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This document was originally presented as eAppendix 1 of the article “The case time series design,” ac-
cepted for publication in Epidemiology (Gasparrini 2021), and it reproduces the analysis presented as the
first case study. An updated version of this document and related material are available at the GitHub page
and at the personal website of the author. The material includes the Rmarkdown files to compile the docu-
ment, plus scripts with the embedded R code. Note that the code is profiled for clarity, not for speed, with
the aim of illustrating the steps of the analysis and the features of the design. It can (probably should) be
modified when re-used in real analyses.

This case study illustrates the application of the case time series design in clinical studies. Specifically,
the example describes an analysis of the association between acute respiratory infection (flu) and acute
myocardial infarction (AMI) using a cohort reconstructed from linked electronic health records. The sample
includes 3,927 subjects who experienced a (first) AMI event and had at least one primary care consultation
for flu during a pre-determined follow-up period. The analysis illustrates an application of the case time
series design with a non-repeated event outcome and binary indicators of exposure episodes. These data
were originally presented and analysed with an alternative method in previous publications (Warren-Gash et
al. 2012). The code shown below creates and uses simulated data to reproduce the features of the original
dataset, which cannot be made publicly available, and the steps and (approximate) results of the application
of the case time series design.

Preparation

The following packages are loaded in the session, and need to be installed to run the R code:

library(dlnm) ; library(gnm) ; library(mgcv) ; library(pbs)
library(data.table) ; library(scales)

We first set a seed to ensure the exact replicability of the results, as the code includes expressions with
random number generation, and we also set the graphical parameter las for the plots:
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set.seed(13041975)
par(las=1)

Simulating the original data

The data used in this case study are simulated directly in this section. The user can skip it if not of interest,
and start with the following section for the data analysis. First, we set the parameters, namely the number
of subjects n and the date of start and end of follow-up. Note that we reduce the follow-up period to one
year, in order to obtain a more manageable dataset. The code:

n <- 3927
dstart <- as.Date("2007-01-01")
dend <- as.Date("2007-12-31")

Then we generate the time variables across the follow-up period, namely date (calendar days), time (a
sequence of integers starting from 1), month (months in numbers), and doy (days of the year). In addition,
we randomly generate dob (date of birth) for each subject, with age at start between 35 and 100 years old.

date <- seq(dstart, dend, by=1)
times <- seq(length(date))
month <- month(date)
doy <- yday(date)
dob <- sample(seq(dstart-round(100*365.25), dstart-round(35*365.25), by=1), n)

These variables are used for simulating the temporal variation in the underlying risk of AMI, with a cyclic
seasonal trend and a long-term change by age modelled by a cosine function and polynomials, respectively.
These effects are defined as a incident rate ratio (IRR), and created by the following code:

frrseas <- function(doy) (cos(doy*2*pi / 366) + 1) / 12 + 1
frrage <- function(age) exp((age - 70) / 6)

These temporal variations in risk along day of the year and age are represented in the graphs below:

plot(1:365, frrseas(1:365), type="l", col=2, ylab="IRR", xlab="Day of the year",
main="Simulated seasonal effect")

plot(35:90, frrage(35:90), type="l", col=2, ylab="IRR", xlab="Age",
main="Simulated age effect")
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Now we create a function to define the IRR along the lag dimension. In this case, this dimension repre-
sents the risk after a flu episode, with the lag unit defined by day. Similarly, we illustrate the phenomenon
graphically:

frrlag <- function(lag) exp(-(lag/10)) * 4 + 1
plot(1:91, frrlag(1:91), type="l", col=2, ylab="IRR", xlab="Lag",
main="Simulated lag effect")
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The graph indicates that, within a lag period of 3 months (1 to 91 days of lag) as in the original analyses,
the risk is much increased in the first days after the flu episode, but then it attenuates and tends to null after
approximately one month.

In the presence of multiple exposure episodes, lagged effects can cumulate in time, depending on the
exposure profile of an individual. In this case, the risk at a given day is determined by the exposure history
to flu, with potentially multiple flu episodes contributing at different lags for the same day. For instance, the
code below shows an example with the risk associated with four flu episodes in a 250-day period, with the
cumulated risk being the product of lag-specific contributions:
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expprof <- as.numeric(seq(250) %in% c(15,100,110,160))
exphist <- exphist(expprof, lag=c(1,91), fill=0)
rrflu <- apply(exphist, 1, function(x) prod(frrlag(1:91)[x==1]))
plot(seq(250), rrflu, type="l", col=2, ylab="Overall cumulative IRR", xlab="Days",
main="Example of cumulated effect")

points(c(15,100,110,160), rep(1,4), pch=19)
legend("topright", c("Flu episodes","Cumulated IRR"), pch=c(19,NA), lty=c(NA,1),
col=1:2, cex=0.8)
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We have now all the information required for simulating the original data. These will consist of individual
records with the following variables, with age measured in days:

• id: the identifier of the subject
• dob: date of birth
• start: the age of the subject at the start of follow-up
• end: the age of the subject at the end of follow-up
• event: the age of the subject at the occurrence of the AMI event
• flu*: multiple variables defining the age(s) of the subject at each flu episode

The data are simulated by looping in a list, producing the observations for each subject, and then binding
them in a dataframe. Each of the blocks of code in the loop performs the following steps for each subject:

1. Sample the number of flu episode(s); define the risk of having a flu episode in each day; sample the
flu episodes and create an exposure profile

2. Create the exposure history of flu for each day for a given lag period; compute the overall cumulative
AMI risk due to flu for each day

3. Define the total AMI risk for each day, dependent on age, season, and flu; sample the unique AMI
event

4. Put the information together in a dataframe; add the flu episodes, setting them to NA if less than the
sampled maximum of 10

Here is the R code (it takes less than a minute):
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dlist <- lapply(seq(n), function(i) {

nflu <- rpois(1,1) + 1
expprof <- drop(rmultinom(1, nflu, frrseas(doy))) > 0 + 0

exphist <- exphist(expprof, lag=c(1,91), fill=0)
rrflu <- apply(exphist, 1, function(x) prod(frrlag(1:91)[x==1]))

rrtot <- frrage(as.numeric((date-dob[i])/365.25)) * frrseas(doy) * rrflu
devent <- date[drop(rmultinom(1, 1, rrtot))==1]

data <- data.frame(id = paste0("sub", sprintf("%03d", i)), dob = dob[i],
start = as.numeric(dstart - dob[i]), end = as.numeric(dend - dob[i]),
event = as.numeric(devent - dob[i]))

flu <- as.numeric(date[expprof == 1] - dob[i])
for(j in seq(10)) data[paste0("flu", j)] <- if(j>nflu) NA else flu[j]

return(data)
})
dataorig <- do.call(rbind, dlist)

Specifically, the total number of flu episodes nflu are sampled from a Poisson distribution with mean of 1
(plus one to ensure at least one episode). The occurrence of these flu episodes is sampled at random from
a multinomial distribution, with probabilities varying by day of the year, thus determining a confounding effect
by season. The AMI event for each subject in devent is then sampled from a multinomial distribution, with
risk for each day rrtot defined by flu episodes (with lag), age, and season. Note that that in rmultinom
probabilities are determined from IRRs by rescaling them internally.

The final line of code binds together all the records. This dataset has a simple form with one record per
subject, but it contains all the information for conducting the case time series analysis in the next sections.

