 none of the mentioned effects is observed. 
 
Genetic correlation between males and females for a given phenotype 
Supplementary Figure 5 reports the genetic correlation between males and females for 𝑦𝑦0 and 
𝑦𝑦1. This shows how participation bias does not arise any effect when stratifying the analysis for 
sex. 
 
Consistency between our simulation parameters and real data 
Our simulation strategy was designed to provide realistic scenarios of sampling bias. We used 
the differences in educational attainment (EA) between those UK Biobank individuals that 
participated in all the online 24-h diet follow up questionnaires vs. those that did not 
(Supplementary Table 8) and compared it with the differences in sampled and non-sampled 
individuals for 𝑦𝑦0 and 𝑦𝑦1 obtained from simulations. However, results reported in 
Supplementary Table 8 are on the observed scale and therefore not directly comparable with 
results from simulations, which use standardized variables. Thus, we standardized EA and 
obtained standardized differences between individuals that participated in all the online 24-h diet 
follow up questionnaires vs. those that did not of 0.30 and 0.37 standard deviations, in males and 
females respectively. Next, we assessed which OR and k parameter in the simulations would 
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provide similar changes between the original group and the “sampled” group.  In our simulation, 
the closest value to these differences was observed for an OR=1.25 and a k parameter=0.7. 

Sex-specific MR analysis 
In order to verify the impact of sex differential participation bias on causal inference through MR 
using real data, we imposed additional bias to a real example from the literature14.  We focused 
on the sex-specific causal relationship between body mass index (BMI) and Type 2 diabetes 
(T2D) recently reported by Censin and colleagues35. In the original paper, the authors report a 
strong difference in the effect of BMI on T2D in men and women (p=1.4x10-5). We thus 
wondered if this could be explained by sex differential selection on BMI. That is, if changing the 
degree of sex-differential selection on BMI would change the sex-specific estimates. 
We first notice that Cansin and colleagues standardized BMI separately for males and females.  
They thus found a larger odds ratio (OR) for T2D per standardized increase in BMI genetic score 
in females (3.77) than in males (2.79). However, the standard deviation of BMI in UK Biobank 
is larger in females (~5.1 kg/m2) than in males (~4.2 kg/m2), and we find that this sex difference 
in the variance of BMI accounts for the apparent sex difference in the effect of BMI on T2D risk. 
In an alternative approach, using exactly the same UK Biobank data, we scaled the BMI in males 
and females to the same sex-combined standard deviation (~4.75 kg/m2) and observed no 
difference in the effect of BMI genetic score on T2D risk between males and females (OR 3.03 
vs 3.03). Therefore BMI contributes to a smaller proportion of the liability to T2D in women 
than it does to men as it has a wider phenotypic distribution, but importantly a one unit increase 
of BMI is not different in terms of OR for T2D risk in women than men. From this difference in 
interpretation lies the difference we observe in the results. 
Nonetheless, the goal of this analysis is to show that a sex-specific causal effect can be induced 
by sex-differential participation bias. Thus, bias was introduced differently for men and women 
based on the standardized BMI. 
We used the same sampling strategy described in Participation bias simulations and with K=([-
0.5,-0.3,0,0.3,0.7,1,1.5]) and OR=([0.33,0.5,0.56,0.67,0.83,1,1.2,1.5,1.8,2,3]). These OR values 
are symmetric around 0 on the ln(OR) scale. This sampling choice was selected because of the 
different prevalence between men and women at baseline.   
In order for our results to be comparable with the published results MR estimates were obtained 
using the Wald ratio method while SE were estimated using the delta method and second order 
weights. The Wald ratio method consists of running the regression of the exposure trait on it’s 
instrument (the polygenic score (PGS) in our case) and then the logistic regression between the 
outcome and the instrument. 
The causal estimate is then estimated by the ratio of  𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃→𝑇𝑇2𝐷𝐷

𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃→𝐵𝐵𝐵𝐵𝐵𝐵
 

For each regression, we used as covariates array type, batch of genotyping, 40 Principal 
components, age, age2, and sex only for the combined analysis. 
The overall and sex-specific weights were obtained from the supplementary material in the 
Censin and colleagues paper35. As an outcome, we used T2D using “probable” and “possible” 
cases as defined in the algorithm from Eastwood and colleagues15. Extended Figure 4 reports 
the results for K=-1 while full results can be found in Supplementary table 10 



10 
 

 

GWAS of 565 heritable traits with and without adjustment for sex 
To determine trait heritability we used the approach by Walters and colleagues16. In particular 
we select 565 traits with confidence="high" and significance level ≥ "z4" and available 
in both sexes. Individuals included in the analyses and methods used to run the GWASs are 
described at http://www.nealelab.is/uk-biobank/ukbround2announcement, with the only 
difference that the following covariates were used: 20 principal components and age. We ran two 
set of GWASs: one including sex as a covariate, the other without including sex as a covariate. 
We conducted two main analyses on these results; First, for the same trait, we calculate genetic 
correlation between the GWAS adjusted and non-adjusted by sex. Second, we calculate the 
genetic correlations between each trait and all the other traits for the two sets of GWASs 
(adjusted and non-adjusted by sex) using a faster version of LDscore regression v. 1.0.0 
(https://github.com/astheeggeggs/ldsc). We then compared the two correlation profiles. 
 

Proposed correction methods and implementation in GenomicSEM 
 
Heckman correction generalization 
Participation bias is a known problem in epidemiology and econometrics and several corrections 
have been proposed. Heckman correction17 is widely used in econometrics, but only recently re-
discovered in epidemiological research18,19. 
 
