Appendix A. Supplementary data 705

706

707 Nitrogen oxides (NO and NO₂) pollution in the Accra metropolis: Spatiotemporal patterns 708 and the role of meteorology

- 709
- Jiayuan Wang¹, Abosede Sarah Alli¹, Sierra Clark², Allison Hughes³, Majid Ezzati^{2,4,5,6}, Andrew 710 Beddows⁷, Jose Vallarino⁸, James Nimo³, Josephine Bedford-Moses³, Solomon Baah³, George
- 711 Owusu⁹, Ernest Agyemang¹⁰, Frank Kelly^{4,7}, Benjamin Barratt^{4,7}, Sean Beevers⁴, Samuel Agyei-Mensah¹⁰, Jill Baumgartner^{11,12}, Michael Brauer¹³, Raphael E Arku^{1*} 712
- 713
- 714
- 715 ¹Department of Environmental Health Sciences, School of Public Health and Health Sciences, 716 University of Massachusetts, Amherst, USA
- ²Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, 717 718 London, UK
- 719 ³Department of Physics, University of Ghana, Legon, Ghana
- 720 ⁴MRC Centre for Environment and Health, Imperial College London, London, UK
- 721 ⁵Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London,
- 722 London, UK
- 723 ⁶Regional Institute for Population Studies, University of Ghana, Accra, Ghana
- 724 ⁷NIHR HPRU in Environmental Exposures and Health, Imperial College London, UK
- 725 ⁸Harvard T.H. Chan School of Public Health, Boston, MA, USA
- 726 ⁹Insitute of Statistical, Social and Economic Research, University of Ghana, Legon, Ghana
- ¹⁰Department of Geography and Resource Development, University of Ghana, Legon, Ghana 727
- 728 ¹¹Institute for Health and Social Policy, McGill University, Montreal, Canada
- 729 ¹²Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 730 Montreal, Canada
- 731 ¹³School of Population and Public Health, The University of British Columbia, Vancouver, Canada 732
- 733 *Correspondence to:
- 734 Raphael E Arku
- 735 School of Public Health and Health Sciences
- 736 University of Massachusetts Amherst, MA, USA
- 737 E-mail: rarku@umass.edu
- 738
- 739 *** Color does not need to be used for any figures in print.

Figure S2. Histogram of time correction factor of NO (A) and NO₂ (B) for temporal adjustment.

Figure S4. Monthly average concentrations of NO and NO₂ at all fixed sites. The dash line indicate

the WHO annual guideline of 40 μ g/m³ for NO₂. Here, we included pilot NO₂ data collected in April.

Figure S5. Annual and seasonal mean NO₂ and NO concentrations by site-types: commercial/business/industry (CBI), high-density
 residential (HD), low-density residential (LD) and urban background (UB) sites. The input data represent seasonal and annual mean
 equivalents for all monitoring sites.

Figure S6. Time series of meteorological parameters (temperature, relative humidity,
wind speed and wind direction) in Accra from April 2019 to March 2020. The light green
shade covers non-Harmattan period, and the light orange shade covers Harmattan period.

Figure S7. Monthly mixing layer depth (m, above ground level) (A) Incident solar
radiation, and (B) Water vapor mixing ratio (C) during the full campaign period. The line
in the box represents the median.

778 Figure S8. Comparison of annual mean NO₂ concentrations in Accra Metropolitan Area (AMA)

- and other cities/regions in the world. The dash line is the WHO guideline for annual
- 780 concentrations of NO_2 (40 ug/m³).

Figure S9. Relationship between NO_x concentrations and (A \sim D) distance to major roads, and (E \sim F) biomass use percentage in enumeration area (EA) containing the monitoring locations. The smooth trend method is loess, and the shade areas are the standard errors. The road network data was downloaded from OpenStreetMap (2019). We caution that the 2010 census biomass use data may not reflect present usage (Ghana Statistic Service, 2010).

792 793