Data expansion

Now that we have the data, we can start our analysis using the case time series design. The first step is to
expand the data to recover the individual series. You can appreciate that this leads back to the same data
structure used to simulate the original dataset in the section above. We start by showing the process for a
given subject (number 3), with data:

(sub <- dataorig[3,])

## id dob start end event flu1 flu2 flu3 flu4 flu5 flu6 flu7
## 3 sub003 1916-08-18 33008 33372 33274 33105 33273 33276 NA NA NA NA
## flu8 flu9 flu10
## 3 NA NA NA

Specifically, we reconstruct the daily series of outcome y (AMI event), flu (flu indicator), and all the time
variables, including them in a new dataframe:

date <- as.Date(sub$start:sub$end, origin=sub$dob)
datasub <- data.frame(
id = sub$id,
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date = date,
times = seq(length(date)),
age = as.numeric(date-sub$dob)/365.25,
y = as.numeric(date-sub$dob) %in% sub$event + 0,
flu = as.numeric(date-sub$dob) %in% na.omit(as.numeric(sub[6:15])) + 0,
month = month(date),
doy = yday(date)

)

These expanded data correspond to an individual series of outcome and predictors (therefore the name
case time series for this design). We can have a look at the first observations for subject 3:

head(datasub)

## id date times age y flu month doy
## 1 sub003 2007-01-01 1 90.37098 0 0 1 1
## 2 sub003 2007-01-02 2 90.37372 0 0 1 2
## 3 sub003 2007-01-03 3 90.37645 0 0 1 3
## 4 sub003 2007-01-04 4 90.37919 0 0 1 4
## 5 sub003 2007-01-05 5 90.38193 0 0 1 5
## 6 sub003 2007-01-06 6 90.38467 0 0 1 6

In addition, we create the exposure history for each observation within the follow-up period of the same
subject, applying the function exphist() on the exposure series over the lag period 1-91:

exphistsub <- exphist(datasub$flu, lag=c(1,91), fill=0)

You can notice from above that subject 3 had the first flu episode at day 33,105, corresponding to time 98
of the series. We can check the exposure history matrix around those times:

timeflu1 <- sub$flu1-sub$start+1
exphistsub[timeflu1 + 0:5, 1:10]

## lag1 lag2 lag3 lag4 lag5 lag6 lag7 lag8 lag9 lag10
## 98 0 0 0 0 0 0 0 0 0 0
## 99 1 0 0 0 0 0 0 0 0 0
## 100 0 1 0 0 0 0 0 0 0 0
## 101 0 0 1 0 0 0 0 0 0 0
## 102 0 0 0 1 0 0 0 0 0 0
## 103 0 0 0 0 1 0 0 0 0 0

The diagonal pattern of 1’s identifies days corresponding to lags after this specific exposure episode.

We can now apply this expansion to all the subjects by repeating the steps above, and obtain the final data,
including the exposure histories. Here is the code (it takes less than a minute):

dlist <- lapply(seq(n), function(i) {

sub <- dataorig[i,]

date <- as.Date(sub$start:sub$end, origin=sub$dob)
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data <- data.frame(
id = sub$id,
date = date,
times = seq(length(date)),
age = as.numeric(date-sub$dob)/365.25,
y = as.numeric(date-sub$dob) %in% sub$event + 0,
flu = as.numeric(date-sub$dob) %in% na.omit(as.numeric(sub[6:15])) + 0,
month = month(date),
doy = yday(date)

)

exphist <- exphist(data$flu, lag=c(1,91), fill=0)

return(data.table(cbind(data, exphist)))
})
data <- do.call(rbind, dlist)

Analysis

Now that we have obtained the final dataset, we can start the data analysis. First, we have a look at the
follow-up of the first five subjects, including the time of AMI event (red circle) and exposure periods in the
1-91 days after flu episodes:

plot(unique(data$date), unique(data$date), ylim=c(0.5,5+0.5), yaxt="n",
ylab="", xlab="Follow-up", frame.plot=F)

axis(2, at=5:1, labels=paste("Sub",1:5), lwd=0, las=1)
for(i in 5:1) {
sub <- subset(data, id==unique(data$id)[i])
flu <- sub$date[sub$flu==1]
rect(flu+1, rep(i-0.3,length(flu)), flu+91, rep(i+0.3,length(flu)), border=NA,
col=alpha("gold3",0.3))

lines(sub$date, rep(i, nrow(sub)))
points(sub$date[sub$y==1], i, pch=21, bg=2, cex=1.5)

}
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While many of the subjects only have a single flu episode, four of them in this sample have multiple ones,
and these episodes are so close that they generate overlapping exposure windows. This could not be dealt
with in the original self-controlled case series analysis (Warren-Gash et al. 2012), while as shown below the
case time series design can appropriately account for cumulative effects.

Now, we replicate the main case time series analysis illustrated in the original article (Gasparrini 2021). We
first derive the terms to control for age and season using natural cubic and cyclic splines, respectively. We
use the wrapper function onebasis() that simplifies the prediction and plotting of these associations, to
be performed later. We call the function pbs from the package with the same name to generate the basis
transformations for the cyclic splines. The code:

splage <- onebasis(data$age, "ns", knots=quantile(data$age, c(1,3)*0.25))
splseas <- onebasis(data$doy, "pbs", df=3)

Then, we implement the distributed lag model (DLM), defining the cross-basis parameterisation for flu with
a lag period from 1 to 91 days, using the exposure histories included as lagged terms in data:

exphist <- data[,-c(1:8)]
cbspl <- crossbasis(exphist, lag=c(1,91), argvar=list("strata",breaks=0.5),
arglag=list("ns",knots=c(3,10,29)))

The function crossbasis() internally calls strata() with cut-off at 0.5 to parameterise the exposure-
response for flu using a simple indicator, and ns() to produce the natural cubic splines with specific knots
for the lag-response function (see help(crossbasis)).

We now have all the terms for fitting the fixed-effects Poisson regression using the function gnm(). The
regression model includes all the predictors, and defines the conditional stratification through the argument
eliminate. This is the code:

mspl <- gnm(y ~ cbspl+splage+splseas, data=data, family=poisson,
eliminate=factor(id))

The estimated coefficients and associated (co)variance matrix of the model can now be used to predict the
association of the various terms with the risk of AMI, using the function crosspred():

cpspl <- crosspred(cbspl, mspl, at=1)
cpsplage <- crosspred(splage, mspl, cen=70, to=90)
cpsplseas <- crosspred(splseas, mspl, cen=366/2, at=1:365)

Finally, we can plot them:

plot(cpsplage, col=2, ylab="IRR of AMI", xlab="Age", main="Risk by age",
ylim=c(0,25))

mtext("Natural cubic splines with 3df", cex=0.8)
plot(cpsplseas, col=2, ylab="IRR of AMI", xlab="Day of the year",
main="Risk by season", ylim=c(0.95,1.30))

mtext("Cyclic splines with 4df", cex=0.8)
plot(cpspl, var=1, col=2, ylab="IRR of AMI", xlab="Days after a flu episode",
ylim=c(0,5), main="Risk by lag")

mtext("Natural cubic splines with 5df (DLM)", cex=0.8)
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Results are similar to those reported in the original article (Gasparrini 2021). Differences in estimated con-
fidence intervals for the risk along with age and after a flu episodes are easily explained by the shorter
follow-up period simulated here (one year), which reduces the within-subject age differences and increases
the prevalence of exposure to flu.

