Appendix

Appendix 1 Analysis plan

Study title	Iron treatments (Fe) in Reproductive age women with Iron
	Deficiency Anaemia (FRIDA): a systematic review with network
	meta-analysis of randomised controlled trials

1. Introduction

1.1. Clinical background

Iron deficiency is the commonest nutritional deficiency worldwide. Women of reproductive age are more prone to iron deficiency due to the i) regular loss of blood secondary to the menstrual cycles ii) the increased iron demands of pregnancy and childbirth and iii) physiological differences in iron metabolism as compared to men. Iron deficiency is a progressive process, where the body's iron stores move from being replete to deficient to absent. Absent iron stores lead to a reduction in haemoglobin, which termed anaemia. Anaemia can also be caused by other nutritional deficiencies (vitamin B12 and folate) and structural changes in haemoglobin (termed haemoglobinopthies including thalassemia and sickle cell disease), which are not included in this review.

1.2. Overall study design

Study Design: Network Meta-Analysis (NMA) of randomised controlled trials (RCTs) **Interventions/Comparator:** Iron treatment in any formulation, regime and form of administration compared to other iron treatment, placebo, vitamin or mineral supplement, or no treatment.

1.3. Purpose of the analysis plan

The purpose of this document is to provide details of the statistical analyses and presentation of results to be reported within the main outputs of Iron treatments (Fe) in Reproductive age women with Iron Deficient Anaemia (FRIDA) study. Any exploratory, post-hoc or unplanned analyses will be clearly identified in the respective study analysis report.

The following guidelines were reviewed in preparation for writing this document:

- 1. Study protocol (PROSPERO <u>CRD42018100822</u>)
- 2. Reporting guidelines PRISMA-NMA (1)

1.4. Review team

Dr Ewelina Rogozinska, Queen Mary University of London Dr Jahnavi Daru, Queen Mary University of London Mr Marios Nicolaides, Queen Mary University of London Dr Carmen Amezcua, Universidad de Granada Ms Elena Stallings, Hospital Universitario Ramón y Cajal Dr Rui Wang, Monash University and University of Adelaide, Australia Dr Susan Robinson, Guy's and St Thomas' Hospital Dr Carlos Martín Saborido, Hospital La Paz Institute for Health Research (IdiPAZ) Prof Javier Zamora, Queen Mary University of London; Hospital Universitario Ramón y Cajal Prof Khalid S Khan, Queen Mary University of London, UK

Ewelina Rogozińska, Jahnavi Daru, Rui Wang, Carlos Saborido and Javier Zamora were primarily responsible for writing the Statistical Analysis Strategy. Ewelina Rogozińska will be responsible for writing the statistical software syntax (code) that subsequently will be verified by Carlos Saborido. Ewelina Rogozinska will implement the statistical strategy at the point of analysis.

2. Study objectives

2.1. Primary objective

To compare the relative effectiveness of different iron preparations offered to women of reproductive age with iron deficiency anaemia on haemoglobin levels within three distinctive populations: i) menstruating, ii) pregnant, and iii) postpartum women.

2.2. Secondary objective

To compare different iron preparations offered to women of reproductive age women with iron deficiency anaemia based on their effect on serum ferritin levels and side effects profile within three distinctive populations: i) menstruating, ii) pregnant, and iii) postpartum women.

3. Outcome measures

3.1. Primary outcome(s)

Haemoglobin (Hb) level as reported in the eligible trials. The preference will be towards Hb posttreatment levels, however we will also collect Hb level reported as mean change from baseline and/or achievement of pre-defined Hb threshold.

3.2. Secondary outcome(s)

Serum ferritin (SF) level as reported in the eligible trials. The preference will be towards SF posttreatment levels, however we will also collect SF level reported as mean change from baseline and/or achievement of pre-defined SF threshold.

Any adverse reaction to the treatment collected, will be categorised as severe and non-severe. If the data permit, we will attempt to collect data on following outcomes: death, quality of life, infection, admission to the hospital, and need for blood transfusion.

4. Identification of relevant studies

5.1. Literature search

We will search Cochrane Central Register of Controlled Trials (CENTRAL) to identify studies on effectiveness of iron treatments (any treatment versus any other treatment, placebo, vitamin supplementation or no treatment) in women of reproductive age group. Where required, we will either undertake new searches in Medline (via Ovid), Embase, Scopus, Web of Science and SciELO if there are no relevant Cochrane reviews, or update the search to-date for the relevant Cochrane reviews with the literature searches older than one year. We will not apply any language limitations.

For the additional search strategies, we will use the terms listed in the Cochrane reviews combining three main domains: 'women' (pregnant or non-pregnant separately), 'iron deficiency anaemia', and 'randomised control trial' design. The database search will be supplemented with an exploration of grey literature in SIGLE, trial registers (Clinical Trials Gov., ANZCTR, EU Clinical Trial Register, ISRCTN) and general Internet search (Google and Goole Scholar) for any completed trials with published results not identified in the literature search (non-indexed publications).

Two reviewers will independently evaluate all citations and studies against inclusion criteria. In case of disagreement, we will seek the opinion of a third reviewer. We will develop a list of all evaluated studies with reasons for exclusion for studies considered as not meeting the inclusion criteria.

5.2. Inclusion and exclusion criteria

We will include RCTs with randomisation on a cluster or individual level that included women of reproductive age with iron deficiency anaemia. We will exclude women with known chronic conditions, which likely influence laboratory blood parameters, e.g. chronic kidney disease or those with cancer. The RCTs have to evaluate one or more of iron-based preparation compared with another iron preparation or other intervention (placebo, no treatment, or individual vitamin or mineral supplement). We will exclude all studies where iron preparation is unclear and cannot be classified. The studies will be grouped into those that recruited menstruating, pregnant or postpartum women, and the details of inclusion criteria for population and interventions are presented in Table 1.

Group	Components	Description
Menstruating women	Population	• Any women with diagnosed IDA not caused by a chronic condition
	Intervention/ Comparator	 Iron treatment in any format, regime and form of administration compared to other iron treatment, placebo, vitamin supplement or no treatment. We will also include studies with blood transfusion and erythropoietin Exclude studies where iron therapy is given concomitantly with treatments for heavy menstrual bleeding such as hormone treatments, contraception, the Mirena coil, and radiological and surgical treatments
Pregnant	Population	• Women with at any stage of pregnancy with diagnosed IDA not caused by a chronic condition.
	Intervention/ Comparator	 Iron treatment in any format (a minimum of 60mg of elemental iron prescribed) (2), regime and form of administration compared to other iron treatment, placebo, vitamin supplement or no treatment. We will exclude studies evaluating erythropoietin, micronutrient or multivitamin supplements, or with blood transfusion as an intervention.
Postpartum	Population	• The postpartum period up to 6 weeks after delivery. We assume that anaemia in the postpartum population is due to iron deficiency, unless otherwise stated in the study.
	Intervention/ Comparator	• Iron treatment in any format, regime and form of administration compared to other iron treatment, placebo, vitamin supplement or no treatment.

Table 1 Research question for menstruating, pregnant or postpartum populations.

5. Data extraction and management

We will develop separate Data Extraction Forms (DEF) for all three populations. The DEF will be piloted on five to ten eligible studies. Two researchers will extract data from the included studies independently. Any discrepancies between their choices will be resolved by consensus with input from a third investigator.

5.1. Population characteristics

From all studies regardless of the subpopulation, we will collect following information about women's characteristics: age, ethnicity, baseline intake of iron (if available), baseline Hb and serum ferritin levels.

5.1.1.For women of reproductive age

- i. Increased demand for iron (heavy menstrual bleeding, elite athletes, etc.)
- ii. Presence of relevant to iron metabolism co-morbidities

5.1.2.For pregnant women

i. Single or multiple gestation

- ii. Pre-existing haemoglobinopathies
- iii. Obstetric risk factors for haemorrhage

5.1.3.For postnatal women

- i. Increased demand for iron (postpartum haemorrhage)
- ii. Women receiving donor blood transfusion
- iii. Presence of relevant to iron metabolism co-morbidities

For women receiving intravenous iron we will additionally collect information on baseline weight as intravenous iron dosages are calculated according to the participant's baseline Hb level and weight.

5.2. Outcome data

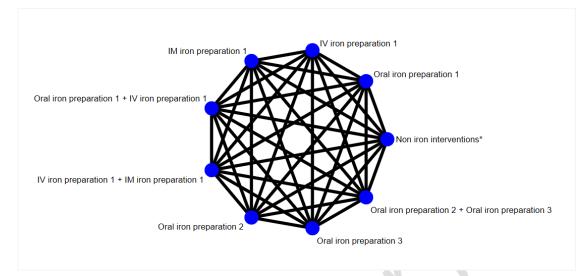
For continuous outcomes, we will extract values and the measures of their variances as given by study authors at the end of the intervention (final values and mean changes from baseline).

For binary outcomes, we will extract number of events and number of participants in a given arm: a) as reported by the study authors for a given analysis; b) as number of participants randomised to a given intervention arm.

5.3. Risk of bias (quality) assessment

The quality of RCTs will be assessed using the approach recommended by the Cochrane risk of bias (version 1.0). (3)

5.4. Data coding and storage


All extracted data will be crosscheck and coded in a uniform way, as described below.

5.4.1. Iron-based interventions

In the first instance, the treatments will be classified by the route of administration and their preparation (Figure 1). We anticipate variability in dose of elemental iron across the included studies. Furthermore, total dose of iron provided intravenously (IV) or intramuscularly (IM) is calculated according to starting Hb level and individual weight. We will, therefore, collect information on frequency, and total daily dose of elemental iron. From studies where iron was provided via IV/IM, we will collect information on women's baseline Hb level (average) and weight (average). The information will be cross tabulate and their comparability assessed across the studies. In case of extreme differences in the doses across the studies, we will explore their impact on the pooled effect in the pair-wise meta-analyses and report this as a limitation of our work.

5.4.2. Multiple iron-interventions

Studies with an arm where two types of iron preparations are both used will be treated as separate node (Figure 1).

IV, intravenous; IM, intramuscular;*placebo, no intervention, vitamins and/or minerals Figure 1 Conceptual network of iron preparations used to treat iron deficient anaemia

5.4.3.Iron and concomitant interventions

In the first instance we will assume no substantial impact of concomitant, non-iron interventions (vitamins and/or minerals). This assumption will at a later stage be examined further in sensitivity analyses. In multiarm-design trials containing study arms of iron preparations with and without concomitant interventions (vitamin and/or mineral) we will combine data into one group (arm) (means and their variances, events and group size) using available and acceptable methods. (4) We will keep a record of any data transformations.

5.4.4. Non-iron arms

The arms containing placebo, no intervention, vitamins and/or minerals used as comparators will be all labelled as "non-iron treatments". In multiarm-design trials where a separate placebo and vitamin and/or mineral were used we will combine data into one group (means and their variances, events and group size) using available and acceptable methods. (4) We will keep a record of any data transformations.

5.4.5. Adverse events

We will code adverse events as sever and non-sever following below principles:

- a) Severe: are those adverse reactions requiring hospital admission, significant morbidity and/or death.
- **b**) **Non-severe**: all other reported adverse reactions (e.g. diarrhoea, constipation, nausea and vomiting, etc.).

5.4.6. Transformation of continuous outcome measures

Data for continuous outcomes for which the measurement variance is reported as standard error will be recalculated to standard deviations using standard equation. (4) For studies where mean values are given without measurement variances, we will follow the approach proposed in the Cochrane Handbook (4). The values reported as median and interquartile ranges (IQR) will be extracted from the literature but not used in the meta-analysis. We will keep a record of any data transformations.

5.4.7. Assumption of missingness for binary outcomes

We will not make any assumptions regarding data missingness and all the analyses will be performed on available case-bases. Potential impact of missing outcome data will be addressed in sensitivity analysis for attrition bias.

6. Strategy for data synthesis

Our main goal is to construct networks comparing all iron preparation reported in included trials in the three pre-defined populations: menstruating women, pregnant and postnatal women. In our work we will follow the best practice recommended for the frequentist approach to network meta-analysis. (5) All analyses will be performed using STATA 15.1 (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC). (6)

6.1. Assessment of transitivity across treatment comparisons

In each population, we will cross-tabulate and inspect baseline characteristics to evaluate the presence of clinical heterogeneity and validity of transitivity assumption. We will visually inspect the distribution of potential effect modifiers such as specified in section 5.1.

6.2. Effect measures

The default effect estimate for continuous measures, will be weighted mean difference (WMD), and for dichotomous odds ratio (OR). We will report both with a respective 95% confidence interval (CI). Our goal is to maximise the number of available for inclusion in the meta-analysis, therefore if any of the effectiveness outcomes (Hb or SF) will be reported as a dichotomous measure, we will assess the possibility of using recognised methods to convert the dichotomous effect measure (OR) to standardised mean difference (SMD). (7) If such a scenario occurs, the reported effect measure will be SMD. The effect estimate will be also presented as SMD if the scales, on which outcomes were measured, across the studies will vary.

6.3. Pair-wise meta-analysis

In the first instance, we will visually inspect the direction of the effect estimates in the direct evidence for each comparisons to assess the feasibility of their pooling in a meta-analysis. If there will be only a single trial reporting data for a given comparison, we will use a fixed effects model to estimate the effect. Where two or more studies contribute the data, the default will be a random-effects model with restricted maximum likelihood. The statistical heterogeneity will be measured using I² statistic and Tau. (8) For continuous outcomes we will report the number of studies that reported median and IQR, and could not be incorporated into the analysis.

6.3.1. Method for handling centre and cluster effects within each trial

Cluster-randomised trials will be incorporated in the pair-wise analyses providing the Inter-Cluster Correlation coefficients are reported.

6.3.2. Adverse events

In case of our initial approach to comparing saftety profile will deem not feasible. We will perform a synthesis of adverse events (9) for the top three interventions identified in the network meta-analysis for the main outcome (Hb) and in the placebo (or no intervention) arms.

6.3.3. Dealing with timing-related issues

Based on the finding of previous research (10-12), we anticipate challenges caused by varying outcome measurement time and treatment duration. We consulted a panel of clinical experts (obstetric haematologists) - independent from this work - to guide our decisions on this matter and ensure clinical relevance. Consequently, we decided what follows:

- i. We will collect on the gestational age at inclusion and record the timing of outcome measurement from baseline.
- ii. The analysis will performed for the most frequently reported time point and its clinical relevance discussed with the clinical experts
- iii. Additionally, if possible, we will perform a sensitivity analysis using all available data in a multivariate network meta-analysis where the timing of a measurement will be incorporated as a covariate.

6.4. Network meta-analysis

6.4.1. Setting up network

For each combination of population and outcome, we will assess feasibility of performing network meta-analysis following subsequent steps:

- i. Evaluate the availability of data for each comparisons in a pair-wise meta-analysis and distribution of relevant baseline and study-level characteristics
- ii. Generate and inspect geometry of the network for its connectivity

The node with the **not-active interventions** (e.g. placebo) will be set as a reference treatment. If the effect estimates across the studies in the pair-wise meta-analysis will be highly heterogenous (substantial heterogeneity as per Cochrane definition) or network poorly connected, we will refrain from performing network meta-analysis and report only the findings of the pair-wise meta-analysis.

