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A1 Inverse probability of treatment weights (IPTW)

To estimate MSMs using IPTW, the weight at time t for individual i is the inverse of their probabil-
ity of their observed treatment pattern up time time t given their time-dependent covariate history
(Cole and Hernán, 2008, Daniel et al., 2013)

Wi(t) =

btc∏
k=0

1

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
(A1)

Some individuals can have very large weights, which can results in the parameters of the MSM be-
ing estimated very imprecisely, and therefore stabilized weights are typically used. The stabilized
weight for individual i is:

SWi(t) =

btc∏
k=0

Pr(Ak = Ak,i|Āk−1,i, T ≥ k)

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
(A2)

The MSMs in equations (3) and (4) of the main text are marginal over the distribution of the
characteristics of the population at time 0. It is also common to condition on baseline character-
istics L0, in which case the MSMs are of the form λTa0 (t|L0) = λ0(t) exp

{
g(ābtc, L0;β)

}
and

λTa0 (t|L0) = α0(t) + g(ābtc, L0;α(t)). The contributions of L0 may be through main effects
only, or there may be interactions between L0 and ābtc. When the MSM is conditional on L0, the
numerator in the stabilized weights may also condition on L0, and vice-versa:

SWi(t) =

btc∏
k=0

Pr(Ak = Ak,i|Āk−1,i, L0,i, T ≥ k)

Pr(Ak = Ak,i|L̄k,i, Āk−1,i, T ≥ k)
(A3)
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A2 MSMs using conditional additive hazard models: additional re-
sults

In this section we use the general results from Section 4.2 to derive the form of the MSM λTa0 (t)
when the conditional additive hazard is of the form

λ(t|Ābtc, L̄btc, U) = α0(t) +

btc∑
j=0

αAj(t)Abtc−j +

btc∑
j=0

αLj(t)Lbtc−j + αU (t)U (A4)

and when the covariates are normally and conditionally normally distributed as follows

U ∼ N(ν, φ2)

L0|U ∼ N(θ00 + θ0UU, σ
2
0)

L1|A0 = a0, L0, U, T ≥ 1 ∼ N(θ10 + θ1Aa0 + θ1LL0 + θ1UU, σ
2
1)

We use the following notation for the cumulative coefficients of the conditional additive hazard
model

AU =

∫ t

0
αU (s)ds,

AL0 =

∫ t

0
αL0(s)ds, AL0,1 =

∫ t

1
αL0(s)ds

AL1 =

∫ t

0
αL1(s)ds

The results given below use the general results that for X ∼ N(µ, σ2)

E {exp(−Xw)} = exp
(
−µw + σ2w2/2

)
(A5)

E {X exp(−Xw)} = − d

dw
E {exp(−Xw)} = (µ− σ2w) exp

(
−µw + σ2w2/2

)
(A6)

For 0 < t < 1 the conditional hazard in (A4) is λ(t|A0, L0, U) = α0(t)+αA0(t)A0+αL0(t)L0+
αU (t)U . Using the result in (15) in the main text, the form of λTa0 (t) for 0 < t < 1 is

λTa0 (t) = α0(t) + αA0(t)a0 +
EL0,U {(αL0(t)L0 + αU (t)U) exp (−AL0L0 −AUU)}

EL0,U {exp (−AL0L0 −AUU)}
= α0(t) + αA0(t)a0

+
EU

{
exp (−AUU)

[
αL0(t)EL0|U {L0 exp (−AL0L0)}+ αU (t)UEL0|U {exp (−AL0L0)}

]}
EU

[
exp (−AUU)EL0|U {exp (−AL0L0)}

]
(A7)

We let
C = exp

(
−θ00AL0 + σ20A2

L0/2
)

D = exp
{
−ν(θ0UAL0 +AU ) + φ2(θ0UAL0 +AU )2/2

}
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Under the assumed normal distributions for U and L0|U and using the results in (A5) and (A6) it
can be shown that

EL0|U {exp (−AL0L0)} = C exp (−θ0UAL0U)

EL0|U {L0 exp (−AL0L0)} =
(
θ00 + θ0UU − σ2

0AL0

)
C exp (−θ0UAL0U)

EU

[
exp (−AUU)EL0|U {exp (−AL0L0)}

]
= CD

EU

[
U exp (−AUU)EL0|U {exp (−AL0L0)}

]
= CD

(
ν − φ2AU − φ2θ0UAL0

)
EU

[
exp (−AUU)EL0|U {L0 exp (−AL0L0)}

]
= CD

{
θ00 − σ2

0AL0 + θ0U
(
ν − φ2AU − φ2θ0UAL0

)}
It follows that λTa0 (t) for 0 < t < 1 in (A7) can be written

λTa0 (t) = α̃0(t) + αA0(t)a0 (A8)

where

α̃0(t) = α0(t) + αL0(t)
(
θ00 − σ2

0AL0

)
+ (αL0(t)θ0U + αU (t))

(
ν − φ2AU − φ2θ0UAL0

)
(A9)