An alternative parameterisation of cross-basis term can be used, specifically using strata functions to rep-
resent the risk along lags. The code:

cbstr <- crossbasis(exphist, lag=c(1,91), argvar=list("strata",breaks=0.5),
arglag=list("strata",breaks=c(4,8,15,29)))

We can now fit the alternative model:

mstr <- gnm(y ~ cbstr+splage+splseas, data=data, family=poisson,
eliminate=factor(id))

cpstr <- crosspred(cbstr, mstr, at=1)

and create the related plot, including the previous fitted relationships as dashed lines:

plot(cpstr, var=1, col=3, ylab="IRR of AMI", xlab="Days after a flu episode",
ylim=c(0,5), main="Risk by lag")

mtext("Strata of lag periods (DLM)", cex=1)
lines(cpspl, var=1, lty=2)
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This parameterisation can be compared to the original analysis performedwith the self-controlled case series
design (Warren-Gash et al. 2012), where post-exposure periods consistent with the lag strata were used.
However, here the case time series design and DLMs can appropriately handle potentially overlapping ex-
posure periods. We can extract from the predictions the IRR (and 95% confidence intervals) corresponding
to the five strata:

resstr <- round(with(cpstr, t(rbind(matRRfit,matRRlow,matRRhigh))), 2)
colnames(resstr) <- c("IRR","low95%CI","high95%CI")
resstr[paste0("lag", c(1,4,8,15,29)),]

## IRR low95%CI high95%CI
## lag1 3.97 3.47 4.54
## lag4 3.60 3.18 4.07
## lag8 2.39 2.13 2.68
## lag15 1.57 1.42 1.74
## lag29 1.03 0.97 1.11

The results demonstrate the flexibility of the case time series design to investigate complex relationships
using self-matched comparisons of individual-level data.
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This document was originally presented as eAppendix 2 of the article “The case time series design,” ac-
cepted for publication in Epidemiology (Gasparrini 2021), and it reproduces the analysis presented as the
second case study. An updated version of this document and related material are available at the GitHub
page and at the personal website of the author. The material includes the Rmarkdown files to compile the
document, plus scripts with the embedded R code. Note that the code is profiled for clarity, not for speed,
with the aim of illustrating the steps of the analysis and the features of the design. It can (probably should)
be modified when re-used in real analyses.

This case study illustrates the application of the case time series design in environmental studies. Specifi-
cally, the example describes an analysis of the association between exposure to three different environmen-
tal stressors and the risk of respiratory symptoms using a cohort of participants to a smartphone study. The
sample includes 1,601 subjects who reported daily the occurrence of respiratory symptoms such as asthma
and allergic rhinitis in a smartphone app, and who were assigned exposure levels by linking their geo-located
position with high-resolution spatio-temporal maps of pollen, air pollution, and temperature. The analysis
illustrates an application of the case time series design with a binary outcome and multiple continuous ex-
posures. The data were collected within the AirRater study, an integrated online platform that combines
symptom surveillance, environmental monitoring, and real-time notifications operating in Tasmania (John-
ston et al. 2018). The code shown below creates and uses simulated data to reproduce the features of the
original dataset, which cannot be made publicly available, and the steps and (approximate) results of the
application of the case time series design.

Preparation

The following packages are loaded in the session, and need to be installed to run the R code:

library(dlnm) ; library(gnm) ; library(data.table) ; library(splines)

We first set a seed to ensure the exact replicability of the results, as the code includes expressions with
random number generation, and we also set the graphical parameter las for the plots:
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set.seed(13041975)
par(las=1)

Simulating the original data

The data used in this case study are simulated directly in this section. The user can skip it if not of interest,
and start with the following section for the data analysis. First, we set the parameters, namely the number of
subjects n and the date of start and end of study period. Then we create a date and related time variables
year, month, doy (day of the year), and dow (day of the week):

n <- 1601
dstart <- as.Date("2015-10-29")
dend <- as.Date("2018-11-19")
date <- seq(dstart, dend, by=1)
year <- year(date)
month <- month(date)
doy <- yday(date)
dow <- factor(wday(date))

Then we define follow-up periods for the 1601 subjects, randomly sampling starting dates and length of
follow-up, with the constraints that the end of follow-up cannot be later than the end of the study period, and
with a length of at least 10 days. The code:

fustart <- sample(seq(dstart, dend-10, by=1), n, replace=TRUE)
fuend <- fustart + pmax(pmin(round(exp(rnorm(n, 5.1, 2))), dend-fustart), 10)
sum(fuend-fustart+1)

## Time difference of 363901 days

While the follow-up distribution does not match perfectly the original study, the sampling parameters are set
above to generate approximately the same number of total person-days, in this case, 363,901.

Finally, we define some variables used to simulate the distribution of the environmental exposures and, later,
the seasonal baseline risk. These variables are the cosine transformation of doy and quadratic splines of
date with 5 degrees of freedom per year. In addition, we simulate 20 random smoke days occurring in the
(Australian) summer. The code:

cosdoy <- cos(doy*2*pi / 366)
spldate <- bs(date, degree=2, int=TRUE, df=round(length(date)/365.25)*5)
smokeday <- date %in% sample(date[month %in% c(1,2,12)], 20)

We are now ready to simulate the distribution of the three environmental stressors. In the original study,
individual exposure series were reconstructed through the geo-location system of the smartphone by linkage
with detailed spatio-temporal exposure maps. In order to simplify the simulation process, we derive here
a single series for each stressor, assuming that all the 1601 subjects are exposed to the same levels on
the same day. This does not affect the generality of the example, and in real-case settings, individual-level
exposure series can nevertheless be used.

The environmental exposures are created by assuming an underlying seasonal trend, represented by the
cosine variable above, plus auto-correlated random normal deviations. Exponentiation is used to produce
non-negative values of pollen (grains/m3) and pollution (PM2.5, 𝜇gr/m3), while temperature (∘C) is sampled
directly. The code:
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pollen <- exp(cosdoy*2+2.5 + arima.sim(list(ar=0.5), length(date), sd=0.8))
pm <- exp((-cosdoy)*1.6+2.5 + smokeday*3.2 +
arima.sim(list(ar=0.6), length(cosdoy), sd=0.95))

tmean <- cosdoy*6+15 + arima.sim(list(ar=0.6), length(cosdoy), sd=2.6)
envdata <- data.frame(date, pollen, pm, tmean)

The variables are included in the dataframe envdata. The definitions above provide a realistic distribution
of the three exposures, with pollen and temperature peaking in summer, while PM2.5 shows higher win-
tertime levels but with isolated spikes in the summer corresponding to smoke days due to fires. A visual
representation is offered by the plots obtained through:

plot(date, pollen, xlab="Date", ylab="Pollen", main="Pollen series", col=2,
pch=19)

plot(date, pm, xlab="Date", ylab="PM2.5", main="Pollution series", col=2,
pch=19)

plot(date, tmean, xlab="Date", ylab="Temperature", main="Temperature series",
col=2, pch=19)
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The variables created above can now be used to define individual risk profiles of experiencing allergic symp-
toms. These profiles will be simulated as risks associated to the three exposures on top of baseline trends.
We first simulate the latter as a combination of shared underlying risks and individual-level deviations:

fortrend <- function(ind=TRUE) (cosdoy*1.6 + sin(doy*4*pi/366))/8+1 + if(ind)
spldate %*% runif(ncol(spldate),-0.2,0.2) else 0

The function fortrend() includes harmonic terms at different periods to define the shared baseline risk
common to all subjects, plus optionally individual deviations modelled using random coefficients for the
spline of time. These trends are defined as odds ratio (OR). We can graphically represent them using
the code below, with the bold black line representing the shared trend and the dashed coloured lines as
individual profiles:

plot(date, fortrend(ind=F), type="l", lwd=2, ylim=c(0.5,1.5), xlab="Date",
ylab="OR", main="Shared baseline risk and indivdual deviations")

abline(h=1)
for(i in 1:7) lines(date, fortrend(ind=T), type="l", lty=2, col=i)
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The next step is the definition of the increase in risk due to exposure to the three environmental stressors.
Specifically, we define non-linear relationships for pollen and temperature, with effects lagged up to 3 days,
and a linear and unlagged association with PM2.5. First, we define the three functions to specify the three
exposure-response risk shapes and the lag structure:

forpoll <- function(x) 1.6 - 0.6*exp(-x/60)
forpm <- function(x) exp(x/1000)
fortmean <- function(x) 1 + ifelse(x>15, 0.002*(x-15)^2, 0)
fwlag <- function(lag) exp(-lag/1.5)