6.4.2. Network meta-analysis

The network meta-analysis will be performed using a multivariate methods following frequentist approach as implemented in network routine in Stata (13, 14) fitting a treatment contrast model with assumption of a common heterogeneity for all comparisons.

We assume that within all three populations (menstruating, pregnant and postpartum women), any woman from the included trials could be equally likely randomised to any other iron treatment. Hence, in the first instance the network meta-analysis will fitted under assumption of consistency. (13)

Testing for consistency

Consistency between direct and indirect sources of evidence will be statistically assessed locally (i.e. for all the closed loops in the network) and globally. The local consistency will be assessed by side-splitting approach (15-17), and the global using design-by-treatment interaction model. (18) If the consistency factors denote its lack, the distribution of effect modifiers within the loop will be explored. At any stage of the network meta-analysis, the transitivity assumptions will be evaluated conceptually for all indirect comparisons to derive valid network meta-analysis estimates.

6.4.3. Ranking treatments

The relative ranking of treatments will be presented in the form of the surface under the cumulative ranking (SUCRA) probabilities for the treatment achieving the highest value of the outcome measure for the effectiveness data, and the lowest value for the adverse events. We will also generate a mean rank for each intervention.

6.4.4. Presentation of the findings

For each model we will generate:

- a) Graph with network map
- b) Overview of pair comparisons by direct, indirect and mixed (network) evidence.
- c) Contribution matrix (study by intervention) showing borrowing of strength from individual studies for each intervention
- d) Overview of treatment effects for all interventions in comparison to a common comparator (no iron)
- e) Ranking of interventions, mean rank and SUCRA

All information will be collated in the summary of findings tables for network meta-analysis.

6.5. Sensitivity analyses

6.5.1. Secondary models

As a secondary approach we will rank interventions using alternative way of grouping interventions base on a) rout of iron administration (any oral, any IV, any IM); and b) iron salt type combined with route of administration (ferric salts, ferrous salts, lactoferrin).

We will also attempt to apply a multivariate model using all available data and including time of outcome measurement as a covariate.

6.5.2. Subgroup comparison

For the pregnant population we plan a subgroup analyses for the main outcome by country income status according to the World Bank classification (low and middle-income vs high income).

6.5.3. Sensitivity analyses

We will explore the impact of the following factors:

Study quality

We will use CINeMA software (19, 20) to evaluate the confidence in the findings from the main network meta-analysis for Hb levels evaluated around 4 weeks from baseline measure, and interventions treated as individual preparations.

Publication date

We will limit the studies in the main analysis only to those published after year 2000.

Concomitant minerals & vitamins

We will remove arms and studies included in the main analysis were the iron treatment was provided with minerals and/or vitamins such as folic acid, vitamin C, or vitamin B.

References

- 1. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777-84.
- 2. WHO. WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: WHO Library; 2016.
- 3. Higgins JPTA, D.G. . Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT GS, editor. Cochrane Handbook for Systematic Reviews of Interventions. Chichester (UK): John Wiley & Sons; 2008.
- 4. CochraneCollaboration. Cochrane handbook for systematic reviews of interventions. Oxford (UK): Wiley-Blackwell; 2008. Available from: Table of contents only http://www.loc.gov/catdir/toc/ecip0819/2008022132.html.
- 5. Caldwell DM. An overview of conducting systematic reviews with network meta-analysis. Syst Rev. 2014;3:109.
- 6. Shim S, Yoon BH, Shin IS, Bae JM. Network meta-analysis: application and practice using Stata. Epidemiol Health. 2017;39:e2017047.
- 7. Chinn S. A simple method for converting an odds ratio to effect size for use in meta-analysis. Statist Med. 2000;19:3127–31.
- 8. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-58.
- 9. Nyaga VN, Arbyn M, Aerts M. Metaprop: a Stata command to perform meta-analysis of binomial data. Archives of Public Health. 2014;72:39-49.
- Malinowski AK, D'Souza R, Khan KS, Shehata N, Malinowski M, Daru J. Reported Outcomes in Perinatal Iron Deficiency Anemia Trials: A Systematic Review. Gynecol Obstet Invest. 2019:1-18.
- 11. Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015(7):CD004736.
- 12. Reveiz L, Gyte GM, Cuervo LG, Casasbuenas A. Treatments for iron-deficiency anaemia in pregnancy. Cochrane Database Syst Rev. 2011(10):CD003094.
- 13. White IR. Network meta-analysis. Stata J 2015;358:951-85.
- 14. White IR, Barrett JK, Jackson D, Higgins JP. Consistency and inconsistency in network metaanalysis: model estimation using multivariate meta-regression. Research synthesis methods. 2012;3(2):111-25.
- 15. Caldwell DM, Welton NJ, Ades AE. Mixed treatment comparison analysis provides internally coherent treatment effect estimates based on overviews of reviews and can reveal inconsistency. Journal of clinical epidemiology. 2010;63(8):875-82.
- 16. Salanti G, Higgins JP, Ades AE, Ioannidis JP. Evaluation of networks of randomized trials. Stat Methods Med Res. 2008;17(3):279-301.
- 17. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Statistics in medicine. 2010;29(7-8):932-44.
- 18. Efthimiou O, Debray TP, van Valkenhoef G, Trelle S, Panayidou K, Moons KG, et al. GetReal in network meta-analysis: a review of the methodology. Research synthesis methods. 2016;7(3):236-63.
- 19. CINeMA: Confidence in Network Meta-Analysis Switzerland: University of Bern, Institute of Social and Preventive Medicine; 2017 [Available from: cinema.ispm.unibe.ch.
- 20. Salanti G, Del Giovane C, Chaimani A, Caldwell DM, Higgins JP. Evaluating the quality of evidence from a network meta-analysis. PLoS One. 2014;9(7):e99682.

Appendix 2 Details of the methods

Eligibility criteria

We excluded trials:

- comparing different dosage regimens of the same iron preparation e.g. ferrous sulphate 200 mg of elemental iron versus 400 mg of elemental iron (excluded as we compared different types of iron preparations not the amount of elemental iron they contained);
- with erythropoietin or blood transfusion;
- with micronutrient or multivitamin supplements were evaluated as treatment option; however, we allowed trials where individual vitamins such as folic acid, vitamin B12, B2, C or zinc were given alongside iron preparation;
- study arms included vitamin A;
- studies with outdated iron preparations.

Study identification

Databases searched in Cochrane reviews

1. Revirez et al. 2011 (1)

The Cochrane Pregnancy and Childbirth Group's Trials Register (7 June 2011), CENTRAL (2011, Issue 5), PubMed (1966 to June 2011), the International Clinical Trials Registry Platform (ICTRP) (2 May 2011), Health Technology Assessment Program (HTA) (2 May 2011) and LATINREC (Colombia) (2 May 2011).

2. Peña-Rosas et al. 2015 (2)

The Cochrane Pregnancy and Childbirth Group's Trials Register (10 January 2015), the WHO International Clinical Trials Registry Platform (ICTRP) (26 February 2015)

Databases searched for period 2011 to July 2018, and then 2018 to February 2021

- Medline (via Ovid),
- Embase,
- Scopus,
- Web of Science
- Scientific Electronic Library Online (this database was not searched between 2018 and February 2021 due to access issues)

Clinical Trial registers searched for period 2011 to July 2018

- Clinical Trials Gov (also searched between 2018 and February 2021)
- Australian New Zealand Clinical Trials Registry,

- European Union Clinical Trial Register,
- International Standard Randomised Controlled Trial Number registry

Data collection

We extracted data on age, intake of iron, baseline haemoglobin and serum ferritin levels, gestation (single or multiple), gestational age at inclusion, presence of pre-existing haemoglobinopathies, and obstetric risk factors for haemorrhage. We also recorded whether the trials were conducted in areas where parasitic infections are endemic. For trials administering iron intravenous or intramuscularly, we additionally collected data on women's weight as this is required to calculate the total dose of iron. (3,4) For treatment characteristics we collected information on type of iron preparation, route of administration, details of their administration (e.g. how many tablets per day were taken), and the total daily dose of elemental iron (mg).

Additional Analyses

As a secondary approach, the interventions were grouped by:

- route of administration: oral, intravenous, intramuscular with lactoferrin, iron amino acid chelate and arms with "no iron preparation" kept separately. Lactoferrin was kept as a separate oral intervention, being a protein from the transferrin family, increasing the uptake of available iron, not a type of iron salt. (5) While iron amino acid chelate is a separate type of oral iron designed to pass through the GI tract without being altered. (6)
- route of administration and type of iron salt: oral ferric or oral ferrous salt, intravenous ferric, intramuscular ferric salt. Lactoferrin, iron amino acid chelate and arms with "no iron preparation" kept separately.

In the analyses with a secondary approach to grouping of iron preparations, we used "non-iron intervention" as the reference arm. As in the secondary approach due to broad grouping of preparations it was not possible to use ferrous sulphate (oral ferrous salt) as a reference.

References

1. Reveiz L, Gyte GM, Cuervo LG, et al. Treatments for iron-deficiency anaemia in pregnancy. *Cochrane Database of Systematic Reviews* 2011; (10).

2. Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, et al. Daily oral iron supplementation during pregnancy. *Cochrane Database of Systematic Reviews* 2015; (7).

3. Ganzoni A. Intravenous iron-dextran: therapeutic and experimental possibilities. *Schweizerische Medizinische Wochenschrift* 1970; **100**(7): 301.

4. Dignass AU, Gasche C, Bettenworth D, et al. European Crohn's and Colitis Organisation [ECCO]. *European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases J Crohns Colitis* 2015; **9**(3): 211-22.

5. Rosa L, Cutone A, Lepanto MS, et al. *Lactoferrin: a natural glycoprotein involved in iron and inflammatory homeostasis. International journal of molecular sciences.* 2017 Sep;**18**(9):1985.

6. Hertrampf, E. and Olivares, M., 2004. *Iron amino acid chelates. International journal for vitamin and nutrition research.*; **74**(6), pp.435-443.

Herion Herion

Appendix 3 Search strategy

Medline via Ovid

Item	Term
1	Pregnancy/
2	pregnan*.af.
3	Gravidity/
4	gravid*.af.
5	gestation*.af.
6	Pregnant Women/
7	pregnant wom#n.af.
8	(child adj3 bearing).af.
9	childbearing.af.
10	matern*.af.
11	antepartum.ab,ti.
12	antenatal.ab,ti.
13	OR/1-12
14	exp Iron Deficiency Anemia/
15	Hypochromic.af.
16	(iron deficien* OR iron-deficien*).af.
17	microcytic.af.
18	Sideropenic.af.
19	Sideroblastic.af.
20	OR/15-19
21	(anaemia OR anemia).af.
22	20 adj 21
23	Ferritin/
24	(Ferriprive OR ferritin* OR isoferritin*).af.
25	14 OR 20 OR 22 OR 23 OR 24
26	exp Randomized Controlled Trial/
27	randomized controlled trial.pt.
28	controlled clinical trial.pt.
29	randomized.ab.
30	placebo.ab.
31	clinical trials as topic.sh.
32	randomly.ab.
33	clinical trials as topic.sh.
34	trial.ti.
35	OR/26-34
36	13 AND 25 AND 35
37	exp Animals/
38	(rat\$ or mouse or mice or hamster\$ or animal\$ or dog\$ or cat\$ or bovine or sheep or
	lamb\$).af.
39	37 OR 38
40	Humans/
41	human\$.tw,ot,kf.
42	40 OR 41
43	39 NOT (39 and 42)
44	36 NOT 43

Appendix 4 Characteristics of included studies and iron preparations

1. Characteristics of included studies

a) Data from studies contributing to the network meta-analysis for haemoglobin (n=30)

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Pregnancy Type: S	ingleton						
A ===== 2020	Danaladaah	Ferrous sulphate	79.7	NR	Second to		150
Arzoo 2020	Bangladesh	Iron sucrose (IV)	79.6	NK	Third	no	150
Bayaymay 2002	Eronaa	Ferrous sulphate	97	53	Second		50
Bayoumeu 2002	France	Iron sucrose (IV)	96	55	Second	no	50
	India	Ferrous fumarate	91		NR	no	
Bhavi 2017*		Iron sucrose (IV)	89	NR			200
		No intervention / Placebo	126				
Brown 2016	Switzerland	Ferrous sulphate	99	57.4	Second to	no	247
Breymann 2016		Ferric carboxymaltose (IV)	98	59.3	Third		247
Dalal 2018*	India	Ferrous sulphate	84.2	NR	Third	no	150
Dalal 2018	muia	Iron sucrose (IV)	84		TIIIG	10	150
		Iron ferrous ascorbate	79				
Deeba 2012*	India	Iron sucrose (IV)	79	NR	Third	no	200
D'	T., 4',	Ferrous fumarate	81	ND	ND		20
Digumarthi 2008*	India	Iron sucrose (IV)	81	NR	NR	no	30

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Curto 2014*	India	Ferrous sulphate	79	NR	Third		100
Gupta 2014*	India	Iron sucrose (IV)	78	INK	Inira	no	100
N	T., 1',	Iron sorbitol citric acid (IM)	80	56	G 1		107
Nanthini 2017	India	Iron sucrose (IV)	80	56	Second	no	127
	x 1	Lactoferrin	101				100
Nappi 2009	Italy	Ferrous sulphate	101	NR	NR	no	100
NOTOOTACEL	Thailand	Ferrous fumarate	NR	50.2	T 1	NR	00
NCT00746551		Iron sucrose (IV)	NT	48.1	Third		80
N 0010	India	Ferrous fumarate	98	ND	G 1	unclear	100
Neeru 2012		Iron sucrose (IV)	92	NR	Second		100
D : : : 2020		Iron sucrose (IV)	78.9		Second to	unclear	160
Rajwani 2020	India	Ferric carboxymaltose (IV)	78	NR	Third		
D 1 2016		Lactoferrin	80	ND	G 1		200
Rezk 2016	Egypt	Ferrous sulphate	82	NR	Second	no	200
T. : 0015	DI	Iron dextran (IV)	87	ND	Second to		100
Tariq 2015	Pakistan	Iron sucrose (IV)	90	NR	Third	no	180
	DUT	Iron sucrose (IV)	99.7				40
Santiago 2020*	Philippines	Iron amino acid chelate	101.2	NR	Second	no	48
					·		

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Pregnancy Type: N	Aixed						
	India	Ferrous sulphate	72	50	Third		100
Abhilashini 2014	India	Iron sucrose (IV)	69	56	Inira	no	100
1 2021*	T 1'	Ferrous sulphate	60	55.9		1	50
Aggarwal 2021*	India	Iron sucrose (IV)	63	54.5	Third	unclear	50
Dhanani 2012*	India	Iron sorbitol citric acid (IM)	83	46	Second	no	60
	mula	Iron sucrose (IV)	76	46	Second		00
Fochi 1985	Italy	Ferrous sulphate	110	NR	Second	no	69
Fochi 1985		Iron chondroitinsulfuric acid	106	INK	Second		
Gawai 2020	India	Lactoferrin	90.3	NR	Second to	unclear	100
Gawai 2020		Ferrous sulphate	91.3	INK	Third		100
Jose 2019	India	Iron sucrose (IV)	87	57	Third		100
JUSE 2019	Illula	Ferric carboxymaltose (IV)	86	57	Timu	no	100
Kamdi 2015*	India	Iron ferrous ascorbate	83	44.4	NR	unclear	73
Kallul 2013	Illula	Ferrous asparto glycinate	84	44.5	INK	unciear	75
Kochhar 2013*	India	Ferrous sulphate	76	51	Second to	Infectious	100
Kocilliar 2015*	India	Iron sucrose (IV)	77	53	Third	diseases (other)	100
	Columbia &	Ferrous sulphate	99				
Ortiz 2011	Argentina	Iron polymaltose complex	96	NR	Second	unclear	80