For 1 ≤ t < 2 the conditional hazard in (A4) is λ(t|Ā1, L̄1, U) = α0(t)+αA0(t)A1+αA1(t)A0+
αL0(t)L1 +αL1(t)L0 +αU (t)U . Using the result in (16) in the main text, the form of λTa0 (t) for
1 ≤ t < 2 is

λTa0 (t) = α0(t) + αA0(t)a1 + αA1(t)a0+

EL0,U

[
EL1|A0=a0,L0,U,T≥1 {(αL0(t)L1 + αL1(t)L0 + αU (t)U) exp (−AL0,1L1 −AL1L0 −AUU)}

]
EL0,U

[
EL1|A0=a0,L0,U,T≥1 {exp (−AL0,1L1 −AL1L0 −AUU)}

]
= α0(t) + αA0(t)a1 + αA1(t)a0+

EU

{
exp (−AUU)EL0|U

[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {(αL0(t)L1 + αL1(t)L0 + αU (t)U) exp (−AL0,1L1)}

]}
EU

{
exp (−AUU)EL0|U

[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {exp (−AL0,1L1)}

]}
(A10)

We let

F = exp
{
−(θ10 + θ1Aa0)AL0,1 + σ21A2

L0,1/2
}

G = exp
{
−θ00 (AL1 + θ1LAL0,1) + σ20 (AL1 + θ1LAL0,1)

2 /2
}

H = exp {−ν (AU + θ1UAL0,1 + θ0UAL1 + θ0Uθ1LAL0,1)

+φ2 (AU + θ1UAL0,1 + θ0UAL1 + θ0Uθ1LAL0,1)
2 /2

}
J = αL0(t)

(
θ10 − σ21AL0,1

)
+ (αL1(t) + αL0(t)θ1L) {θ00 − σ20 (θ1LAL0,1 +AL1)}

K = αU (t) + αL0(t)θ1U + θ0U (αL1(t) + αL0(t)θ1L)

Under the assumed normal distributions for U , L0|U , L1|A0 = a0, L0, U, T ≥ 1 and using the
results in (A5) and (A6), the term in the denominator of the ratio of expectations in the third term
of (A10) can be derived sequentially as follows:

EL1|A0=a0,L0,U,T≥1 {exp (−AL0,1L1)} = F exp (−θ1LAL0,1L0 − θ1UAL0,1U)

EL0|U
[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {exp (−AL0,1L1)}

]
= FG×

exp {− (θ1UAL0,1 + θ0Uθ1LAL0,1 + θ0UAL1)U}

EU

{
exp (−AUU)EL0|U

[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {exp (−AL0,1L1)}

]}
= FGH
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Similarly, the terms in the numerator of the ratio of expectations in the third term of (A10) can be
derived sequentially as follows:

EL1|A0=a0,L0,U,T≥1 {(αL0(t)L1 + αL1(t)L0 + αU (t)U) exp (−AL0,1L1)} =

exp (−θ1LAL0,1L0 − θ1UAL0,1U)×
F
{
αL0(t)

(
θ10 + θ1Aa0 − σ21AL0,1

)
+ (αL1(t) + αL0(t)θ1L)L0 + (αU (t) + αL0(t)θ1U )U

}
EL0|U

[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {(αL0(t)L1 + αL1(t)L0 + αU (t)U) exp (−AL0,1L1)}

]
=

FG (J + αL0(t)θ1Aa0 +KU) exp {− (θ0Uθ1LAL0,1 + θ0UAL1 + θ1UAL0,1)U}

EU

{
exp (−AUU)EL0|U

[
exp (−AL1L0)EL1|A0=a0,L0,U,T≥1 {(αL0(t)L1 + αL1(t)L0 + αU (t)U) exp (−AL0,1L1)}

]}
=

FGH
[
J + αL0(t)θ1Aa0 +K

{
ν − φ2 (AU + θ1UAL0,1 + θ0UAL1 + θ0Uθ1LAL0,1)

}]
It can be shown using the above results that

λTa0 (t) = α̃0(t) + αA0(t)a1 + α̃A1(t)a0 (A11)

where

α̃0(t) = α0(t) +K
{
ν − φ2 (AU + θ1UAL0,1 + θ0UAL1 + θ0Uθ1LAL0,1)

}
+ J

and
α̃A1(t) = αA1(t) + αL0(t)θ1A

We have therefore derived the form of the MSM λTa0 (t) for 0 < t < 1 and 1 ≤ t < 2 when the
conditional hazard is of the form in (A4) and when the covariates are normally and conditionally
normally distributed. As shown in more general results in Section 4.2 of the main text, the MSMs
have an additive form. However, the above results show that the formulae for the coefficients in
the MSM take quite a complicated form even in this relatively simple setting. The expressions
would become further complicated if there were multiple time-dependent covariates L and when
the conditional distributions for the covariates given the past were not normal, in which case there
will not in general exist closed form expressions for the coefficients of the MSM. In Section 6.2
of the main text we outline a simulation-based procedure for obtaining the true values of the
coefficients in the MSM.