These functions define relationships in the OR and lag scales, and can be represented graphically with:

plot(0:200, forpoll(0:200), type="l", xlab="Pollen", ylab="OR",
main="Exposure-response with pollen", col=2)

plot(0:100, forpm(0:100), type="l", xlab="PM2.5", ylab="OR",
main="Exposure-response with PM2.5", col=2)

plot(0:30, fortmean(0:30), type="l", xlab="Temperature", ylab="OR",
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main="Exposure-response with temperature", col=2)
plot(0:50/10, fwlag(0:50/10), type="l", xlab="Lag", ylab="Weight",
main="Lag structure", col=2)
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These shapes are similar to the associations estimated in the original study (Gasparrini 2021). The lag
structure is defined as weights, and can be used to represent a decreasing OR proportionally to time after
the exposure occurred. As an example, we used the functions above to calculate the net OR in a given day
after exposures to pollen of 50, 9, 135, and 93 grains/m3 in the same and past 3 days (lag 0–3):

exp(sum(log(forpoll(c(50,9, 135, 93))) * fwlag(0:3)))

## [1] 1.647004

Simply, the expression above computes the log-OR for each exposure occurrence, which are then weighted
depending on the lag and then summed and exponentiated to obtain the overall cumulative OR .

We can now apply the same computation to the whole series for the three exposures, using first the function
exphist to generate the matrix of lagged exposures, and then applying the expression for each row:

orpoll <- apply(exphist(pollen, lag=3), 1, function(x)
exp(sum(log(forpoll(x)) * fwlag(0:3))))

orpm <- forpm(pm)

5



ortmean <- apply(exphist(tmean, lag=3), 1, function(x)
exp(sum(log(fortmean(x)) * fwlag(0:3))))

orenv <- orpoll * orpm * ortmean

Note that we assume a lag 0–3 for pollen and temperature, while we simply define a same-day association
with no lag for PM2.5. The code above computes therefore the OR contribution for each exposure in each
day, which are then multiplied to obtain the overall risk associated with all the three environmental stressors
in the vector orenv. The series for temperature and all the exposures are graphically represented below:

plot(date, ortmean, type="l", xlab="Date", ylab="OR",
main="Risk of temperature")

plot(date, orenv, type="l", xlab="Date", ylab="OR",
main="Risk of all environmental stressors")
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We have now all the information required for simulating the original data. These are created by looping in a
list, producing the observations for each subject, and then binding them in a dataframe. Each of the blocks
of code in the loop performs the following steps for each subject:

1. Define the follow-up period and identify the related subset of the study period
2. Create the total risk contribution in each follow-up day
3. Sample the occurrence of respiratory symptoms within the follow-up period
4. Put the information together in a dataframe, adding the series of environmental exposures

Here is the R code:

dlist <- lapply(seq(n), function(i) {

fudate <- seq(fustart[i], fuend[i], by=1)
sub <- date %in% fudate

ortot <- fortrend(ind=T)[sub] * orenv[sub] * (1 + wday(fudate) %in% c(2:6)*0.4)

pbase <- plogis(-3.3 + 14/length(fudate) - 0.0015*length(fudate))
sympt <- rbinom(sum(sub), 1, plogis(qlogis(pbase) + log(ortot)))
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data <- cbind(data.frame(id=paste0("sub",sprintf("%04d", i)), date=fudate,
year=year[sub], month=month[sub], dow=dow[sub], y=sympt), envdata[sub, -1])

return(data.table(data))
})
data <- do.call(rbind, dlist)

Specifically, the total OR in ortot is the product of underlying trends (as the sum of shared seasonal OR
plus random individual deviations), the contribution of environmental factors, and a simulated OR of 1.4 for
weekdays vs weekends. These are multiplied to a baseline risk in base to compute the day and subject-
specific odds. The baseline risk varies across individuals, and it is inversely proportional to the follow up
period, similary to the real-date example. The indicator of days with respiratory symptoms sympt is sampled
then from a Bernoulli distribution (binomial with a single trial) with probabilities back-transformed from the
logistic scale. Note that this method of sampling does not ensure that all the subjects have at least one
day with reported symptoms, and these will be automatically discarded from the analysis and they do not
contribute information to the conditional comparison.

The final line of code binds together all the data in a single dataframe. This dataset is already expanded
to its case time series format, where the number of rows corresponds to the total person-days of follow-up
(363,901). In some situations, it can be more convenient to store the data in multiple datasets, for instance
separating individual information and environmental exposures, and then assemble them together for the
final analysis.

Analysis

Now that we have obtained the final dataset, we can replicate the main case time series analysis. First, we
have a look at the data for a given subject (identified as sub0036), represented as individual series of daily
observations of outcome and predictors (therefore the name case time series for this design). The code:

dsub <- subset(data, id=="sub0036")
plot(y~date, data=dsub, type="h", lty=2, ylim=c(0,2), yaxt="n", bty="l", xlab="",
ylab="Day with \nsymptoms", mgp=c(2.2,0.7,0), lab=c(5,3,7))

points(y~date, data=subset(dsub,y>=1), pch=23, bg=3)
plot(pollen~date, data=dsub, type="l", lty=1, bty="l", col=2, xlab="",
ylab="Pollen")

plot(pm~date, data=dsub, type="l", lty=1, bty="l", col=4, xlab="Date",
ylab="PM2.5")

plot(tmean~date, data=dsub, type="l", lty=1, bty="l", col=3, xlab="Date",
ylab="Temperature")
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We can now define the different terms to be included in the regression model. First, we define a set of
splines of time with approximately 8 degrees of freedom per year, and subject/year/month strata indicators,
to be used to model the shared seasonal trend and individual deviations, respectively.:

dftrend <- round(as.numeric(diff(range(data$date))/365.25 * 8))
btrend <- ns(data$date, knots=equalknots(data$date, dftrend-1))
data$stratum <- with(data, factor(paste(id, year, month, sep="-")))

We now apply the function crossbasis() to parameterise distributed lag linear and non-linear transforma-
tions of the environmental variables:

cbpoll <- crossbasis(data$pollen, lag=3, argvar=list(knots=c(40,100)),
arglag=list(knots=1), group=data$id)

cbpm <- crossbasis(data$pm, lag=3, arglag=list("integer"), group=data$id)
cbtmean <- crossbasis(data$tmean, lag=3, argvar=list(knots=1:2*10),
arglag=list(knots=1), group=data$id)

Specifically, the default ns() function is used in both the argvar and arglag arguments to specify natural
cubic splines for the exposure-response and lag-response, respectively, of both pollen and temperature,
using different knots placements. A default linear exposure-response is defined for PM2.5, instead, while the
lag-response is parameterised through an unconstrained distributed lag function, namely using indicators
for each lag. The lag period is extended to 0–3 for all three exposures. A group argument is used to
specify that the variables do not represent a unique and complete series, but multiple individual series. See
help(crossbasis) for more information.