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Paesano 2010*	Italy	Lactoferrin	100	NR	NR		75
Paesano 2010*	Italy	Ferrous sulphate	100	NK	INR	no	75
	T 1'	Ferrous ascorbate	79			unclear	200
Rudra 2016*m	India	Iron sucrose (IV)	78	NR	Third		200
Secondary 2000	India	Ferrous fumarate	85	43	C	unclear	150
Sagaonkar 2009		Carbonyl iron	84	43 Second		unciear	150
Sinch 2012	India	Iron sorbitol citric acid (IM)	68	NR	Second	unclear	100
Singh 2012	India	Iron sucrose (IV)	65	INK	Second	unclear	100
		Ferrous sulphate	101				
Sama anda 1060	A sector 1: a	Iron Ferrous Gluconate	101	ND	NR		100
Symonds 1969	Australia	Iron dextran (IV)	103	NR	INK	unclear	100
		No intervention / Placebo	103				

IV, intravenous; IM, intramuscular *contributing data to the network meta-analysis for serum ferritin

b) Data <u>not</u> contributing to the network meta-analysis for haemoglobin (n=23)

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Pregnancy Type: S	Singleton			·			
A1 2005*	Teerlesse	Iron polymaltose complex	98	58	Thind		00
Al 2005*	Turkey	Iron sucrose (IV)	99	56	Third	no	90
Harrad 2010	India	Iron dextran (IM)	87	NR	First		109
Hayat 2019	India	Iron sucrose (IV)	90	INR	FIrst	no	198
	Australia	Ferrous sulphate	107	75		no	200
Khalafallah 2010		Iron polymaltose (IV) followed by Ferrous sulphate	109	73	Second		
	Nigeria	Ferrous sulphate				infectious diseases (other)	60
Komolafe 2003		Iron dextran (IM)	NR	NR	Second		
Kumar 2005	India	Ferrous sulphate	99	NR	Second	infectious diseases (other)	220
Kullar 2005	muta	Iron sorbitol citric acid (IM)	96	INK	Second		
Shamma 2004	In dia	Ferrous sulphate	96	ND	Second	infectious	254
Sharma 2004	India	Iron dextran (IM)	94	NR	Second	diseases (other)	254
Van Eijk 1978	Netherlands	Ferrous sulphate	82	NR	First	no	30
	inculeitallus	No intervention / Placebo	82		1/11/51	no	30

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
Pregnancy Type: 1	Mixed						
Al Momen 1996	Saudi Arabia	Iron polymaltose complex	98	58	Third	no	100
AI Molliell 1996	Saudi Arabia	Iron sucrose (IV)	99	56	Third	110	100
Bang 2020	India	Lactoferrin	NR	NR	NR	unclear	98
Borg 2020	India	Ferrous sulphate	INK	INK	INK	unclear	98
Damish 2017	Essent	Ferrous fumarate	82	NR	Correct		
Darwish 2017	Egypt	Iron dextran (IV)	56	NK	Second	no	66
D 1. 2019	Egypt	Lactoferrin	86	NR	Second	no	120
Darwish 2018		Iron dextran (IV)	82				120
		Ferrous sulphate	100	NR	Second	unclear	
Han 2011	China	NaFeEDTA	100				153
		Placebo	102				
M. 2010	China	Ferrous sulphate	99	ND	G 1		164
Ma 2010	China	Placebo	102	NR	Second	unclear	164
Mehta 2014	India	Ferrous fumarate	67	NR	Second to	no	150
Menta 2014	India	Iron sucrose (IV)	67		Third		150
Menendez 1994	Gambia	Ferrous sulphate	100	55	Second	Yes (heamoglobino	500
	Guillolu	Placebo	101	55	Second	pathies)	500
Preziosi 1997	Nigeria	Ferrous betainate	NR	NR	Third	NR	197
11021031 1777	Ingena	Placebo			11110	NK	197

Study ID	Country name	Comparisons	Haemoglobin level (g/L)	Weight (kg)	Gestational age at inclusion (trimester)	Pre-existing health problems	Sample size
		Iron sucrose (IV)	84	55.8	Second to		
Samsudin 2020	Malaysia	Iron dextran (IV)	86	62.8	Third	no	40
		Ferrous sulphate	101	62		unclear	376
Simmons 1993	Jamaica	No intervention	99	60	Second		
Sinch 1008	Sinconoro	Ferrous fumarate	86	NR	NR	unclear	100
Singh 1998	Singapore	Iron polymaltose complex	81	INK	INK		100
Suharno 1993	Indonesia	Ferrous sulphate	103	50	Second	unclear	305
Sunamo 1995	muonesia	Placebo	103	49	Second		
Sun 2010	China	Ferrous sulphate	100	NR	Second	unalaar	196
Sull 2010	Cinina	Placebo	101		Second	unclear	186
Tanumihardjo	Indonesia	Ferrous sulphate	112	46.8	Second	unclear	77
2002	Indonesia	Placebo	113	46.8	Second	unciear	27

IV, intravenous; IM, intramuscular; NR, not reported

*contributing data to the network meta-analysis for serum ferritin

K

2. Characteristics of iron preparations in the included studies

a) Data from studies contributing to the network meta-analysis for haemoglobin (n=30)

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
Oral iron preparations						
Ferrous asparto glycinate	Kamdi 2015	100 e.	1xday	100 e.	Folic acid	4
Carbonyl iron	Sagaonkar 2009	NR	1xday	100 e.	Folic acid, vitamin B12, zinc	12
Iron amino acid chelate	Santiago 2019	30 e.	2xday	60 e.	NR	12
Iron chondroitin- sulphuric acid	Fochi 1985	NR	3xday	90 e.	NR	7.1 (50 days)
Iron polymaltose complex	Ortiz 2011	100 e.	2xday	200 e.	NR	12.9
Ferrous ascorbate	Deeba 2012	100 e.	2xday	200 e.	Folic acid	8
	Kamdi 2015	100 e.	1xday	100 e.	Folic acid	4
	Rudra 2016	100 e.	2xday	200 e.	Folic acid	12
Ferrous fumarate	Bhavi 2017	100 e.	2xday	200 e.	Folic acid	4
	Digumarthi 2008	300	2xday	100 e.	Folic acid	NR
	Nerru 2012	300	NR	100 e.	NR	NR
	NCT00746551	NR	3xday	200 e.	Folic acid	3
	Sagaonkar 2009	152	2xday	100 e.	Folic acid, zinc	12
Ferrous gluconate	Symonds 1969	NR	3xday	108 e.	NR	min. 8

.

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks
Ferrous sulphate	Abhilashini 2014	200	3xday	180 e.	NR	~ 8
	Aggarwal 2012	200	3xday	180 e.	NR	4
	Arzoo 2020	200	3xday	180 e.	NR	9
	Bayoumeu 2002	80	3xday	240 e.	Folic acid	4
	Breymann 2016	100	2xday	200 e.	NR	12
	Dalal 2018	100 e.	2xday	200 e.	Albendazole	NR
	Fochi 1985	NR	1xday	105 e.	NR	7.1 (50 days)
	Gawai 2020	200	2xday	120 e.	NR	8
	Gupta 2014	200	3xday	180 e.	NR	4
	Kochhar 2013	200	3xday	180 e.	NR	4
	Nappi 2009	520	1xday	100 e.	Folic acid	4
	Ortiz 2011	100	2xday	100 e.	NR	12.9
	Paesano 2010	520	1xday	100 e.	NR	4.3 (30 days)
	Rezk 2016	150	1xday	NR	Folic acid	8
	Santiago 2019	65 e.	2xday	130 e.	NR	12
	Symonds 1969*	525	1xday	105 e.	NR	min. 8

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
IV iron preparation						
Iron dextran	Symonds 1969**	20 of iron /ml	5 infusions	100 of iron	NR	NR
	Tariq 2015 (LMW)	NR	Single injection	Target set individually	NR	One day
Iron sucrose	Abhilashini 2014	200	alternate days	Target set individually	NR	Until target reached
	Aggarwal 2012	200	6 infusions, alternate days	Target set individually	Folic acid	10 days
	Arzoo 2020	200	alternate day	Target set individually	NR	Unclear
	Bayoumeu 2002	max of 200	6 infusions, alternate days	Target set individually	Folic acid	3
	Bhavi 2017	200 e.	1xday	Target set individually	Folic acid	Until target reached
	Dalal 2018	200 e.	Consecutive days until dose achieved before delivery	Target set individually	Albendazole	Until target reached
	Deeba 2012	200 e.	NR	Target set individually	NR	Until target reached
	Dhanani 2012	100 e.	Single infusion	200 e.	NR	One day
	Digumarthi 2008	NR	NR	Target set individually	NR	Until target reached
	Gupta 2014	200	Alternate days	Target set individually	NR	Until target reached
	Jose 2019	300	2xweek	max of 600 / week	Mebendazole, folic acid	2
	Kochhar 2013	100	Alternate days	Target set individually	NR	Until target reached
	Nanthini 2017	100 e.	Alternate days	Target set individually	NR	NR
	Neeru 2012***	200	Alternate days	Target set individually	NR	NR

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
Iron sucrose (cont.)	NCT00746551	200	3 infusions	max. of 500 / week	NR	3
	Rajwani 2020	200	Alternate days	Target set individually	NR	4
	Rudra 2016	200	Alternate days	max. of 600 / week	Folic acid	3
	Singh 2012	150	Every 3 days	Target set individually	NR	Until target reached
	Tariq 2015	NR	Single infusion	Target set individually	NR	One day
Ferric carboxymaltose	Breymann 2016	1000 - 1500	NR	Target set individually	NR	3
	Rajwani 2020	1000	Single infusion?	Target set individually	NR	One day?
	Jose 2019	max. per sit 1000	3 infusions	Target set individually	Mebendazole, folic acid	Until target reached
IM iron preparation						
Iron sorbitol citric acid	Dhanani 2012	75 e.	4 injections	300 e.	NR	4 days
	Nanthini 2017	100	1xday	NR	NR	NR
	Singh 2012	1.5 ml	1xday	Target set individually	NR	Until target reached
Non-iron preparation						
Lactoferrin	Gawai 2020	250	2xday	500	NR	8
	Nappi 2009	100	2xday	200	Folic acid	4
	Paesano 2010	100	2xday	200	NR	4.3 (30 days)
	Rezk 2016	250	1xday	250	NR	8
No-iron intervention****	Simmons 1993	NR	1xday	N/A	Folic acid	12
	Symonds 1969	N/A	1xday	N/A	NR	min. 8

e., elemental iron; LWM, low molecular weight; NR, not reported

*controlled-release **unclear if iron dextran was high or low molecular weight

routine oral iron supplementation was withheld during intravenous iron but restarted 1wk post IV treatment *vitamins, placebo or no intervention at all

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
Oral preparations						
Ferrous betainate	Preziosi 1997	unknown	1xday	100 e.	NR	~ 12
Ferrous fumarate	Singh 1998	200	3xday	100 e.	NR	12
	Darwish 2017	60 e.	3xday	180 e.	NR	4
Ferrous sulphate	Al Momen 1996	300	3xday	180 e.	NR	NR
	Borg 2020	520	1xday	NR	NR	4
	Han 2011	60	1xday	60 e.	NR	8
	Khalafallah 2010	250	1xday	80 e.	NR	15
	Komolafe 2003	200	3xday	180 e.	Folic acid, vitamin C	NR
	Kumar 2005	100	1xday	100 e.	Folic acid, Mebendzole	19
	Ma 2010	60	1xday	60 e.	Folic acid, vitamin B2	8
	Mehta 2014	400	3xday	360 e.	NR	NR
	Menendez 1994	60	1xday	60 e.	Folic acid	16
	Neogi 2019	100 e.	2xday	200 e.	Folic acid	19
	Sharma 2004	NR	1xday	100 e.	Folic acid	20
	Suharno 1993	60 e.	1xday	60 e.	NR	8
	Sun 2010	60	1xday	60 e.	Folic acid	8

b) Data from studies <u>not</u> contributing to the network meta-analysis for haemglobin (n=23)

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
Ferrous sulphate (cont.)	Tanumihardjo 2002	1.07 mmol	1xday	60 e.	NR	min. 8
	Van Eijk 1978	100	1xday	60 e.	NR	12
Iron polymaltose complex	Al 2005	100	3xday	300 e.	Folic acid	11
NaFeEDTA	Han 2011	60	1xday	60 e.	NR	8
IV and oral preparation						
Ferrous sulphate and iron polymaltose	Khalafallah 2010	250 / NR	1xday / single infusion	80 e. / target set individually	NR	13
IV preparation						
Iron polymaltose	Singh 1998	50	Single infusion	Target set individually	Promethazine	NR
Iron dextran	Darwish 2017 (LMW)	50	Single infusion	Target set individually	NR	One day
	Darwish 2018 (LMW)	50	Single infusion	Target set individually	NR	One day
	Hayat 2019	0.1 ml	Single infusion (6-8h)	Target set individually	NR	One day
	Samsudin 2020 (LMW)	Max 20 mg / kg	Single infusion (4-6h)	Target set individually	NR	One day
Iron sucrose	Al 2005	200 e.	Alternate days	Target set individually	Folic acid	5 days
	Al Momen 1996	200 e.	NR	Target set individually	NR	Until target reached
	Hayat 2019	NR	NR	NR	NR	NR
	Mehta 2014	100	Alternate days	Target set individually	NR	NR
	Neogi 2019	200	NR	Target set individually	Folic acid	Until target reached