A3 Incorporating interactions

In Section 4.2 of the main text, we considered the conditional additive hazard model given in
equation (14). Suppose instead that there was also an interaction between Āt and L̄t:

λ(t|Ābtc, L̄btc, U) = α0(t) + α>A(t)v(Āt) + α>L (t)w(L̄t) + α>AL(t)q(Āt, L̄t) + αU (t)U (A12)

where q(Ābtc, L̄btc) denotes a vector values function of interactions between Āt and L̄t. Following
the same workings as in Section 4.2 of the main text, it can be shown that for 0 < t < 1

λTa0 (t) = α0(t) + α>A(t)v(a0) +
EL0,U

{(
α>L (t)w(L0) + α>AL(t)q(a0, L0) + αU (t)U

)
r0(t)

}
EL0,U {r0(t)}

(A13)
where r0(t) = exp

(
−
∫ t
0 (α>L (s)w(L0) + α>AL(s)q(a0, L0) + αU (s)U)ds

)
.
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For 1 ≤ t < 2 we have

λTa0 (t) = α0(t) + α>A(t)v(ā1)+

EL0,U

[
EL1|A0=a0,L0,U,T≥1

{(
α>L (t)w(L̄1) + α>AL(t)q(ā1, L̄1) + αU (t)U

)
r1(t)

}]
EL0,U

[
EL1|A0=a0,L0,U,T≥1 {r1(t)}

] (A14)

where r1(t) = r0(t) exp
{
−
∫ t
1

(
α>L (s)f(L̄1) + α>AL(s)q(ā1, L̄1) + αU (s)U

)
ds
}

.

For 1 ≤ t < 2 the intercept and the coefficients for a0 and a1 in the MSM are different from those
in the conditional model. The MSM also involves an interaction between a0 and a1 even if there
is no interaction between a0 and a1 in the conditional hazard model.

A4 Simulation algorithm: extensions

In section 5 of the main text we described a simulation algorithm for longitudinal and time-to-event
data, using a conditional additive hazard model of the form λ(t|Ābtc, L̄btc, U) = α0 + αAAbtc +
αLLbtc+αUU . The algorithm can be extended to accommodate a more general form for the con-
ditional hazard including time-varying coefficients: λ(t|Ābtc, L̄btc, U) = α0(t) +α>A(t)v(Ābtc) +

α>L (t)w(L̄btc)+αU (t)U . For the simulation the investigator needs to specify the functional forms
for the coefficients. One way to simulate data in this more general setting is by generating event
times using a piecewise exponential distribution, as we outline below. Further extensions to in-
clude additional terms such as interaction terms follow directly.

A general form for the simulation algorithm is as follows:

1. Generate the individual frailty term U .

2. Generate L0 conditional on U .

3. Generate A0 from a Bernoulli distribution conditional on L0.

4. The conditional hazard is λ(t|Ābtc, L̄btc, U) = α0(t) + α>A(t)v(Ābtc) + α>L (t)w(L̄btc) +
αU (t)U . Event times are generated in the period 0 < t < 1 using a piecewise exponential
distribution on a grid from 0 to 1 in increments of length 0.1 (this could be made smaller
or larger). The procedure is as follows. First generate V ∼ Uniform(0, 1) and calculate
T ∗ = − log(V )/λ(0|A0, L0, U). If T ∗ < 0.1 the event time is set to be T = T ∗. If
T ∗ ≥ 0.1, then for w = 0.1, 0.2, . . . , 0.9:

(i) Generate v ∼ Uniform(0, 1) and calculate T ∗ = − log(V )/λ(w|A0, L0, U).

(ii) If T ∗ < 0.1 the event time is set to be T = w + T ∗.

(iii) If T ∗ ≥ 0.1 move to the next value of w and return to (i).

(iv) When w = 0.9, if T ∗ ≥ 0.1 move to step 5.

For individuals who remain at risk of the event at visit time k = 1:

5. Generate Lk conditional on Āk−1, L̄k−1, U, T ≥ k.

6. Generate Ak from a Bernoulli distribution conditional on Āk−1, L̄k, T ≥ k.

7. Generate event times in the period k ≤ t < k+ 1 using a piecewise exponential distribution
on a grid from k to k+1 in increments of length 0.1. First generate V ∼ Uniform(0, 1) and
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calculate T ∗ = − log(V )/λ(k|Ā1, L̄1, U). If T ∗ < 0.1 the event time is set to be T = T ∗.
If T ∗ ≥ 0.1, then for w = k + 0.1, k + 0.2, . . . , k + 0.9:

(i) Generate V ∼ Uniform(0, 1) and calculate T ∗ = − log(V )/λ(w|Āk, L̄k, U).

(ii) If T ∗ < 0.1 the event time is set to be T = w + T ∗.

(iii) If T ∗ ≥ 0.1 move to the next value of w and return to (i).

(iv) When w = k+ 9, if T ∗ ≥ 0.1 the individual remains at risk of the event at time k+ 1.

8. Repeat steps 5-7 for k = 2, 3, 4. Individuals who do not have an event time generated in the
period 0 < t < 5 are administratively censored at time 5.
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