We now have all the terms for fitting the fixed-effects logistic regression using the function gnm(), with the
strata indicators included in the argument eliminate:

8



mod <- gnm(y ~ cbpoll + cbpm + cbtmean + btrend + dow, eliminate=stratum, data=data,
family=binomial)

The estimated coefficients and associated (co)variance matrix of the model can now be used to predict the
association of the various terms with the risk of respiratory symptoms, using the function crosspred():

cppoll <- crosspred(cbpoll, mod, at=0:20*10, cen=0)
cppm <- crosspred(cbpm, mod, at=0:20*5, cen=0)
cptmean <- crosspred(cbtmean, mod, cen=15, by=1.5)

We can now represent graphically the association in both dimensions of exposure intensity and lag. Specif-
ically, the plots below represent the overall cumulative exposure-responses (interpreted as the net associ-
ations accounting for the whole lag period), the full bi-dimensional exposure-lag-responses for non-linear
relationships of pollen and temperature, and the lag-response corresponding to a 10𝜇gr/m3 increases in
PM2.5. The code:

plot(cppoll, "overall", xlab="Pollen", ylab="OR", col=2,
main="Pollen: overall cumulative exposure-response", ylim=c(0.5,3))

plot(cppoll, xlab="Pollen", zlab="OR", main="Pollen: exposure-lag-response",
cex.axis=0.8, col=2)
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plot(cppm, var=10, "overall", xlab="PM2.5", ylab="OR", col=4,
main="PM2.5: overall cumulative exposure-response", ylim=c(0.95,1.20))

plot(cppm, var=10, ci="b", type="p", ylab="OR", col=4, pch=19, cex=1.7,
xlab="Lag", main="PM2.5: lag-response", lab=c(3,5,7), ylim=c(0.995,1.015))
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plot(cptmean, "overall", xlab="Temperature", ylab="OR", col=3,
main="Temperature: overall cumulative exposure-response", ylim=c(0.5,3))

plot(cptmean, xlab="Temperature", zlab="OR", ltheta=240, lphi=60, cex.axis=0.8,
main="Temperature: exposure-lag-response", col=3)
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The estimated associations are similar to those presented in the original analysis (Gasparrini 2021). The
results demonstrate the flexibility of the case time series design to investigate complex relationships with
multiple exposures using individual data in a complex cohort setting.
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The case time series design – eAppendix 3 

A simulation study 
 

This simulation study evaluates the inferential performance of regression models for the case time series 
design under various data-generating scenarios, through the assessment of bias, coverage of the confidence 
intervals, and root mean square error (RMSE) of the estimators. The study aims, first, at testing the ability of 
the model in recovering the true exposure-response association under increasingly complex data settings, and 
second, at evaluating the four key assumptions underpinning the case time series design.  

All the simulated scenarios use a common setting with 500 subjects followed up for one year between 
01/01/2019 and 31/12/2019. For each scenario, 𝑚 = 50,000 datasets are simulated, each including (initially) 
500 ⋅ 365 = 182,500 observations. The inference focuses on a risk summary 𝛽, whose definition is scenario-
dependent. Specifically, all the simulated cases assume a risk period lasting 10 days following the exposure, 
which, using a time series terminology, corresponds to a lag period defined over days 0-10. For most scenarios, 
the risk summary 𝛽 represents the constant effect in each day within the risk (lag) period. In contrast, Scenario 
10 illustrates more complex lag structures where the effect varies within the risk period, and here 𝛽𝑐 quantifies 
the net effect cumulated across lag 0-10. The performance is assessed in terms of relative bias (%), coverage, 
and relative RMSE (%), defined as: 

 

Bias =
|∑ (�̂�𝑖 − 𝛽)𝑚

𝑖=1 /𝑚|

𝛽𝑐
 

Coverage = ∑ 𝐼 (|�̂�𝑖 − 𝛽| ≤ Φ−1(1 − 𝛼/2) ⋅ √𝑉(�̂�𝑖))
𝑚

𝑖=1
/𝑚  

RMSE =
√∑ (�̂�𝑖 − 𝛽)

2𝑚
𝑖=1 /𝑚

𝛽
 

 

where �̂�𝑖 is the estimate at each of the 𝑖 = 1, … , 𝑚 iterations, 𝐼 is an indicator function, and Φ−1(1 − 𝛼) is 
the quantile function of the cumulative normal distribution related to probability 1 − 𝛼, with 𝛼 = 0.05. 

Each scenario is described in detail in the sections below, with additional results that complement the figures 
reported in Table 1 of the manuscript. The R code to fully reproduce the simulations and results in each 
scenario is provided in the online supplemental material, with an updated version available at the personal 
website (http://www.ag-myresearch.com/) and GitHub webpage (https://github.com/gasparrini/) of the 
author. 

 

Part I: assessment of modelling performance 
The first part of the simulation study (Scenarios 1-10) applies the case time series methodology in increasingly 
complex data-generating settings, simulated under the four core assumptions. The expectation is that the case 
time series models will produce valid estimates of risk associations in all the cases. The study covers scenarios 
with various definitions of the outcome, exposure, underlying baseline risks, temporal associations, and both 
time-invariant and time-varying confounding. Specifically: 

• The outcome is represented by different quantities, such as event counts, binary indicators, or 
continuous measures. 

• The exposure, similarly, is represented either by binary indicators of episodes or by continuous 
measures. 

• The time-varying baseline risk is optionally included, and in this case, simulated either as shared 
(common) trend or alternatively as subject-specific deviations from an average trend. 

http://www.ag-myresearch.com/
https://github.com/gasparrini/2020_gasparrini_epidemiol
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• Time-invariant and time-varying confounders are optionally included, and in this case, simulated as 
risk factors strongly correlated with the exposure. 

• The temporal association is represented either as a simple constant risk period following an exposure 
or by more complex lag structures. 

The scenarios, summarised in Table S1 below, depict combinations of the features above, from basic data 
setting to situations involving more complex definitions. 

 

Table S1. Description of the simulation scenarios with combinations of the design features. 

Scenario Outcome Exposure Trend Confounder Lag structure 

Scenario 1: Basic Count Episode None None Simple 

Scenario 2: Rare outcome/exposure Count (rare) Episode (rare) None None Simple 

Scenario 3: Continuous exposure Count Continuous None None Simple 

Scenario 4: Binary outcome Binary indicator Continuous None None Simple 

Scenario 5: Continuous outcome Continuous Continuous None None Simple 

Scenario 6: Common trend Count Continuous Common None Simple 

Scenario 7: Subject-specific trend Count Continuous Subject-specific None Simple 

Scenario 8: Unobserved baseline confounder Count Continuous Subject-specific Baseline Simple 

Scenario 9: Time-varying confounder Count Continuous Subject-specific Time-varying Simple 

Scenario 10: Complex lag structure Count Continuous Subject-specific Both Complex 

 

Scenario 1: Basic 

In this first scenario, the exposure 𝑥 is defined as a binary indicator of multiple episodes, randomly occurring 
in 10% of the 365 days of follow-up for each subject. Each exposure episode is associated with an increase in 
risk for an outcome event, which is assumed constant over the 0-10 risk period. The risk summary is 
represented by the relative risk (RR) of experiencing an outcome event in each of the 11 days within the risk 
period, with RR = exp(𝛽) = 1.15. The outcome is represented as counts of repeated events 𝑦 randomly 
sampled from a multinomial distribution, with the number of occurrences per subject varying randomly in the 
range 5-20. This feature simulates subject-specific constant baseline risks varying across the 500 subjects. No 
trend, either common or subject-specific, and time-varying confounders are included. 

The case time series analysis is performed using a fixed-effects Poisson model, which corresponds to a 
conditional Poisson regression. The model includes a single term, defined by the cumulated exposure 𝑥𝑐, 
representing the sum of the exposure episodes in the same day and previous 10 days (lag 0-10). Subject-
specific intercept terms 𝜉𝑖  are included to model differential baseline risks. It is worth noting that, in these 
settings, the case time series design resembles a standard self-controlled case series (SCCS), although with the 
follow-up split into equally-spaced time intervals. However, the case time series data setting allows modelling 
multiple exposure episodes with potentially overlapping risk periods, through the computation of cumulative 
effects. 

Results reported in the manuscript indicate no bias and perfect coverage for the estimate of the risk summary 

𝛽. Figure S1 (left panel) confirms these findings, displaying the distribution of the 50,000 estimates �̂�𝑖 together 
with their average and the true effect 𝛽. 