Intervention	Study ID	Preparation dose (mg)	Frequency	Total daily dose (mg)	Concomitant	Treatment duration (weeks)
Iron sucrose (cont.)	Samsudin 2020	200	an interval of 1– 3 days per week	Target set individually; max 600 mg a week	NR	Until target reached
IM preparation						
Iron dextran	Komolafe 2003*	50	3xweek	Target set individually	Promethazine	Until target reached
	Sharma 2004 (HMW)	250 e.	Three injections (1-month intervals)	Target set individually	Folic acid	12
Iron sorbitol citric acid	Kumar 2005	250 e.	Two injections (4-6weeks interval)	250 e.	Mebendzole	4-6
Non-iron preparation						
Lactoferrin	Borg 2020	100	2xday	200 e.	NR	4
	Darwish 2018	100	2xday	200 e.	NR	4
No-iron intervention**	Han 2011	NA	1xday	NA	NR	8
	Ma 2010	NA	1xday	NA	NR	8
	Menendez 1994	NA	1xday	NA	Folic acid	16
	Preziosi 1997	NA	NR	NA	NR	~ 12
	Suharno 1993	NA	1xday	NA	NR	8
	Sun 2010	NA	1xday	NA	NR	8
	Tanumihardjo 2002	NA	1xday	NA	NR	min. 8
	Van Eijk 1978	NA	NR	NA	NR	12

e., elemental iron; LWM, low molecular weight; NR, not reported

*unclear if iron dextran was high or low molecular weight

**vitamins, placebo or no intervention at all

Appendix 5 Pair-wise meta-analysis for comparisons with more than one study available

a) Haemoglobin (g	/L)										
Comparison (Number of studies)	Number of women	MD	LCI	UCI	τ^2	I ² (%)	Hb at baseline (g/dL)	Country	Concomitant medication	Total Daily Dose of elemental iron (mg)*	Global risk of bias
IFS vs LAC (4)	457	-4.1	-10.3	2.09	37.6	96.6					
Gawai 2020	100	1.1	-0.98	3.18							
Nappi 2009	97	3.0	0.8	5.2			101/101	Italy	FA	100 / NR	Low
Paesano 2010	60	-15.0	-20.1	-9.9			100/100	India	NR	100 / NR	High ¹
Rezk 2016	200	-6.8	-8.4	-5.2			80/82	India	IFS with FA	90 / NR	High ^{1,2}
IFS vs IVISU (7)	695	-8.4	-13.8	-2.9	50.2	95.7					
Abhilashini 2014	100	-3.3	-6.0	-0.6			72/69	India	NR	180 / NA	Low
Aggarwal 2012	50	-10.4	-15.4	-5.4			60/63	India	IVISU with FA	180 / NA	Medium
Arzoo 2020	150	-15.3	-17.4	-13.2							
Bayoumeu 2002	47	-1.1	-8.4	6.2			97/96	France	FA	240 / NA	Low
Dalal 2018	150	-0.4	-3.4	2.6			84/84	India	NR	200 / NA	High ²
<i>Gupta 2014*</i>	100	-6.2	-8.2	-4.2			79/78	India	NR	180 / NA	Low
Kochhar 2013*	99	-21.0	-24.6	-17.4			76/77	India	NR	180 / NA	Medium
IFF vs IVISU (4)	305	-2.9	-5.0	-0.8	0	0					
NCT00746551	74	-4.0	-7.8	-0.2			NR	Thailand	IFF with FA	200 / NA	High ²
Bhavi 2017	112	0.1	-34.1	34.3			91/89	India	FA	200 / NA	Medium
Digumarthi 2008	30	-6.0	-12.8	0.8			81/81	India	IFF with FA	100 / NA	Medium
Neeru 2012	89	-1.8	-4.6	1.0			98/92	India	NR	100 / NA	Low
IFA vs IVISU (2)	400	-6.6	-7.8	-5.5	0.1	10.2					
Deeba 2012	200	-7.7	-11.0	-0.54			79/79	India	IFA with FA	200 / NA	Low
Rudra 2016	200	-6.3	-7.5	-0.51			78/79	India	FA	200 / NA	High ²
IMISCA vs IVISU (3)	279	-4.3	-12.3	3.8	43.7	93.6					
Dhanani 2012	52	5.2	-4.5	14.9			83/76	India	NR	NR	High ¹
NRnthani 2017	127	-2.9	-5.3	-0.6	1		80/80	India	NR	NR	Medium
Singh 2012	100	-12.0	-14.7	-9.4			68/65	India	NR	NR	High ³

*additional administration of anti-parasitic tablets

MD, mean difference; LCI, lower confidence interval; UCI, upper confidence interval; Hb, Haemoglobin; NR, not reported, NA, not available

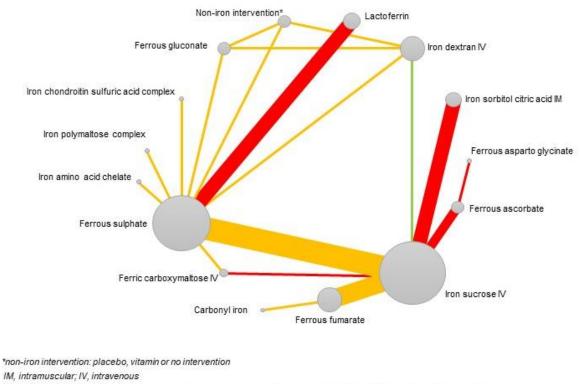
IFS, ferrous sulphate; LAC, lactoferrin; IVISU, intravenous iron sucrose; IMISCA, intramuscular iron sorbitol citric acid; IFF, ferrous fumarate; IFA, ferrous ascorbate; FA, folic acid;

Global risk of bias: 1. Incomplete outcome data, 2. Blinding of participants and personnel, 3. Selective reporting

b)	Serum	ferritin	(mcg/L)
----	-------	----------	---------

Comparison (Number of studies)	Number of women	MD	LCI	UCI	τ ²	I ² (%)	Hb at baseline (g/L)	Country	Concomitant medication	Total Daily Dose of elemental iron (mg)	Global risk of bias
IVISU vs IFA (2)	400	-29.43	-45.36	-13.49	129.8	98.2					
Deeba 2012	200	-37.69	-41.89	-33.49			79/79	India	IFA with FA	NR / 200	Low
Rudra 2016	200	-21.43	-22.36	-20.50			78/79	India	FA	NR / 200	High ²
IFS vs IVISU (4)	400	-55.01	-77.82	-32.2	297.6	98					
Aggarwal 2012	50	-134.7	-156.63	-112.77			60/63	India	IVISU with FA	180 / NA	Medium
Dalal 2018	150	-36.96	-45.93	27.99			84/84	India	NR	200 / NA	High ²
<i>Gupta 2014</i> *	100	-23.49	-25.16	-21.82			79/78	India	NR	180 / NA	Low
Kochhar 2013*	100	-26.40	-31.71	-21.09			76/77	India	NR	180 / NA	Medium
IFF vs IVISU (3)	216	-81.43	-118.05	-44.81	922.5	88.3					
NCT00746551	74	-107.8	-125.94	-89.66			NR	Thailand	IFF with FA	200 / NA	High ²
Bhavi 2017	112	-90.23	-113.4	-67.06			91/89	India	FA	200 / NA	Medium
Digumarthi 2008	30	-44.46	-68.55	-20.37			81/81	India	IFF with FA	100 / NA	Medium

*additional administration of anti-parasitic tablets


MD, mean difference; LCI, lower confidence interval; UCI, upper confidence interval; Hb, haemoglobin; NA, not available

IVISU, intravenous iron sucrose; IFA, ferrous ascorbate; IFS, ferrous sulphate; IFF, ferrous fumarate; FA, folic acid;

Global risk of bias: 1. Incomplete outcome data, 2. Blinding of participants and personnel, 3. Selective reporting

Appendix 6 Risk of bias

a) Quality of evidence in the main network

The majority of studies in a given comparison has a given category of the global risk of bias: high 📩 medium 🗾 Iow 📰

b) Assessment of risk of bias and indirectness of study population by individual study

Study ID	Random sequence generation	Allocation concealment	Blinding of staff and participants	Blinding of outcome assessor	Incomplete outcome data	Selective reporting of outcomes	Global risk of bias*	Indirectness*
Trials contributing dat	ta to the netwo	rk meta-analysis	for haemoglobin					
Abhilashini 2014	Low	Unclear	Low	Low	Low	Low	Low	Medium
Aggarwal 2012	Unclear	Low	Unclear	Low	Unclear	Low	Medium	Low
Arzoo 2020	Low	Unclear	Unclear	Low	Low	Low	Medium	Low
Bayoumeu 2002	Low	Unclear	Low	Low	Low	Low	Low	Low
Bhavi 2017	Unclear	Unclear	Low	Low	Low	Low	Medium	Low
Breymann 2016	Unclear	Unclear	Low	Low	Low	Low	Medium	Low
Dalal 2018	Low	Low	High	Low	Unclear	Low	High	Low
Deeba 2012	Low	Low	Low	Low	Low	Low	Low	Low
Dhanani 2012	Unclear	Unclear	Low	Low	High	Unclear	High	Medium
Digumarthi 2008	Unclear	Unclear	Unclear	Low	Unclear	Unclear	Medium	Low
Fochi 1985	Unclear	Unclear	Unclear	Low	Unclear	Low	Medium	Low
Gawai 2020	Unclear	Unclear	Unclear	Low	Low	Low	Medium	Low
Gupta 2014	Low	Low	Low	Low	Low	Low	Low	Low
Jose 2019	Low	Unclear	Low	Low	Low	Low	Low	Low
Kamdi 2015	High	High	Low	Low	High	Unclear	High	Low
Kochhar 2013	Low	Unclear	Unclear	Low	Low	Low	Medium	Low
Nanthini 2017	Unclear	Unclear	Low	Low	Low	Unclear	Medium	Low
Nappi 2009	Low	Unclear	Low	Low	Low	Low	Low	Low
NCT00746551	Unclear	Unclear	High	Low	Low	Low	High	Low
Neeru 2012	Low	Unclear	Low	Low	Low	Low	Low	Low

Study ID	Random sequence generation	Allocation concealment	Blinding of staff and participants	Blinding of outcome assessor	Incomplete outcome data	Selective reporting of outcomes	Global risk of bias*	Indirectness*
Ortiz 2011	Low	Unclear	Unclear	Low	Low	Low	Medium	Low
Paesano 2010	Unclear	Unclear	Unclear	Low	High	Unclear	High	Medium
Rajwani 2020	High	Unclear	Unclear	Low	Low	Unclear	High	Low
Rezk 2016	Low	Low	High	Low	High	Low	High	Low
Rudra 2016	Low	Unclear	High	Low	Unclear	Unclear	High	Low
Sagaonkar 2009	Unclear	Low	Unclear	Low	Low	Low	Medium	Low
Santiago 2020	Low	Unclear	Unclear	Low	Low	Low	Medium	Low
Singh 2012	Unclear	Unclear	Low	Low	Low	High	High	Low
Symonds 1969	Unclear	Unclear	Low	Low	Low	Low	Medium	Low
Tariq 2015	Low	Unclear	Low	Low	Low	Low	Low	Low
Trials not contributing	g data to the ne	twork meta-anal	ysis for haemogle	obin				
Al 2005**	Low	Low	Low	Low	Low	High	-	-
AlMomen 1996	High	Unclear	Low	Low	Low	Unclear	-	-
Borg 2020	Unclear	Unclear	Unclear	Low	Unclear	Unclear	-	-
Darwish 2017	Low	Low	Low	Low	Low	Low	-	-
Darwish 2018	Low	Low	Low	Low	High	Low	-	-
Han 2011	High	Unclear	Unclear	Low	Low	Low	-	-
Hayat 2019	Unclear	Unclear	Unclear	Low	High	Unclear	-	-
Khalafallah 2010	Low	Low	Low	Low	Low	Low	-	-
Komolafe 2003	Low	Unclear	Unclear	Low	Low	Low	-	-
Kumar 2005	Unclear	Unclear	Unclear	Low	High	Unclear	-	-
Ma 2010	High	Low	Low	Low	Low	Low	-	-
Mehta 2014	Unclear	Unclear	High	Low	Unclear	Unclear	-	-
Menendez 1994	High	Unclear	Unclear	Low	Low	Low	-	-
Neogi 2019	Low	Low	High	Low	High	Low	-	-
Preziosi 1997	Low	Unclear	Unclear	Low	Unclear	Unclear	-	-
Samsudin 2020	Low	Low	Unclear	Low	Low	Low	-	-
Sharma 2004	Unclear	Unclear	Low	Low	High	Low	-	-
Simmons 1993	Low	Unclear	High	Low	High	Unclear	-	-
Singh 1998	Unclear	Unclear	Unclear	Low	Low	High	-	-
Suharno 1993	High	Low	Low	Low	Low	Unclear	-	-
Sun 2010	Unclear	Low	Low	Low	Low	Low	-	-
Tanumihardjo 2002	Unclear	Unclear	Unclear	Low	Low	Low	-	-
Van Eijk 1978	Unclear	Unclear	Unclear	Low	Low	Low	-	-

*We created global risk of bias and assessed population indirectness only for trials contributing date to the haemoglobin network metaanalysis;

**Trial contributing data to network meta-analysis for serum ferritin

Appendix 7 Detailed network meta-analysis outputs

1. Network summary

	Haemoglobin	Serum ferritin
Number of studies	30	15
Number of women	3243	1396
Number of unique interventions	15	9

2. Network evidence from a consistency model assuming constant heterogeneity variance across all comparisons

a) Haemoglobin (g/L)

Comparisons		Network evidence
Experimental	Comparator	MD (95% CI)
Ferrous aspartic glycinate	Ferrous ascorbate	13·3 (-2·9 to 29·5)
Ferrous ascorbate	Iron sucrose (IV)	-7·0 (-16·0 to 2·0)
Ferrous fumarate	Carbonyl iron	2·4 (-10·1 to 15·0)
	Iron sucrose (IV)	-3.6 (-11.1 to 3.9)
Ferrous gluconate	Iron dextran (IV)	-0.5 (-12.3 to 11.3)
	"Non-iron intervention"	6·7 (-5·8 to 19·2)
Ferrous sulphate	Iron amino acid chelate	-1·4 (-14·7 to 11·9)
	Ferrous gluconate	-3·2 (-15·0 to 8·6)
	Iron chondroitin sulphuric acid	3·3 (-9·6 to 16·2)
	Iron polymaltose complex	1.5 (-11.3 to 14.3)
	Iron dextran (IV)	-3·7 (-12·9 to 5·6)
	Ferric carboxymaltose (IV)	-8.5 (-16.5 to -0.5)
	Iron sucrose (IV)	-7·2 (-11·7 to -2·6)
	Lactoferrin	-4·1 (-10·5 to 2·3)
	"Non-iron intervention"	3·5 (-8·3 to 15·3)
Iron dextran (IV)	"Non-iron intervention"	7·2 (-4·6 to 19·0)
Iron sucrose (IV)	Iron dextran (IV)	3.5 (-5.8 to 12.8)
	Ferric carboxymaltose (IV)	-1·3 (-8·9 to 6·2)
Iron sorbitol citric acid (IM)	Iron sucrose (IV)	-4·3 (-12·2 to 3·5)

Between study heterogeneity estimate (standard error): $\tau = 6.4(1.2)$

b) Serum ferritin (mcg/L)

Comparisons		Network evidence
Experimental	Comparator	MD (95% CI)
Ferrous aspartic glycinate	Ferrous ascorbate	9.8 (-66.1 to 85.6)
Ferrous sulphate	Iron amino acid chelate	4·2 (-71·7 to 80·2)
	Iron polymaltose complex	-15·9 (-72·7 to 40·9)
	Iron sucrose (IV)	-49·7 (-85·7 to -13·6)
	Lactoferrin	-20·0 (-95·6 to 55·6)
Iron sucrose (IV)	Ferrous ascorbate	29.6 (-23.9 to 82.9)
	Ferrous fumarate	81·2 (35·8 to 126·6)
	Iron polymaltose complex	33·7 (-23·0 to 90·5)
	Iron sorbitol citric acid (IM)	0·2 (-75·7 to 76·1)