We are interested in the relationship between Y (outcome) and X (exposure) but we only observe 
these variables among individuals that participated in the study (S=1). If the variables were 
observed only among study participants, we use the notation Y* and X*. 
 
The main challenge is that the distribution of Y* in the entire population is not available. 
Heckman correction addresses this challenge in two steps. 
 
First, fit a probit model of participation: 
P(S=1 | X,U) =  ωX  + 𝛾𝛾U + ε     (1)      
                                                                                      
Where the probability of participating S=1 depends on some explanatory variables, X the 
variable of interest and other variables U related to S but independent of Y. It is important that 
the model includes at least one U variable to act as an instrumental variable (i.e. another 
phenotype not related to the outcome of interest if not through participation) and avoid excessive 
collinearity with X. 
For each participant an expected probability of participation P(S) is then obtained based on (1). 
 
Second, the expected probability of participation among individuals selected in the study P(S*) is 
used as covariates in the model when testing the association between X* and Y*. Given that we 

http://www.nealelab.is/uk-biobank/ukbround2announcement
https://github.com/astheeggeggs/ldsc
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have assumed a probit model, the resulting distribution will be a truncated normal we first 
estimate the inverse mills ratio of the predicted probabilities only in the selected samples. 
 
𝜆𝜆 = 𝜙𝜙𝜙𝜙(𝑆𝑆∗)

𝛷𝛷𝛷𝛷(𝑆𝑆∗)
       (2) 

 
Where φ denotes the standard density function while Φ is the standard normal cumulative 
distribution function.  
λ is then added in the regression as covariate: 
 
Y* = βX* + λ (3) 
 
The problem can be at this point simplified by retrieving the correlation matrix between Y*, X* 
and S*. 
Given that under the “Cheverud’s Conjecture”20,21 genetic correlations can be used as proxies of 
phenotypic correlations, we can use the genetic correlations obtained from LDscore regression 
for the GWAS of Y*, X* and λ to fit (3) using GenomicSEM22. 
 
However, there are several limitations.  First, we need to assume an underlying bias model which 
should include at least X and an instrument variable U. The latter might be challenging to obtain. 
Second, X and any additional variable used to calculate P(S) have to be measured in the 
population of interest and the analysis must be limited to the samples which have all these 
variables. These two conditions may not always be easy to achieve and thus a method which 
does not require them is more desirable.  
  
Genomic structural equation model to estimate the genetic correlation between pairs of  
traits despite the presence of collider bias induced by selection on both traits 
 
As an illustration of the modeling possibilities afforded by access to the allele frequency those 
that do not participate in a study or biobank we construct a genomic structural equation model 
that corrects for collider bias induced by sample selection.  
 
We are interested in the relationship between Y (outcome) and X (exposure) but we only observe 
these variables among individuals that participated in the study (S=1). If the variables were 
observed only among study participants, we use the notation Y* and X*. 
 
If the probability of selection into the sample is caused by X and Y, then selection results in 
collider bias of the relationship between Y* and X*. If the effects of Y and X on S are positive 
(e.g. higher X or Y results in selection into the sample) and both X and Y are heritable traits, a 
negative genetic correlation is induced between Y* and X*23. 
Suppose we obtain the summary statistics for 3 GWAS: a GWAS of Y*, X* and a GWAS where 
the sample allele frequency is compared to the true population allele frequency (S).  
 
We can then construct a 3*3 genetic covariance matrix of Y*, X* and S, where S positively 
correlates with Y* and X* and, due to collider bias, Y* and X* negatively correlate. Important to 
note is that the positive effects of Y and X  on S  are what cause the negative correlation between 
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Y* and X* and are proportional to it, a bigger effect on S, or stronger selection, induce stronger 
collider bias and negative (genetic) correlation between Y* and X*. 

We use GenomicSEM to fit a path model which only allows for a single path for the assortation 
between S and X, Sand Y and X and Y: 

Y* = β1X* + λ1             
X* = β2S* + λ2

Where we constrain: 

Cov(S*,Y*) = 0

Because the estimate 𝛽𝛽1� needs to accommodate the positive association between S* and Y*, and 
the (proportional) negative association between Y* and X* induced by collider bias, the cancels 
these quantities out and is ± equal to βt in the regression: 

Y = βtX + λt

This result is validated in a simulation described below. The model assumes no unmeasured 
confounders distort the relationship between Y* and S or the relationship between X* and S. The 
model could be extended based on instrumental variable techniques to accommodate the 
presence of unmeasured confounders. However, as the model merely exists to illustrate the value 
of observing the true population allele frequencies extending the model for such eventualities is 
beyond the scope of the current paper. Code to fit the model is found here: 
https://github.com/dsgelab/genobias. 

Application to simulated data 

To validate the two correction approaches we propose, we simulated phenotypes X and Y 
(h2=0.3) to have rg=[-0.3, -0.1, 0, 0.1, 0.3]. For each case we induced participation bias as 
described in Participation bias simulation, with OR=[1.2, 1.5, 1.8, 2, 3] and adding a trait U, 
also simulated with h2=0.3 but uncorrelated with both X and Y, to determine sample selection: 

𝑧𝑧 = 𝑋𝑋 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂) + 𝑌𝑌 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂) +  𝑈𝑈 𝑙𝑙𝑙𝑙(2) 
𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  = 1

1+𝑒𝑒(−𝑧𝑧 ). 

Simulations results are shown in Supplementary Table 11. 

https://github.com/dsgelab/genobias
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