 

Figure S1. Estimates of log(RR) = 𝛽 from the case time series models applied in Scenario 1 (left panel) and 
Scenario 2 (right panel). The graphs report the true simulated association (black line), the average estimate 
of the 50,000 iterations (red line), and the estimates of the individual iterations (grey dots). A small bias in 
noticeable in Scenario 2. The individual estimates are scattered across the y-axis to show the distributions. 
The range of the x-axis in the right panel only includes a subset of the individual estimates. 
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Scenario 2: Rare outcome/exposure 

Scenario 2 repeats the simulations from the previous scenario but in the case of rare outcome events and 
exposure episodes. Specifically, the same settings are used, but simulating only 1 to 5 exposure episodes and 
1 to 3 outcome events per subject. The same fixed-effects Poisson regression model of Scenario 1 is used. 

Results are reported in Figure S1 (right panel), with the distribution of the 50,000 estimates �̂�𝑖 within the same 
range as the previous scenarios. Note that the estimates cover a wider range when compared to Scenario 1, 
indicating the much lower precision due to the rare occurrence of exposure episodes and outcome events. 
More importantly, the plot confirms the small bias, with an underestimation of 4.5% (see Table 1 in the 
manuscript), which is consistent with the asymptotic bias of maximum likelihood estimators in this extreme 
scenario. This phenomenon was previously described in the SCCS literature and defined algebraically.1 
Specifically, the bias originates from the extreme unbalance between the expected events in the risk and 
control periods, and quickly reduces to negligible values when increasing the number of outcome events 
and/or the exposure episodes, as in Scenario 1. However, the bias is small even in this extreme scenario, and 
the case time series model maintains a nominal coverage (see Table 1 in the manuscript). 

 

Scenario 3: Continuous exposure 

This scenario replicates Scenario 1, although using a continuous exposure instead of a binary indicator for 
exposure episodes. Specifically, a subject-specific exposure is simulated through the following function: 

𝑒(𝑡) = exp(cos(2π/365 ⋅ 𝑡) + 1 + 𝑣𝜌𝜎(𝑡)) 

where 𝑡 is time defined as the day of the year (from 1 to 365), and 𝑣𝜌𝜎 is an auto-correlated random error 

simulated from a normal distribution with mean 0, standard deviation 𝜎 = 0.5, and correlation 𝜌 = 0.5 (see 
also the related R script). This function defines an exposure variable 𝑥 with strong seasonal distribution, as 
displayed in Figure S2 (left panel) with data simulated for the first 10 subjects. The exposure is associated with 
an increase in risk for an outcome event, with a constant relative risk (RR) of exp(𝛽) = 1.0025 for a unit 
increase in 𝑥 in each day within the 0-10 risk period. Again, 5-20 occurrences of the repeated outcome events 
are sampled for each subject. The same fixed-effects Poisson regression model is used to estimate the 
association, although this time using as the single term the continuous measure of 𝑥𝑐 cumulated across the 0-
10 lag period. 

Table 1 in the main manuscript confirms that the case time series models keep their optimal inferential 
properties in the analysis of continuous exposures. The flexible parameterization of the temporal effect of the 
exposure in the case time series design allows the derivation of more complex effect summaries. For instance, 
RR = exp(𝛽 ⋅ 11 ⋅ 𝑥) represents the effect cumulated across the 11 days of the 0-10 lag period, and it can be 
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interpreted as the increase in risk at the end of the risk period associated to a single exposure episode 𝑥. This 
summary is displayed graphically in Figure S2 (right panel), which illustrates the cumulative exposure-response 
association across the exposure range. The graph confirms the absence of bias in the case time series model. 

 

 

Scenario 4: Binary outcome 

This scenario replicates Scenario 3, but by simulating an outcome represented by a binary indicator instead 
than by an event count. This means that the outcome measures presence/absence and not the number of 
events in each time unit. In most situations, the difference is subtle, but it implies different modelling choices, 
as described below. The scenario simulates the same continuous exposure with a seasonal distribution as in 
the previous case, and the same risk summary is represented by 𝛽 = log(1.0025). However in this case 
exp(𝛽) represents an odds ratio (OR) of a positive outcome and not a RR. The outcome is simulated from a 

Bernoulli distribution with probability 𝑝 = exp(𝛼𝑏 + 𝛽𝑥𝑐)/(1 + exp(𝛼𝑏 + 𝛽𝑥𝑐)), where 𝛼𝑏 = log(𝑝𝑏/(1 −

𝑝𝑏)), 𝑝𝑏 is a baseline probability of 0.1, and exp(𝛽𝑥𝑐) is the OR associated with the number of exposure 
episodes 𝑥𝑐 cumulated within the lag period. 

Differently from all the other scenarios, the data are fitted using a fixed-effects logistic regression, simply 

replacing the Poisson with a binomial family. Results are reported in Table 1 of the main manuscript, and they 
demonstrate the ability of the case time series model in providing correct point estimates and coverage when 
analysing associations with binary outcome indicators that follow a Bernoulli distribution. It is worth noting 
that, in these data settings characterised by outcomes different from event counts, neither the SCCS nor the 
case-crossover (CC) designs are applicable. 

 

Scenario 5: Continuous outcome 

Similarly to the previous scenario, this simulation exercise replicates the settings of Scenario 3, with the only 
change being the outcome definition, this time represented by a continuous quantity instead of event counts. 
Specifically, a unit increase in exposure 𝑥 is associated with an increase of 𝛽 = 0.01 in a continuous outcome 
𝑦, constant within the risk period 0-10. The outcome series 𝑦 is simulated as the sum of three components: a 
subject-specific baseline randomly sampled from a uniform distribution between 50 and 150, the increase 

Figure S2. Left panel: distribution of the continuous exposure along the year for the first 10 subjects, 
simulated in one of the 50,000 iteration of Scenario 3, and then Scenarios 4-9 and 13. Right panel: Overall 
cumulative association representing the cumulative risk across the 0-10 risk period simulated in Scenario 3, 
with the true RR linear in the log scale (black line), the average estimate (red line), and the estimates of the 
first 100 iterations (grey lines). 
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associated with the exposure, and a random error simulated from a normal distribution with mean 0 and 
standard deviation of 20. The distribution of the outcome simulated for five subjects is displayed in Figure S3 
(left panel). 

Similarly to Scenario 4 and differently from the other previous scenarios, the case time series model is 
performed using a fixed-effects regression model that assumes a different distribution, specifically using a 
Gaussian family. This allows modelling additive relationships under the assumption of normally distributed 
errors. As in the case of binary outcomes in Scenario 4, it is worth noting that neither the SCCS nor the CC 
designs are applicable here. Results are reported in Figure S3 (right panel), which similarly to the same panel 
in Figure S2 displays the cumulative exposure-response association represented by 𝛽 ⋅ 11 ⋅ 𝑥 across the 
exposure range. As above, the graph confirms the absence of bias in the case time series model for modelling 
relationships between a continuous exposure and a continuous outcome. 

 

 

Scenario 6: Common trend 

All the previous scenarios assume that the variation in risk within each individual is only due to the time-
varying exposure and that the underlying baseline risk is in fact constant. This scenario depicts a more complex 
setting, with a common trend across the year that is shared by the 500 subjects. Given the strong seasonal 
distribution of the exposure, this trend needs to be adjusted for in order to obtain valid estimates of the 
association. The seasonal trend is simulated with the following function:  

𝑠(𝑡) = exp(𝛾1sin(𝑝1π/365 ⋅ 𝑡) + 𝛾1cos(𝑝2π/365 ⋅ 𝑡)) 

where 𝛾1-𝛾2 and 𝑝1-𝑝2 are parameters of the sine and cosine terms, respectively, defining their amplitude and 
frequency. At each iteration, each parameter in the two pairs are sampled from a uniform distribution in the 
ranges -0.2 to 0.2, and -4 to 4, respectively, thus producing different common seasonal risk trends. Figure S4 
(left panel) illustrates a random sample of seven iterations, showing shared trends with different peak/trough 
times, and either flat or strong. 