Between study heterogeneity estimate (standard error): τ =38·5(11·0)

3. Local and global tests of inconsistency

(a) Haemoglobin (g/L)

Treatment	comparison	Difference between direct and indirect estimates (SE)*	p-value for inconsistency
IFS	IVIDX	-5.2 (9.7)	0.59
IFS	IVIFCM	-9.5 (8.3)	0.25
IFS	IVISU	8.3 (6.4)	0.20
IFS	NOFE	-10.4 (19.4)	0.59
FASG	IFA	-14.2 (**)	-
ICARB	IFF	-4.7 (**)	-
IFA	IVISU	-7.3 (**)	-
IFF	IVISU	-4.4 (**)	-
IFG	IFS	10.4 (19.4)	0.59
IFG	IVIDX	-10.4 (19.4)	0.59
IMISCA	IVISU	-10.0 (**)	-
IVIDX	IVISU	-5.2 (9.7)	0.59
IVIDX	NOFE	10.4 (19.4)	0.59
IVIFCM	IVISU	-9.5 (8.3)	0.25

FASG, ferrous asparto glycinate; ICARB, carbonyl iron; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

Global test for inconsistency, p=0.43

 $*Difference\ is\ direct\ estimate-indirect\ estimate$

**Not possible to estimate standard error due to network location

Treatment	comparison	Difference between direct and indirect estimates (SE)*	p-value for inconsistency
IFS	IPMCX	-38.0 (61.5)	0.54
IFS	IVISU	38.1 (61.3)	0.54
FASG	IFA	-50.4 (**)	-
IFA	IVISU	-61.6 (**)	-
IFF	IVISU	-18.4 (**)	-
IMISCA	IVISU	-99.1 (**)	-
IPMCX	IVISU	-38.0 (61.5)	0.54

(b) Serum ferritin (mcg/L)

FASG, ferrous asparto glycinate; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IVISU, intravenous iron sucrose; IPMCX, iron polymaltose complex;

Global test for inconsistency, p=0.54

*Difference is direct estimate – indirect estimate

**Not possible to estimate standard error due to network location

4. Ranking of iron interventions

a) Haemoglobin

Rank	FASG	IVIFCM	IVISU	LAC	IVIDX	IFF	IFG	IMISCA	IAAC	ICARB	IFA	IFS	IPMCX	ICSAC	NOFE
Best	57.1	15.5	2.1	2.0	2.8	1.2	5.0	1.3	4.9	5.1	0	0	1.8	1.0	0.2
2nd	10.6	26.2	11.8	5.9	6.0	4.5	8.7	4.5	6.9	7.3	1.6	0	3.2	2.0	0.8
3rd	5.7	16.1	24.2	8.1	7.9	6.6	7.0	5.2	5.6	5.4	2.3	0	2.8	1.9	1.1
4th	4.4	11.9	25.1	9.4	8.2	8.4	6.7	6.1	4.8	4.7	3.3	0.1	3.1	2.3	1.6
5th	3.3	9.2	18.6	11.0	9.2	10.0	7.2	8.3	5.3	5.1	4.6	0.3	3.9	2.3	1.7
6th	3.1	7.2	10.8	11.8	10.1	11.3	7.9	9.7	5.7	5.6	5.9	1.5	3.9	3.0	2.7
7th	2.9	5.1	4.9	12.7	10.4	11.2	7.5	10.6	5.9	5.6	7.2	3.9	5.3	3.7	3.1
8th	2.4	3.5	1.9	11.1	9.9	10.4	7.8	10.5	6.7	5.9	8.4	8.5	5.1	4.1	3.8
9th	2.2	2.3	0.6	9.0	9.3	9.7	7.1	9.6	6.0	5.8	8.4	14.6	5.6	4.7	5.1
10th	1.4	1.4	0.1	7.5	7.5	8.3	6.6	8.7	6.9	5.8	8.6	20.0	6.3	5.2	5.7
11th	1.5	0.7	0	4.8	6.4	6.8	6.9	7.9	6.8	6.2	9.9	21.8	6.8	6.4	7.2
12th	1.3	0.6	0	3.5	5.4	5.6	7.3	6.5	7.6	7.0	10.4	17.4	9.1	8.5	9.7
13th	1.5	0.3	0	2.0	4.2	3.8	6.9	5.7	8.8	8.5	11.9	8.6	11.3	12.5	13.9
14th	1.3	0.1	0	1.0	2.2	1.9	5.3	3.6	9.8	10.1	10.9	2.9	14.4	16.5	19.9
Worst	1.2	0	0	0.3	0.6	0.4	2.2	1.6	8.4	11.8	6.4	0.4	17.4	25.9	23.4
MEAN RANK	3.1	3.7	4 ·1	6.7	7.2	7.4	7·6	8 ∙0	8.8	8.9	10.0	10.4	10.6	11·6	12.0
SUCRA	0.82	0.81	0.78	0.29	0.26	0.55	0.53	0.20	0.47	0.43	0.36	0.33	0.32	0.25	0.22

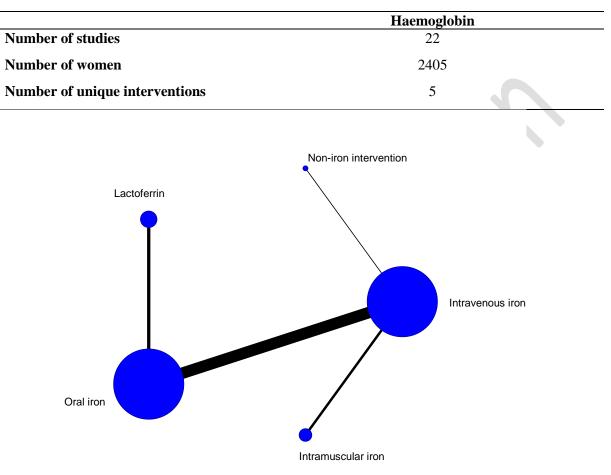
Shaded values are probabilities above 5%

FASG, ferrous asparto glycinate; IAAC, iron amino acid chelate; ICARB, carbonyl iron; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

b) Serum ferritin

Rank	IVISU	IMISCA	FASG	IFA	LAC	IPMCX	IAAC	IFS	IFF
Best	19.5	34.6	21.0	2.7	13.1	4.4	4.8	0	0
2nd	36.4	17.9	12.8	8.4	10.7	8.3	5.0	0.3	0.1
3rd	27.9	12.7	11.2	14.9	11.0	12.5	7.2	1.9	0.6
4th	12.4	10.6	12.8	20.1	11.7	15.1	8.7	7.3	1.4
5th	3.3	8.6	10.3	18.3	12.7	17.9	9.7	15.8	3.3
6th	0.4	6.0	7.9	14.3	11.4	15.7	11.5	26.6	6.2
7th	0.1	4.2	8.0	11.8	10.3	12.5	12.4	29.4	11.3
8th	0	3.7	8.8	7.3	10.7	10.0	19.0	16.2	24.4
Worst	0	1.7	7.3	2.1	8.4	3.6	21.6	2.5	52.7
MEAN RANK	2.5	3.0	4.2	4.8	4 ·8	5·0	6.2	6.3	8 ·1
SUCRA	0.82	0.74	0.60	0.53	0.53	0.20	0.35	0.34	0.11

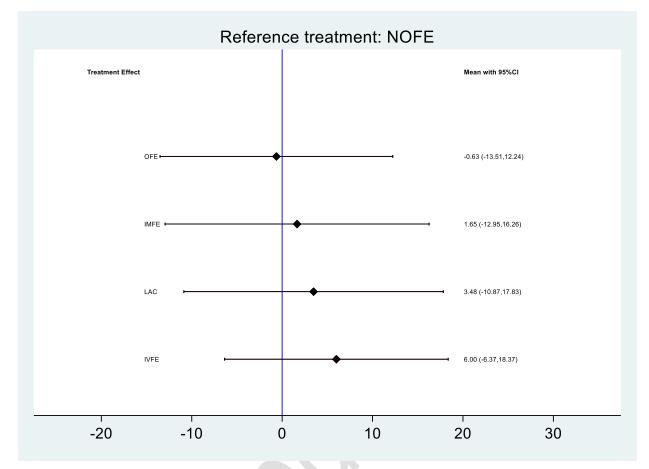
Shaded values are probabilities above 5%


FASG, ferrous asparto glycinate; IAAC, iron amino acid chelate; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFS, ferrous sulphate; IPMCX, iron polymaltose complex; IMISCA, intramuscular iron sorbitol citric acid; IVISU, intravenous iron sucrose; LAC, lactoferrin

Appendix 8 Additional analyses

1. Secondary approach to intervention grouping

a) Route of administration – Haemoglobin (g/L)

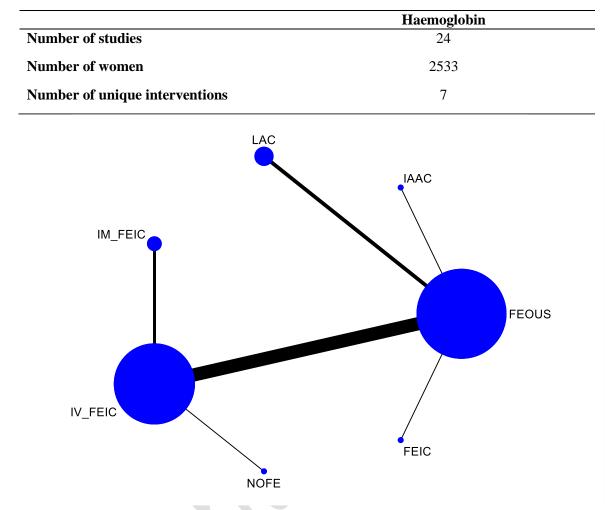

(i) Network summary and map

(ii) Network evidence for Haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

Comparisons		Network evidence
Experimental	Comparator	MD (95% CI)
Intravenous iron	Intramuscular iron	4·3 (-4·0 to 12·1)
	Oral iron	6.6 (3.1 to 10.2)
	"Non-iron intervention"	6·0 (-6·4 to 18·4)
Lactoferrin	Oral iron	4·1 (-2·2 to 10·5)

Between study heterogeneity estimate (standard error): $\tau = 6 \cdot 3(1 \cdot 2)$

(iii) Interval plot with "Non-iron intervention" as the reference route of administration


LAC, lactoferrin; IVFE, intravenous iron; IMFE, Intramuscular iron; NOFE, "Non-iron intervention"; OFE, Oral iron

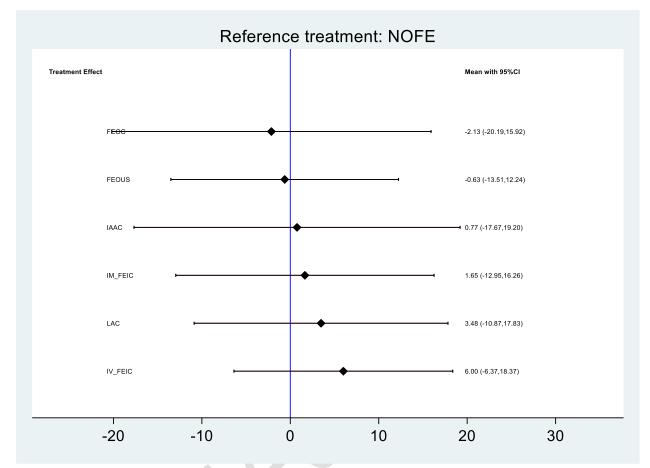
Rank	IVFE	LAC	IMFE	NOFE	OFE
Best	54.0	20.9	10.7	14.4	0
2nd	37.3	30.0	19.4	11.8	1.6
3rd	8.2	28.6	27.9	16.5	18.8
4th	0.5	15.2	23.8	15.7	44.9
Worst	0	5.4	18.3	41.7	34.7
MEAN RANK	1.6	2.5	3.2	3.6	4.1
SUCRA	0.86	0.62	0.45	0.35	0.22

(iv) Ranking of routes of administration for haemoglobin

Shaded values are probabilities above 5%

LAC, lactoferrin; IVFE, intravenous iron; IMFE, Intramuscular iron; NOFE, "Non-iron intervention"; OFE, Oral iron

b) Iron salt & route of administration – haemoglobin (g/L)


(i) Network summary and map

Unique interventions: LAC, Lactoferrin; IAAC, Iron amino acid chelate; IV_FEIC, Intravenous ferric salt; IM_FEIC, Intramuscular ferric salt; FEIC, Oral ferric salt; FEOUS, Oral ferrous salt; NOFE, "Non-iron intervention"

(ii) Network evidence for haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

Comparisons		Network evidence			
Experimental	Comparator	MD (95% CI)			
Oral ferrous salt	Oral ferric salt	1.5 (-11.2 to 14.2)			
~	Iron amino acid chelate	-1·4 (14·6 to 11·8)			
	Lactoferrin	-4·1 (-10·5 to 2·2)			
	Intravenous ferric salt	-6.6 (-10.2 to -3.1)			
Intravenous ferric salt	Intramuscular ferric salt	4·3 (-3·4 to 12·1)			
	"Non-iron intervention"	6·0 (-6·4 to 18·4)			

Between study heterogeneity estimate (standard error): τ =6·3(1·2)

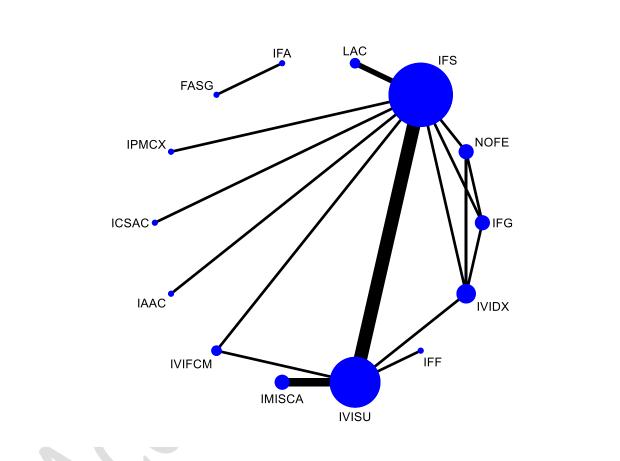
(iii) Interval plot with "Non-iron intervention" as the reference iron salt and route of administration

Unique interventions: LAC, Lactoferrin; IAAC, Iron amino acid chelate; IV_FEIC, Intravenous ferric salt; IM_FEIC, Intramuscular ferric salt; FEIC, Oral ferric salt; FEOUS, Oral ferrous salt; NOFE, "Non-iron intervention"

(iv) Ranking of iron salt and route of administration for haemoglobin

Rank	IV_FEIC	LAC	IM_FEIC	IAAC	NOFE	FEOUS	FEIC
Best	37.2	16.5	8.1	18.2	12.8	0	7.2
2nd	39.4	21.3	13.2	9.7	9.5	0.3	6.6
3rd	18.3	24.6	19.3	11.7	12.5	5.0	8.6
4th	4.3	19.4	20.0	12.4	12.4	20.9	10.6
5th	0.7	10.6	16.6	11.8	11.6	36.8	11.8
6th	0	5.6	14.5	15.7	17.3	28.7	18.1
Worst	0	1.9	8.3	20.5	23.9	8.3	37.0
MEAN RANK	1.9	3.1	4.0	4.2	4.5	5.1	5.2
SUCRA	0.85	0.65	0.50	0.47	0.42	0.31	0.31

Shaded values are probabilities above 5%

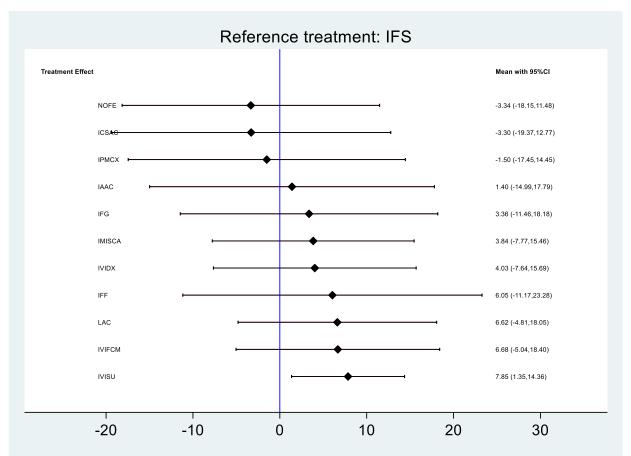

LAC, Lactoferrin; IAAC, Iron amino acid chelate; IV_FEIC, Intravenous ferric salt; IM_FEIC, Intramuscular ferric salt; FEIC, Oral ferric salt; FEOUS, Oral ferrous salt; NOFE, "Non-iron intervention"

2. Sensitivity analyses

a) Interventions without vitamins – haemoglobin (g/L)

(i) Network summary and map

	Haemoglobin	
Number of studies	20	
Number of women	1989	
Number of unique interventions	14	


Unique interventions: FASG, ferrous asparto glycinate; IAAC, iron amino acid chelate; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

NB disconnected network, so following analyses do not contain the FASG-IFA comparison (Kamdi 2015). Therefore, only 12 unique interventions are included in the connected network.