The scenario replicates the repeated outcome events, continuous exposure, and constant risk period following 
exposure over lag 0-10 of Scenario 3. The same fixed-effects Poisson regression model is applied, but this time 
including a cyclic B-spline of the day of the year with 6 degrees of freedom (df) and a linear term for time to 
adjust for the seasonal and long-term trends. Results in the main manuscript (Table 1) indicate that the case 

Figure S3. Left panel: distribution of the continuous outcome along the year for the first 5 subjects (in 
different colours), simulated in one of the 50,000 iteration of Scenario 5, together with the averages 
indicating differential baseline risks. Right panel: cumulative association representing the net effect across 
the 0-10 risk period simulated in Scenario 5, with the true linear relationship (black line), the average 
estimate (red line), and the estimates of the first 100 iterations (grey lines). 
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time series model is able to retrieve the true net risk with no bias and nominal confidence intervals, although 
with a higher root mean square error (RMSE), indicating a loss of precision due to the adjustment for the 
underlying trend. 

 

 

Scenario 7: Subject-specific trend 

This scenario makes the simulation setting even more complex by relaxing the assumptions of a common 
seasonal trend. An average baseline risk is first simulated as in Scenario 6 by randomly sampling the 𝛾1-𝛾2 and 
𝑝1-𝑝2 parameters at each iteration. However, each parameter is then perturbed in each subject with a random 
amount independently sampled from a normal distribution with mean 0 and standard deviation 0.05, thus 
allowing subject-specific deviations. An example of a single iteration is depicted in Figure S4 (right panel), 
displaying the average and subject-specific trends. 

The same fixed-effects Poisson regression of Scenario 6 is applied, but this time adding a stratification of the 
follow-up period, defining intercepts 𝜉𝑖(𝑘) at subject/month instead of subject-only level. These additional 

terms, not directly estimated but treated as nuisance parameters, allow subject-specific monthly deviations 
on top of the average trend captured by the cyclic B-splines. Again, the simulation results demonstrate that 
the case time series model can produce unbiased point estimates and confidence intervals. There is a further 
increase in RMSE due to the additional complexity of adjusting for the trends. 

 

Scenario 8: Unobserved baseline confounder 

This scenario introduces further complexities in the simulation setting by adding a risk factor 𝑧𝑓 that varies 

across subjects but it is constant (fixed) in time. This is simulated independently for each subject by sampling 
a value from a uniform distribution between 0 and 100. A correlation with the continuous exposure 𝑥 defined 
in Scenario 3 is then imposed by multiplying the latter by 𝑧𝑓/50, thus doubling the original exposure for a 

subject with 𝑧𝑓 = 100. This creates a correlation between 𝑥 and 𝑧𝑓, with a Pearson coefficient 𝑟 of 

approximately 0.45. The risk factor 𝑧𝑓 is assumed to be associated with a varying baseline risk, by setting the 

repeated events per subject as the rounded integer of 𝑧𝑓/5 + 1 instead of a random number between 5 and 

20 as in the previous scenarios. 

Figure S4. Left panel: common (shared) trend simulated in seven iterations (in different colours) in Scenarios 
6-9, showing various shapes and strengths. Right panel: deviations (coloured dashed lines) from the common 
trend (continuous black line) for seven random subjects simulated in a single iteration in Scenarios 7-10, 
showing subject-specific trends. 
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The case time series analysis is performed first using the same fixed-effects Poisson regression model of 
Scenario 7, without including the risk factor 𝑧𝑓. The results indicate no bias, thus demonstrating how the case 

time series, similarly to other self-matched methods, can control by design for unobserved baseline 
confounders that do not vary within the follow-up period. 

 

Scenario 9: Time-varying confounder 

This scenario follows the previous example by simulating an additional risk factor, which however is  defined 
as a term 𝑧𝑣 that varies both between and between subjects. This time-varying variable is simulated by 
perturbing the continuous exposure 𝑥 defined in Scenario 3 with a random amount sampled from a normal 
distribution with mean 0 and standard deviation 3. This creates a strong correlation between the two terms 𝑥 
and 𝑧𝑣, with a Pearson coefficient 𝑟 of approximately 0.80. The risk factor 𝑧𝑣 is assumed to have an 
independent effect on the outcome, simulated as a same-day RR of exp(0.01) ≅ 1.01 for a unit increase. 

The case time series analysis is performed first using the same fixed-effects Poisson regression model of 
Scenarios 7 and 8, although in this case adding 𝑧𝑣 as a simple linear term with no lag. The results suggest no 
evidence bias, thus demonstrating how the case time series design provides a way to effectively control for 
confounding from measurable time-varying factors if their risk associations are appropriately specified in the 
regression model. 

 

Scenario 10: Complex lag structure 

The previous scenarios assume a simple temporal relationship with a constant risk across the pre-defined 
period of 10 days. This scenario uses a combination of the settings of Scenarios 7-9, but it describes a more 
complex temporal dependency by assigning different weights to each lag ℓ in the interval 0-10 through the 
function:  

𝑤(ℓ) = 𝜙2,2(ℓ) 

where 𝜙𝑚,𝑠 is a normal density function with mean 𝑚 and standard deviation s. This choice defines a lag 
structure with an initial increase in risk, a peak after 2 days, and then an attenuation until the effect disappears 
after about 8 days (see Figure S5). The weights are then re-calibrated to produce lag-specific effects 𝛽ℓ, with 
∑ 𝛽ℓ = 𝛽𝑐 and RR = exp(𝛽𝑐). In order to produce comparable risk estimates as the previous scenarios with 
constant risk across lags, the cumulative risk is simulated as 𝛽𝑐 = log(1.0025) ⋅ 11. This net risk summary is 
the focus of the inferential assessment using the measures or bias, coverage, and RMSE defined at the 
beginning of the document. In addition, in these most complex scenarios, both unobserved time-invariant and 
observed time-varying risk factors simulated following the same definition of Scenarios 8 and 9, respectively, 
plus the same subject-specific trends described in Scenario 7. 

The case time series analysis is performed using a model similar to the fixed-effects Poisson regression of 
Scenario 9, but this time including a distributed lag model (DLM) to describe more flexibly the complex lag 
structure associated with the exposure.2 This term is parameterized by a cross-basis, a bi-dimensional function 
expressed in the spaces of the exposure and lag. Specifically, the exposure-response is modelled using a simple 
linear function, while a natural cubic spline with three equally-spaced knots a lags 2.5, 5.0, and 7.5 is applied 
to model the lag-response association that describes the temporal structure. 
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Results reported in the main manuscript (Table 1) indicate unbiased point estimates and confidence intervals 
for the log cumulative risk 𝛽𝑐. Figure S5 confirms the findings across the lag-response space, showing that the 
case time series model is capable of retrieving complex lagged associations through the application of 
sophisticated time series techniques based on DLMs. It is worth noting that this complex temporal relationship 
is reliably estimated even in the presence of strong baseline and temporal confounding from time-invariant 
and time-varying risk factors, in addition to subject-specific trends, all of which are appropriately controlled 
for either by design or by including related terms in the regression model. 

 

 

Part II: assessment of underlying assumptions 
In contrast to the previous nine scenarios, the second part of the simulation study (Scenarios 11-14) illustrates 
basic data settings, where however each of the four assumptions that underpin the case time series design is 
in turn violated (Table S2). It is expected that when data are simulated in scenarios where one of the 
assumptions does not hold, the inferential performance is affected, with the occurrence of biases in point 
estimates or wrong coverage of the confidence intervals. 