Comparisons		Network evidence
Experimental	Comparator	MD (95% CI)
Ferrous fumarate	Iron sucrose (IV)	-1·8 (-17·7 to 14·1)
Ferrous gluconate	Iron dextran (IV)	-0·7 (-15·5 to 14·2)
	"Non-iron intervention"	6·7 (-9·0 to 22·4)
Ferrous sulphate	Iron amino acid chelate	-1·4 (-17·8 to 15·0)
	Ferrous gluconate	-3·4 (-18·2 to 11·5)
	Iron chondroitin sulphuric acid	3·3 (-12·8 to 19·4)
	Iron polymaltose complex	1.5 (-14.5 to 17.5)
	Iron dextran (IV)	-4·0 (-15·7 to 7·6)
	Ferric carboxymaltose (IV)	-6·7 (-18·4 to 5·0)
	Iron sucrose (IV)	-7·9 (-14·4 to -1·3)
	Lactoferrin	-6·6 (-18·1 to 4·8)
	"Non-iron intervention"	3·3 (-11·5 to 18·2)
Iron dextran (IV)	"Non-iron intervention"	7·4 (-7·5 to 22·2)
Iron sucrose (IV)	Iron dextran (IV)	3.8 (-7.9 to 15.5)
	Ferric carboxymaltose (IV)	1·2 (-10·5 to 12·9)
Iron sorbitol citric acid (IM)	Iron sucrose (IV)	-4·0 (-13·6 to 5·6)

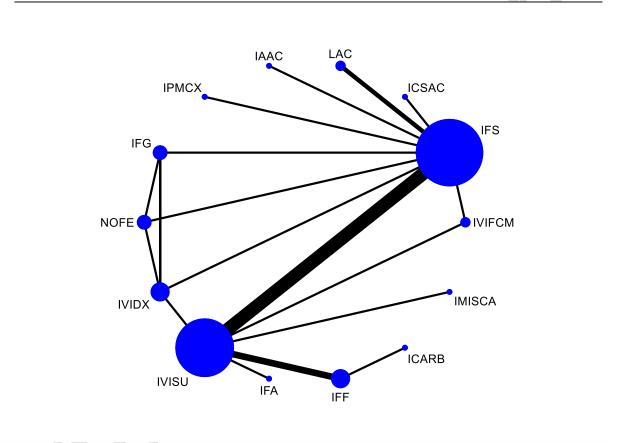
(ii) Network evidence for haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

Between study heterogeneity estimate (standard error): $\tau = 8.0(2.0)$

(iii) Interval plot with ferrous sulphate as the reference intervention

IAAC, iron amino acid chelate; ICSAC, Iron chondroitinsulfuric acid complex; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, Lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

Rank	IVISU	LAC	IVIFCM	IFF	IVIDX	IMISCA	IFG	IAAC	IPMCX	IFS	ICSAC	NOFE
Best	7.5	16.3	15.8	21.1	5.9	5.7	10.5	9.1	4.4	0.0	2.6	1.3
2nd	19.8	14.2	13.9	11.1	8.4	7.6	9.0	6.9	4.0	0.0	3.1	2.0
3rd	25.1	11.5	12.5	8.8	9.7	8.9	7.5	6.0	4.3	0.2	3.4	2.2
4th	21.7	10.8	11.5	8.5	10.6	10.9	7.5	6.1	4.9	0.9	3.6	3.0
5th	14.2	10.7	11.2	7.6	11.8	11.6	8.6	7.0	5.6	3.2	4.7	3.8
6th	7.2	9.7	9.7	7.4	12.6	12.2	9.2	7.4	5.7	8.4	5.2	5.3
7th	3.1	8.2	7.5	7.0	11.3	10.8	9.3	7.8	6.8	16.5	5.5	6.2
8th	1.1	6.7	5.7	5.8	9.7	9.3	8.6	7.5	7.5	23.7	6.6	7.7
9th	0.3	4.8	4.8	5.9	8.0	8.4	8.7	8.5	8.6	24.0	8.6	9.5
10th	0.1	3.5	3.8	6.3	6.5	6.5	8.7	10.1	12.4	15.9	11.8	14.4
11th	0.0	2.4	2.6	5.7	4.3	5.3	8.2	11.9	15.8	6.2	17.7	20.0
Worst	0.0	1.2	1.1	5.0	1.3	2.6	4.2	11.7	20.1	1.0	27.4	24.5
MEAN RANK	3.6	4.6	4.6	5.2	5.9	6.0	6.2	7.1	8.3	8.3	9.0	9.2
SUCRA	0.77	0.67	0.67	0.62	0.56	0.54	0.53	0.45	0.34	0.34	0.28	0.25

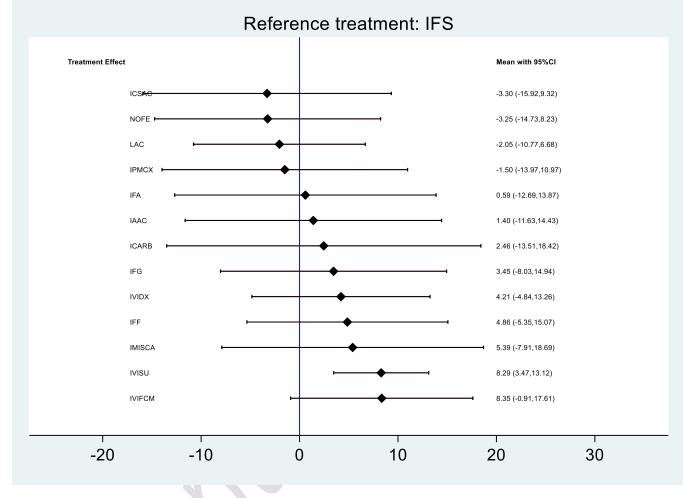

(iv) Ranking of interventions without vitamins for Haemoglobin

Shaded values are probabilities above 5%

IAAC, iron amino acid chelate; ICSAC, Iron chondroitinsulfuric acid complex; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, Lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

(b) Study at low and medium risk of bias – Haemoglobin (g/L)(i) Network summary and map

	Haemoglobin
Number of studies	21
Number of women	2207
Number of unique interventions	14



Unique interventions: IAAC, iron amino acid chelate; ICARB, carbonyl iron; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

Comparisons		Network evidence			
Experimental	Comparator	MD (95% CI)			
Ferrous ascorbate	Iron sucrose (IV)	-7·7 (-20·1 to 4·7)			
Ferrous fumarate	Carbonyl iron	2·4 (-9·9 to 14·7)			
	Iron sucrose (IV)	-3·4 (-12·4 to 5·6)			
Ferrous gluconate	Iron dextran (IV)	-0·8 (-12·2 to 10·7)			
	"Non-iron intervention"	6·7 (-5·5 to 18·9)			
Ferrous sulphate	Iron amino acid chelate	-1·4 (-14·4 to 11·6)			
	Ferrous gluconate	-3·5 (-14·9 to 8·0)			
	Iron chondroitin sulphuric acid	3·3 (-9·3 to 15·9)			
	Iron polymaltose complex	1.5 (-11.0 to 14.0)			
	Iron dextran (IV)	-4·2 (-13·3 to 4·8)			
	Ferric carboxymaltose (IV)	-8·3 (-17·6 to 0·9)			
	Iron sucrose (IV)	-8·3 (-13·1 to -3·5)			
	Lactoferrin	2·0 (-6·7 to 10·8)			
	"Non-iron intervention"	3·2 (-8·2 to 14·7)			
Iron dextran (IV)	"Non-iron intervention"	7·5 (-4·0 to 18·9)			
Iron sucrose (IV)	Iron dextran (IV)	4·1 (-5·0 to 13·2)			
	Ferric carboxymaltose (IV)	-0·1 (-9·3 to 9·2)			
Iron sorbitol citric acid (IM)	Iron sucrose (IV)	-2·9 (-15·3 to 9·5)			

(ii) Network evidence for Haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

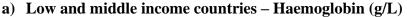
Between study heterogeneity estimate (standard error): $\tau = 6 \cdot 2(1 \cdot 6)$

(iii) Interval plot with ferrous sulphate as the reference intervention

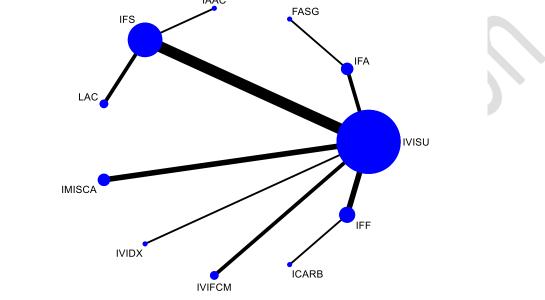
Shaded values are probabilities above 5%

IAAC, iron amino acid chelate; ICARB, carbonyl iron; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

Rank	IVISU	IVIFCM	IMISCA	IFF	IVIDX	IFG	ICARB	IAAC	IFA	IFS	IPMCX	ICSAC	LAC	NOFE
Best	10.5	27.3	17.3	6.0	4.9	8.1	10.6	6.6	4.2	0.0	2.3	1.4	0.3	0.5
2nd	25.3	18.0	10.1	9.2	6.8	7.7	7.0	5.8	4.1	0.0	2.7	1.7	0.6	0.8
3rd	28.6	12.4	9.4	10.9	9.0	6.8	5.9	5.0	4.3	0.1	3.0	2.0	1.3	1.3
4th	19.9	11.5	8.7	12.9	10.7	8.1	6.5	6.5	4.9	0.4	3.4	2.1	2.3	2.1
5th	10.0	9.6	8.8	12.8	12.5	9.4	7.7	6.8	6.7	1.4	4.5	3.6	3.5	2.8
6th	4.0	7.5	8.5	11.6	13.3	10.0	7.5	7.5	7.9	4.7	5.7	3.9	4.4	3.6
7th	1.1	4.9	7.5	9.9	12.0	9.8	6.5	7.4	8.0	10.5	6.6	4.7	6.0	5.2
8th	0.4	3.2	6.1	7.8	9.7	8.4	6.4	7.2	7.9	16.7	7.1	5.8	7.2	6.0
9th	0.1	2.4	4.9	6.3	7.3	7.3	6.1	6.9	7.0	22.6	7.1	6.4	8.7	7.2
10th	0.0	1.3	5.1	4.8	5.7	6.6	6.3	7.3	7.5	21.7	8.1	6.9	10.3	8.4
11th	0.0	1.0	4.2	3.8	4.3	6.6	6.4	8.3	8.6	13.8	9.6	9.4	13.3	10.7
12th	0.0	0.6	4.2	2.5	2.5	5.3	7.1	8.4	9.8	6.2	11.4	12.1	16.1	13.9
13th	0.0	0.3	3.2	1.3	1.1	4.2	7.7	8.7	9.7	1.7	13.2	16.2	15.2	17.6
Worst	0.0	0.1	2.0	0.3	0.3	1.6	8.3	7.8	9.3	0.2	15.4	23.8	10.9	19.9
MEAN RANK	3.1	3.6	5.6	5.7	6.1	6.6	7.4	8.0	8.5	9.2	9.6	10.6	10.3	10.7
SUCRA	0.84	0.80	0.65	0.64	0.61	0.57	0.51	0.47	0.42	0.37	0.34	0.26	0.29	0.25


(iv) Ranking of interventions from low and medium risk of bias studies for Haemoglobin

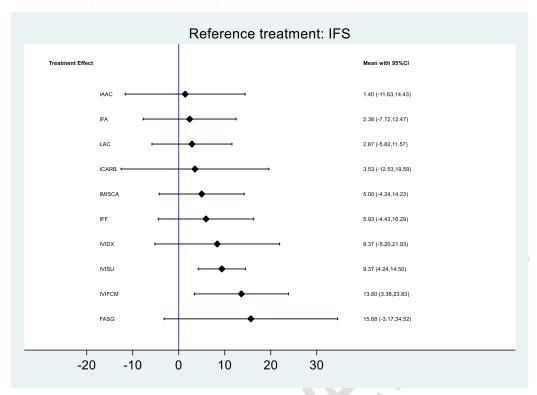
Shaded values are probabilities above 5%


IAAC, iron amino acid chelate; ICARB, carbonyl iron; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

3. Subgroup analysis by country income group

Haemoglobin Number of studies 22 Number of women 2541 Number of unique interventions 11

(i) Network summary and map


Unique interventions: FASG, ferrous asparto glycinate; IAAC, iron amino acid chelate; ICARB, carbonyl iron; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin;

(ii) Network evidence for Haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

Comparisons		Network evidence
Experimental	Comparator	MD (95% CI)
Ferrous aspartic glycinate	Ferrous ascorbate	13·3 (-2·6 to 29·2)
Ferrous ascorbate	Iron sucrose (IV)	-7·0 (-15·7 to 1·7)
Ferrous fumarate	Carbonyl iron	2·4 (-9·9 to 14·7)
	Iron sucrose (IV)	-3·4 (-12·4 to 5·6)
Ferrous sulphate	Iron amino acid chelate	-1·4 (-14·4 to 11·6)
	Iron sucrose (IV)	-9·4 (-14·5 to -4·2)
	Lactoferrin	-2·9 (-11·6 to 5·8)
Iron sucrose (IV)	Iron dextran (IV)	1.0 (-11.6 to 13.6)
	Ferric carboxymaltose (IV)	-4·2 (-13·1 to 4·6)
Iron sorbitol citric acid (IM)	Iron sucrose (IV)	-4·4 (-12·0 to 3·3)