 

Table S1. Description of simulation scenarios where each of the assumptions of the case time series design 
are violated. 

Scenario Outcome Exposure Trend Lag structure Confounder 

Scenario 11: Outcome-dependent risk Count Episode None Simple None 

Scenario 12: Outcome-dependent follow-up Count Episode None Simple None 

Scenario 13: Outcome-dependent exposure Count Episode None Simple None 

Scenario 14: Variation in baseline risk Count Continuous None Simple None 

 

Scenario 11: Outcome-dependent risk 

Figure S5. Complex lag structures simulated in Scenario 10. The graph shows the lag-response associations 
with the varying pattern of lag-specific RR, with the true simulated association (black line), the average 
estimate (red line), and the estimates of the first 100 iterations (grey lines). The estimates of the lag-
response curve in this scenario is adjusted for additional time-invariant and time-varying confounder, in 
addition to underlying trends in risk. 
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This is the first of four scenarios illustrating examples where one of the underlying assumptions of the case 
time series design does not hold. In particular, this scenario depicts a complex form of dependency within the 
series 𝑦, where the occurrence of an outcome event modifies the risk of future outcomes.3 The example uses 
the same basic setting of Scenario 1, with the sampling of 5-20 potential outcome events per subject. However, 
each event carries a risk of 0.2 that future events are not occurring. This situation can arise, for instance, in 
the presence of a risk of death related to the outcome of interest, or because the subject changes status and 
his/her outcome cannot be recorded. An example is illustrated in Figure S6 (left panel), with 10 subjects for 
whom the risk of any future outcome can vanish after a given outcome event. Note that the subjects are still 
under follow-up, differently from the following scenario. 

The same fixed-effects Poisson model is used to estimate the parameter 𝛽 representing the risk associated 
with the exposure. As shown in Table 1 in the main manuscript, however, the estimates are affected by a 
noticeable negative bias. The mechanism can be explained by the fact that exposures episodes occurring after 
the change of status are not anymore associated with an increased risk. An extreme case of this situation is 
represented by the analysis of non-recurrent outcomes, which must be rare in the population of interest for 
avoiding the bias described here, as previously discussed in the literature of other self-matched designs.4-6 

 

Scenario 12: Outcome-dependent follow-up 

The following assumption of the case time series design states that the follow-up period must be independent 
of the outcome. This assumption was previously described in the context of the self-controlled case series 
study.7,8 In particular, for event-type outcomes, this means that the occurrence of an event must not modify 
the probability of censoring the follow-up. Similarly to the previous scenario, the same settings of Scenario 1 
are used to generate the complete data for the 500 subjects. However, then an artificial outcome-dependent 
censoring mechanism is simulated, sampling the occurrence of a censoring event on the day after an outcome 
with a probability of 0.2. This means that subjects have a 20% risk of having their follow-up stopped after 
experiencing one outcome event. An example is shown in Figure S6 (right panel), with the follow-up periods 
of ten subjects. 

Figure S6. Graphical representation of data simulated in Scenarios 11 and 12, with the follow-up period 
(black lines) and outcome events (red circles) of 10 subjects. Left panel: an example of data with outcome-
dependent risk simulated in Scenario 11, where each subject has a probability of 0.2 of switching to a no-
risk status after each event. Right panel: the same example for Scenario 12, where the same process leads 
instead to censoring. Note that in the first example the follow-up continues (dashed lines) with no recorded 
outcome events, while in the second example the follow-up stops and the time (grey line) and potential 
outcomes (grey circles) do not occur. 
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Although no other modification is applied to the data, the estimate from the fixed-effects Poisson regression 
model is biased upward, as shown in Table 1 of the main manuscript. Compared to Scenario 11, the direction 
of the bias is reversed, as potential post-event times are not always included. 
 

Scenario 13: Outcome-dependent exposure 

The third assumption listed in the manuscript dictates that a given outcome must not modify the probability 
distribution of the exposure 𝑥 in the following period. Similarly to the previous example, this assumption was 
previously described in the context of the self-controlled case series study.7,9 This scenario drops this 
assumption by simulating an inverse temporal relationship between exposure and outcome. The simulation 
setting replicates again Scenario 1, with one modification. Specifically, in addition to the usual RR =
exp(𝛽ℓ) = 1.15 that defines the increase in risk in of the 0-10 lag day following the exposure, another 
relationship is defined over lead times 1:14, meaning the series of lags from -14 to -1. This inverse temporal 
relationship is defined as RR = 0.60, thus generating data where the occurrence of an outcome event is 
associated with a decreased probability of an exposure episode in the following two weeks.  

The data are fitted fixed-effects Poisson model with a single term 𝑥𝑐 representing the exposure cumulated 
within the 0-10 lag period (corresponding to the same day and 10 days before the outcome). However, the 
presence of an independent but unaccounted inverse temporal relationship generates an imbalance in the 
temporal comparison defined within the self-matched data structure. This explains the noticeable bias in the 
estimates, with the underestimation reported in Table 1 of the main manuscript. 

 

Scenario 14: Variation in baseline risk  

The last scenario deals with the fourth assumption of the case time series design, which states that any 
variation in the baseline risk within the follow-up period (or within strata of it) must be fully explained by 
model covariates. This assumption is the same applied within the risk sets of case-crossover design.5,6 There 
are various situations where this is not the case. This scenario simulates unobserved temporal changes in 
baseline risk, for example, due to holiday periods where a given outcome has fewer chances to be recorded. 
The simulation exercise uses the same settings of Scenario 3 but including a random period of one month 
within May-September where the subject is at lower risk, using an RR of 0.7. 
The data are fitted with the same fixed-effects Poisson model. As expected, the results in Table 1 of the main 
manuscript indicate a bias, with the overestimation due to unaccounted temporal differences that affect the 
conditional exchangeability required by the case time series design. Similar biases can arise in the presence of 
potentially measurable but unaccounted risk factors, for example with a modification of Scenario 9 when the 
time-varying variable 𝑧𝑣 is not included in the model. 
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eFigures 

 

eFigure 1. Results of the simulation study in two scenarios. Left panel: results from the basic Scenario 1, with 
the true simulated association (black line), the average estimate of the 50,000 iterations (red line), and the 
estimates of the individual iterations (grey dots, scattered across the y-axis). Right panel: results from the more 
complex Scenario 10, with lag-response associations represented by the true simulated curve (black line), the 
average estimate (red line) of 50,000 iterations, and the estimates of the first 100 iterations (grey lines). 

 

 

 

 
eFigure 2. Graphical representation of a sub-interval of the follow up period for six of the 3,927 subjects included 
in the study on the association between influenza infection and myocardial infarction (AMI). The red circles 
represent AMI events, while the yellow bands represent exposure period defined as 1-91 days after a flu 
episode. Note how some subjects have their follow-up censored before the end of the study period (subjects 2 
and 4), or overlapping exposure periods for repeated flu episodes (subjects 3 and 5). 
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eFigure 3. Comparison of lag-response associations estimated by two alternative case time series (CTS) models, 
as relative risk (RR) and 95% confidence intervals. The curves represent the risk of acute myocardial infarction 
(AMI) in the 1-91 days following a flu episode, estimated using natural cubic splines (red) and step functions 
(blue). 
 
 
 
 
 

eFigure 4. Number of participants (left panel) and daily respiratory symptoms (right panel) during the study 
period of the AirRater study. The graphs indicate a complex study setting, characterized by continuous 
recruitment, high dropout rates, intermittent participation, and a highly seasonal outcome with peaks of self-
reported allergic symptoms in the Australian summer period. 
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