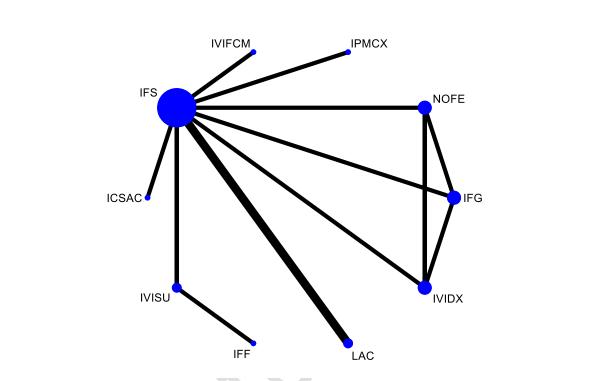
Between study heterogeneity estimate (standard error): τ =6·2(1·4)

(iii) Interval plot with ferrous sulphate as the reference intervention

Unique interventions: FASG, ferrous asparto glycinate; IAAC, iron amino acid chelate; ICARB, carbonyl iron; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin;

Rank	IVIFCM	FASG	IVISU	IVIDX	IFF	IMISCA	ICARB	LAC	IFA	IAAC	IFS
Best	29.1	50.6	1.2	10.0	1.6	0.9	4.1	0.7	0.1	1.7	0.0
2nd	35.5	16.6	9.8	15.6	5.6	2.9	6.8	2.5	0.9	3.8	0.0
3rd	15.8	7.8	28.3	14.6	9.3	6.0	6.9	4.2	2.4	4.7	0.0
4th	7.7	5.4	32.5	10.5	11.8	9.7	6.7	5.6	4.7	5.2	0.1
5th	5.0	4.8	19.0	10.2	15.6	14.4	7.9	8.7	7.8	5.9	0.8
6th	3.5	4.0	7.4	9.6	16.7	15.8	9.0	11.6	11.7	8.2	2.6
7th	2.0	3.3	1.6	8.3	14.3	16.5	9.8	13.2	14.6	9.3	7.2
8th	0.8	2.3	0.3	6.8	10.5	13.8	9.5	14.6	15.7	10.0	15.7
9th	0.3	1.8	0.0	5.6	7.3	9.3	8.7	14.3	14.1	11.9	26.7
	0.1	1.8	0.0	4.4	5.5	6.9	11.1	13.4	14.3	12.5	30.1
Worst	0.1	1.7	0.0	4.3	1.8	4.0	19.6	11.2	13.7	26.9	16.9
MEAN RANK	2.5	2.7	3.9	4.9	5.9	6.5	7.1	7.5	7.9	8.0	9.2
SUCRA	0.85	0.83	0.71	0.61	0.51	0.45	0.39	0.35	0.31	0.31	0.18

(iv) Ranking of interventions from studies from low and middle income countries for Haemoglobin


Shaded values are probabilities above 5%

FASG, ferrous asparto glycinate; ICARB, carbonyl iron; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFS, ferrous sulphate; IMISCA, intramuscular iron sorbitol citric acid; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin

(b) High income countries – Haemoglobin (g/L)

	Haemoglobin
Number of studies	8
Number of women	702
Number of unique interventions	10

Unique interventions: ICSAC, iron chondroitinsulfuric acid complex; IFF, ferrous fumarate; IFG, ferrous gluconate; IFS, ferrous sulphate; IPMCX, iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, lactoferrin; NOFE, "Non-iron intervention" (placebo/vitamin/no intervention)

(ii) Network evidence for Haemoglobin from a consistency model assuming constant heterogeneity variance across all comparisons

Between study heterogeneity estimate (standard error): $\tau = 12.5(9.1)$ Due to considerable heterogeneity and lack of data, further results are not presented

Iron reparation	Group	Adverse Event	Event	Sample	Study
FASG	GI	GI upset	1	26	Kamdi 2015
ICARB	GI	Abdominal pain	3	75	Sagaonkar 2009
		Constipation	38	110	Sagaonkar 2009
		Diarrhoea	5	77	Sagaonkar 2009
		Nausea	33	105	Sagaonkar 2009
		Vomiting	2	74	Sagaonkar 2009
IAAC	GI	Nausea	11	24	Santiago 2019
		Vomiting	9	24	Santiago 2019
		Constipation	7	24	Santiago 2019
		Dark Stool	16	24	Santiago 2019
		Epigastric Pain	2	24	Santiago 2019
IFA	General	Fever	NR	100	Rudra 2016
		Hot flush	0	100	Deeba 2012
		Itch (entire body)	NR	100	Rudra 2016
		Metallic taste	0	100	Deeba 2012
			4	100	Rudra 2016
	GI	Diarrhoea	5	100	Deeba 2012
	-		4	100	Rudra 2016
		Epigastric discomfort and bloating	16	100	Rudra 2016
		GI upset*	3	24	Kamdi 2015
		Nausea	0	100	Deeba 2012
		Thubbell	NR	100	Rudra 2016
		Upper GI upset*	22	100	Deeba 2012
		Vomiting	4	100	Rudra 2016
	Local/reaction	Injection site swelling/redness/pain	NR	100	Rudra 2016
	Muscular	Arthralgia	0	100	Deeba 2012
	muscului	/ multurgiu	NR	100	Rudra 2016
	Nervous System	Dizziness	0	100	Deeba 2012
	Other	Serious Adverse Events	NR	100	Rudra 2016
IFF	GI	Abdominal discomfort	13	33	Darwish 2017
11.1.	01	Abdominal pain	0	72	Sagaonkar 2009
		Constipation	20	33	Darwish 2017
		Consupation	20 18	90	Sagaonkar 2009
		Diarrhoea	2	56	Bhavi 2017
		Diamoea	2	30 73	Sagaonkar 2009
		Gastritis	4		Bhavi 2017
			4	56	Darwish 2017
		Nausea and/or vomiting	11	33 86	
			8	80 56	Sagaonkar 2009 Bhavi 2017
			13	33	Darwish 2017
			13 0	33 72	Sagaonkar 2009
			0 2	100	Sharma 2004
				100	Shurmu 2004
	I acal/discolaration	Skin staining at injection site		100	Sharma 2001
	Local/discoloration	Skin staining at injection site	0	100	Sharma 2004 Bhavi 2017
	Local/discoloration Local/pain	Burning/pain at the site of injection		100 56	Sharma 2004 Bhavi 2017
		Burning/pain at the site of injection Injection site	0		
	Local/pain	Burning/pain at the site of injection Injection site reaction/inflammation/swelling	0 0 0	56 33	Bhavi 2017 Darwish 2017
	Local/pain Muscular	Burning/pain at the site of injection Injection site reaction/inflammation/swelling Arthralgia	0 0 0	56 33 100	Bhavi 2017 Darwish 2017 Sharma 2004
	Local/pain	Burning/pain at the site of injection Injection site reaction/inflammation/swelling Arthralgia Side effects	0 0 0 0 10	56 33 100 44	Bhavi 2017 Darwish 2017 Sharma 2004 Neeru 2012
	Local/pain Muscular Other/Combined	Burning/pain at the site of injection Injection site reaction/inflammation/swelling Arthralgia Side effects Serious Adverse Events	0 0 0 0 10 0	56 33 100 44 40	Bhavi 2017 Darwish 2017 Sharma 2004 Neeru 2012 NCT00746551
	Local/pain Muscular	Burning/pain at the site of injection Injection site reaction/inflammation/swelling Arthralgia Side effects Serious Adverse Events Allergic reaction	0 0 0 10 0 0	56 33 100 44 40 33	Bhavi 2017 Darwish 2017 Sharma 2004 Neeru 2012 NCT00746551 Darwish 2017
IFG	Local/pain Muscular Other/Combined	Burning/pain at the site of injection Injection site reaction/inflammation/swelling Arthralgia Side effects Serious Adverse Events	0 0 0 0 10 0	56 33 100 44 40	Bhavi 2017 Darwish 2017 Sharma 2004 Neeru 2012 NCT00746551

Appendix 9 Adverse events

		Nausea and vomiting		4	24	Symonds 1969
	Other	Other symptoms		3	24	Symonds 1969
IFS	Cardiac	Change in blood pressure		0	25	Aggarwal 2012
		Bradycardia		NR	NR	Neogi 2019
		Tachycardia		0	75	Arzoo 2020
		Hypertension		NR	NR	Neogi 2019
		Syncope		1	124	Breymann 2016
		v		NR	NR	Neogi 2019
		Vasovagal due to apprehension	ı	0	75	Kumar 2005
	General	Altered Taste		3	25	Aggarwal 2012
		Bronchospasm		0	124	Breymann 2010
		I I I I I I I I I I I I I I I I I I I		1	39	Ortiz 2011
		Chest compression		NR	NR	Neogi 2019
		Dysgeusia		0	124	Breymann 2010
		Fever		0	25	Aggarwal 2012
				ů 1	50	Gupta 2014
				0	75	Kumar 2005
				0	75	Mehta 2014
				Ŭ 0	100	Sharma 2004
		iı	mmediate AE	NR	NR	Neogi 2019
			late AE	NR	NR	Neogi 2019
			ture HE	0	59	AlMomen 1996
		Itching all over body		1	50	Gupta 2014
		Itching and rash		0	75	Kumar 2005
		Malaise		0	75	Kumar 2005
		wiataise		0	100	Sharma 2003
		Metallic taste		5	50	Abhilashini 201
		Wetanie taste		0	50	Gupta 2014
				6	50 75	Mehta 2014
				1	75	Dalal 2018
		in	mmediate AE	NR	NR	Neogi 2019
			late AE	NR	NR	Neogi 2019
		Pruritus		0	50	Abhilashini 201
		Turrus		1	39	Ortiz 2011
		Rash		1	124	Breymann 2010
		Rash and itching		1	100	Sharma 2004
		Rashes or pruritus		NR	NR	Neogi 2019
		Tightness and discomfort in the	a skin	0	<u>59</u>	AlMomen 1996
		Urticarial reactions	U SKIII	0	<u> </u>	Khalafallah 20
	General/Pain	Severe systemic ache and arthr	algia	0	100	Sharma 2004
	General/Systemic	Vasovagal attack	aigia	0	100	Sharma 2004 Sharma 2004
	GI	Abdominal cramps		1	25	Symonds 1969
	GI	•		5		2
		Abdominal pain			124	Breymann 2010
				1 60	39 100	Ortiz 2011 Bosh 2016
					100 75	Rezk 2016
				10	75 50	Arzoo 2020
		Constinution		12	50	Gawai 2020
		Constipation		1	50 25	Abhilashini 201
				2	25	Aggarwal 2012
				3	124	Breymann 2010
				0	50	<i>Gupta 2014</i>
				4	50 75	<i>Kochhar 2013</i>
				8	75	Kumar 2005
				3	48 ND	Nappi 2009
				NR	NR	Neogi 2019
				^	20	0 1 2011
				9 60	39 100	<i>Ortiz 2011</i> Rezk 2016

			5	100	Sharma 2004
H	Constipation		1	25	Symonds 1969
			1	75	Dalal 2018
			11	24	Santiago 2019
			46	50	Gawai 2020
	Constipation or Diarrhea		13	75	Mehta 2014
	Dark stools		17	24	Santiago 2019
			45	50	Gawai 2020
	Diarrhoea		2	50	Abhilashini 2014
			5	25	Aggarwal 2012
			1	23	Bayoumeu 2002
			4	124	Breymann 2016
			0	50	<i>Gupta 2014</i>
			2	50	Kochhar 2013
			5	75	Kumar 2005
			0	48	Nappi 2009
			2 3	39 100	Ortiz 2011 Sharma 2004
			S NR	NR	
			1NK 2	75	Neogi 2019 Dalal 2018
	Duenoncio		6	50	Abhilashini 2014
	Dyspepsia		3	124	Breymann 2016
			9	75	Kumar 2005
			10	100	Sharma 2003
			5	75	Dalal 2018
	Epigastric pain		0	39	Ortiz 2018
	Epigastric pain		2	48	Nappi 2009
			3	24	Santiago 2019
	Epigastric discomfort		0	50	<i>Gupta 2014</i>
	Epigastric discomfort /Nause	a/Vomiting	16	75	Mehta 2014
	Gastritis	u (onnenig	3	25	Aggarwal 2012
	Gustifus		NR	NR	Neogi 2019
	GI upset		18	59	AlMomen 1996
			16	124	Breymann 2016
		mild	27	98	Khalafallah 2010
			60	100	Rezk 2016
			42	50	Gawai 2020
	Heartburn		2	50	Kochhar 2013
			11	75	Arzoo 2020
	Ніссир		0	50	Kochhar 2013
	Nausea and/or vomiting		NR	NR	Neogi 2019
	C	Nausea	2	25	Aggarwal 2012
			4	50	Abhilashini 2014
			2	25	Aggarwal 2012
			6	124	Breymann 2016
			3	50	Kochhar 2013
			NR	30	Komolafe 2003
				20	Ortiz 2011
			18	39	
			18	24	Santiago 2019
		Vomiting	18 3	24 50	Santiago 2019 Abhilashini 2014
		Vomiting	18 3 2	24 50 124	Santiago 2019 Abhilashini 2014 Breymann 2016
		Vomiting	18 3	24 50	Santiago 2019 Abhilashini 2014
		Vomiting	18 3 2	24 50 124	Santiago 2019 Abhilashini 2014 Breymann 2016
		Vomiting	18 3 2 2	24 50 124 75	Santiago 2019 Abhilashini 2014 Breymann 2016 Kumar 2005
		Vomiting	18 3 2 2 1	24 50 124 75 48	Santiago 2019 Abhilashini 2014 Breymann 2016 Kumar 2005 Nappi 2009

82

		21	50	G : 2020
	N 1 '.'	31	50 50	Gawai 2020
	Nausea and vomiting	0	50	<i>Gupta 2014</i>
		4	25	Symonds 1969
T 1/11		12	75	Arzoo 2020
Local/discolorat	tion Skin staining	0	100	Sharma 2004
		NR	30	Komolafe 2003
		0	75	Kumar 2005
Local/pain	Local pain	0	75	Kumar 2005
	Mild	0	100	Sharma 2004
	Severe	0	100	Sharma 2004
	Pain at the site of injection	0	75	Mehta 2014
		1	50	Gupta 2014
	Mild	NR	30	Komolafe 2003
	Significant	NR	30	Komolafe 2003
Muscular	Arthralgia	0	75	Kumar 2005
		NR	NR	Neogi 2019
	Myalgia	0	50	Abhilashini 2014
		NR	NR	Neogi 2019
Nervous System	Dizziness	0	124	Breymann 2016
·	Headache	0	25	Aggarwal 2012
		1	124	Breymann 2016
		1	50	Kochhar 2013
		NR	30	Komolafe 2003
		NR	NR	Neogi 2019
		2	39	Ortiz 2011
	Headache and giddiness	0	100	Sharma 2004
	Immediate headache and giddiness	0	75	Kumar 2005
	Nervous system disorders	1	124	Breymann 2016
Other	Could not tolerate drug	4	59	AlMomen 1996
other	General disorders & administration-site conditions	0	124	Breymann 2016
	Change in taste	0	23	Bayoumeu 2002
	Other symptoms	3	25	Symonds 1969
	Side effects	16	75	Kumar 2005
	Unable to tolerate the drug	7	98	Khalafallah 201
	Want to stop intake	20	100	Rezk 2016
Pain	Arthritis	0	25	Aggarwal 2012
гаш				00
Sustania	Back pain	1	39	Ortiz 2011
Systemic	Anaphylaxis Grade 1	0	25	Aggarwal 2012
	Anaphylaxis Grade 2		25 ND	Aggarwal 2012
	Anaphylactic reaction	NR 1	NR	Neogi 2019
	Allergic reaction	1	75	Arzoo 2020
	Systemic ache	0	75	<i>Kumar 2005</i>
		0	100	Sharma 2004
Vascular	Thrombophlebitis	0	25	Aggarwal 2012
		NR	NR	Neogi 2019
	N11.1.2	2	50	<i>Gupta 2014</i>
	Phlebitis	0	75	Mehta 2014
	Vascular disorders	0	124	Breymann 2016
Cardiac	Tachycardia	3	65	Nanthini 2017
	Vasovagal due to apprehension	1	75	Kumar 2005
General	Fever	4	75	Kumar 2005
		4	65	Nanthini 2017
			73	Kumar 2005
	Itching and rash	8	15	111111111 2000
	Itching and rash Malaise	2	75	<i>Kumar 2005</i>
GI	ŭ			

		Diarrhoea	0	75	Kumar 2005
		Dyspepsia	0 0	75 75	Kumar 2005 Kumar 2005
		Gastritis	2	30	Dhanani 2003
		Nausea and vomiting	<u>2</u> 8	65	Nanthini 2012
		Nausea and volinting	2	30	Dhanani 2012
		Vomiting		50 75	Kumar 2005
	Local	Itching at injection site	0	65	Nanthini 2003
	Local	Swelling	15	65	Nanthini 2017
		Sweining	5	30	Dhanani 2012
	Local/discoloration	Skin staining	7	30	Dhanani 2012 Dhanani 2012
	Locul discolor allon	Skii stannig	5	50	Singh 2012
			26	75	<i>Kumar</i> 2005
			13	65	Nanthini 2017
	Local/pain	Burning at the site of injection	11	30	Dhanani 2012
	1		0	65	Nanthini 2017
		Local pain	30	75	Kumar 2005
			6	50	Singh 2012
			23	65	Nanthini 2017
	Muscular	Arthralgia	2	75	Kumar 2005
	Nervous system	Headache	6	65	Nanthini 2017
		Immediate headache and giddiness	2	75	Kumar 2005
		Giddiness	4	30	Dhanani 2012
		Shivering and weakness	0	50	Singh 2012
	Other	Regional lymphadenopathy	5	65	Nanthini 2017
		Side effects	40	75	Kumar 2005
	Systemic	Systemic ache	6	75	Kumar 2005
	Vascular	Local phlebitis	0	50	Singh 2012
IPMCX	General	Bronchospasm	0	41	Ortiz 2011
		Pruritus	0	41	Ortiz 2011
	GI	Abdominal pain	0	41	Ortiz 2011
		Constipation	1	41	Ortiz 2011
		Diarrhoea	4	41	Ortiz 2011
		GI upset*	13	45	Al 2005
		Epigastric pain	1	41	Ortiz 2011
		Nausea	7	41	Ortiz 2011
		Vomiting	2	41	Ortiz 2011
	Nervous System	Headache	4	41	Ortiz 2011
	Pain	Back pain	0	41	Ortiz 2011
IVIDX	Cardiac	Low blood pressure	1	105	Tariq 2015
		Palpitation	1	105	Tariq 2015
	General	Heat intolerance	1	105	Tariq 2015
	GI	Abdominal cramps	0	27	Symonds 1969
		Constipation	0	33	Darwish 2017
			1	27	Symonds 1969
		Epigastric discomfort	0	33	Darwish 2017
		Nausea	0	33	Darwish 2017
		Nausea and vomiting	0	27	Symonds 1969
		Vomiting	0	33	Darwish 2017
	Local	Local injection site inflammation	1	33	Darwish 2017
	Muscular	Small joint stiffness	1	105	Tariq 2015
	Nervous system	Shivering	2	105	Tariq 2015
	Other	Other symptoms	2	27	Symonds 1969
	Systemic	Allergic reaction	1	33	Darwish 2017
VIFCM	Biomarkers	High level of serum transaminases at 3wks	1	50	Jose 2019
		Hypophosphatemia (early treatment)	2	50	Jose 2019
	General	Dysgeusia	2	123	Breymann 2016

		Rash	0	123	Breymann 2016
		Bronchospasm	1	123	Breymann 2016
	GI	Abdominal pain	0	123	Breymann 2016
		Epigastric pain	NR	50	Jose 2019
		Constipation	0	123	Breymann 2016
		Diarrhoea	0	123	Breymann 2016
		Dyspepsia	0	123	Breymann 2016
		GI upset	3	123	Breymann 2016
		Nausea	2	123	Breymann 2016
		Vomiting	0	123	Breymann 2016
	Local/reaction Nervous System	Injection site reaction/inflammation/swelling	1	50	Jose 2019
		Dizziness	3	123	Breymann 2016
		Headache	4	123	Breymann 2016
		Nervous system disorders	7	123	Breymann 2016
		Syncope	0	123	Breymann 2016
	Other	General disorders & administration-s conditions	site 4	123	Breymann 2016
		Anaphylactic reaction	0	80	Rajwani 2020
		Refused treatment	2	80	Rajwani 2020
	Vascular	Vascular disorders	2	123	Breymann 2016
		Venous thrombosis	0	80	Rajwani 2020
IVISU	Biomarkers	Hypophosphatemia (early treatment)	3	50	Jose 2019
	Cardiac	Bradycardia	1	970	Neogi 2019
		Hypotension	3	970	Neogi 2019
		Hypertension	1	970	Neogi 2019
		Syncope	1	970	Neogi 2019
		Tachycardia	0	62	Nanthini 2017
			1	75	Arzoo 2020
		Venous Thrombosis	0	80	Rajwani 2020
	General	Chest compression	3	970	Neogi 2019
		Fever	1	52	AlMomen 1996
			1	25	Aggarwal 2012
			0	50	Gupta 2014
			5	75	Mehta 2014
			2	62	Nanthini 2017
		Immedi		970 070	Neogi 2019
		L	Late AE 79	970 100	Neogi 2019 Budna 2016
			2	100 75	Rudra 2016 Dalal 2018
		Heat intolerance	1 1	75 93	Dalal 2018 Taria 2015
		Hot flush	2	100	Tariq 2015 Deeba 2012
				25	
		Hypotensive or hypertensive respons Itching all over body (pruritus)	<u>se 0</u>	<u> </u>	Aggarwal 2012 Abhilashini 2014
	~	itering an over body (pruntus)	1 0	50 50	Gupta 2014
			1	100	Rudra 2014
			5	75	Dalal 2018
			2	970	Neogi 2019
		Low blood pressure	- 1	93	Tariq 2015
		Metallic taste	0	50	Abhilashini 2014
			5	100	Deeba 2012
			2	50	<i>Gupta 2012</i>
	General		0	75	Mehta 2014
	5 Wi	Immedi	-	970	Neogi 2019
					Neogi 2019
		L	ate AE 0	970	Neogi 2019
		L	Late AE 0 NR	970 100	Rudra 2016

	Palpitation	2	93	Tariq 2015
	Regional lymphadenopathy	0	62	Nanthini 2017
	Tightness and discomfort in the skin	1	52	AlMomen 1996
GI	Abdominal pain	2	50	Jose 2019
~-	P	1	50	Singh 2012
		1	75	Arzoo 2020
	Epigastric discomfort /Nausea/ Vomiting	0	75	Mehta 201
	Epigastric discomfort and bloating	NR	100	Rudra 2016
	Abdominal discomfort	10	50	Gupta 2014
	Constipation	0	50	Abhilashini 201
	1	0	25	Aggarwal 2012
		9	50	Gupta 2014
		2	50	Kochhar 2013
		4	970	Neogi 2019
	Constipation/ Diarrhoea	0	75	Mehta 2014
	Diarrhoea	0	50	Abhilashini 201
		0	25	Aggarwal 2012
		0	24	AlMomen 1996
		1	24	Bayoumeu 2002
		0	56	Bhavi 2017
		0	100	Deeba 2012
		1	50	Gupta 2014
		0	50	Kochhar 2013
		10	970	Neogi 2019
		NR	100	Rudra 2016
	Dyspepsia	0	50	Abhilashini 201
	Gastritis	0	25	Aggarwal 2012
		0	56	Bhavi 2017
		0	30	Dhanani 2012
		4	970	Neogi 2019
	Heartburn	1	50	Kochhar 2013
	Hiccup	0	50	Kochhar 2013
	Nausea and/or vomiting	0	50	Abhilashini 201
		0	25	Aggarwal 2012
		4	100	Deeba 2012
		0	50	Kochhar 2013
		0	56	Bhavi 2017
		0	30	Dhanani 2012
		1	50	Gupta 2014
		2	62	Nanthini 2017
	Nausea	4	100	Rudra 2016
	Vomiting	NR	100	
	Nausea (immediate AE	20	970	Neogi 2019
	Vomiting (immediate AE)	14	970	Neogi 2019
	Nausea (late AE	14	970	Neogi 2019
	Vomiting (late AE)	46	970	Neogi 2019
	GI upset	6	45	Al 2005
		0	52	AlMomen 1996
T 1/1• 1 ···	<u></u>	0	100	Deeba 2012
Local/discoloration	Skin staining at injection site	0	30	Dhanani 2012
	<u>01 </u>	0	62	Nanthini 2017
. .	Skin staining at injection site	0	50	Singh 2012
Local/pain	Burning/pain at the site of injection	6	56	Bhavi 2017
		1	30	Dhanani 2012
		-		~
		0	50	Gupta 2014
		0 15 11	50 75 62	Gupta 2014 Mehta 2014 Nanthini 2017

			0	50	Singh 2012
	Local/reaction	Injection site reaction/inflammation/swelling	1	30	Dhanani_2012
		C	2	50	Jose 2019
			3	62	Nanthini 2017
			4	100	Rudra 2016
	Local/vascular	Local phlebitis	2	50	Singh 2012
	Muscular	Arthralgia	1	100	Deeba 2012
		-	20	970	Neogi 2019
			1	100	Rudra 2016
		Small joint stiffness	5	93	Tariq 2015
	Nervous System	Dizziness	1	100	Deeba_2012
	-	Giddiness	0	30	Dhanani 2012
		Headache	0	-25	Aggarwal 2012
			0	50	Kochhar 2013
			3	62	Nanthini 2017
			52	970	Neogi 2019
			3	75	Dalal 2018
		Shivering	1	93	Tariq 2015
		Shivering and weakness	1	50	Singh 2012
	Other	Could not tolerate drug	0	52	AlMomen 1996
		Not-unpleasant taste during injection	1	24	Bayoumeu 2002
		Serious Adverse Events	0	40	NCT00746551
			0	100	Rudra 2016
		Side effects	6	45	Neeru 2012
	Pain	Myalgia	1	50	Abhilashini 2014
			49	970	Neogi 2019
		Arthritis	1	25	Aggarwal 2012
	Systemic	Anaphylaxis Grade 1	2	25	Aggarwal 2012
	J	Anaphylaxis Grade 2	0	25	Aggarwal 2012
		Anaphylactic reaction	0	970	Neogi 2019
	Vascular	Phlebitis	6	75	Mehta 2014
		Thrombophlebitis	1	25	Aggarwal 2012
		in one opinions	0	50	<i>Gupta 2014</i>
			43	970	Neogi 2019
LAC	GI	Abdominal pain	1	49	Nappi 2009
			20	100	Rezk 2016
			5	50	Gawai 2020
		Constipation	1	49	Nappi 2009
		I I I I I I I I I I I I I I I I I I I	20	100	Rezk 2016
			7	50	Gawai 2020
		Dark stools	0	100	Rezk 2016
			0	50	Gawai 2020
		Diarrhoea	0	49	Nappi 2009
		GI upset	10	100	Rezk 2016
			15	50	Gawai 2020
		Nausea and/or vomiting	1	49	Nappi 2009
		C	10	100	Rezk 2016
			9	50	Gawai 2020
LAC	Other	Want to stop intake	0	100	Rezk 2016
-		Acceptability	48	50	Gawai 2020
NOFE	GI	Abdominal cramps	0	27	Symonds 1969
	-				
NOFE		Constipation	4	27	Symonds 1969
NOTE		Constipation Nausea and/or vomiting	4 1	27 27	Symonds 1969 Symonds 1969

IAAC, iron amino acid chelate; IFS, ferrous sulphate; FASG, ferrous asparto glycinate; ICARB, carbonyl iron; ICSAC, iron chondroitinsulfuric acid complex; IFA, ferrous ascorbate; IFF, ferrous fumarate; IFG, ferrous gluconate;

IMISCA, intramuscular iron sorbitol citric acid; IPMCX, Iron polymaltose complex; IVIDX, intravenous iron dextran; IVIFCM, intravenous ferric carboxymaltose; IVISU, intravenous iron sucrose; LAC, Lactoferrin; NOFE, "no-iron intervention" (placebo/vitamin/no intervention); NR, non reported.

Acception of the state of the s

Clinical trial CT registration ID	Country	Comparison	Sample size	Outcomes
NCT00802139	South Korea	Iron acetyl-transferase vs Iron sucrose	58	Change in Hb level a achievement rate (11 saturation, Sf, TIBC, change in reticulocyt
NCT03481790	Egypt	Lactoferrin vs Ferrous sulphate + Folic Acid	200	Hb at 4 wks, Sf at 4 v
NCT02086838	Egypt	Theragran Hematinic vs iron dextran (IV)	212	The proportion of pat successfully treated a participants with adv
NCT03484845	Egypt	Lactoferrin vs Ferrous fumarate	150	Increase in blood Hb
NCT03657433	US	Ferumoxytol (IV) vs Ferrous sulphate	140	Change in Hb, Chang laboratory values, ma outcomes Change in Hb level a
NCT04278651	US	Ferumoxytol (IV) vs Ferrous sulphate	80	resolution, Anemia a Adherence, Need for transfusion, neonatal
NCT04253626	US	Ferumoxytol (IV) vs Ferrous sulphate	80	Change in Hb level a
NCT03202615	Egypt	Lactoferrin vs Ferrous sulphate	130	Change in Hb (1, 2 m (1, 2 mths), change in parameters, cost, safe
NCT03188445	Denmark	Iron Isomaltoside (IV) vs Ferrous fumarate with vitamin C	201	Achievement of Hb Achievement of Hb time points, change in
NCT03438227	US	Ferrous sulphate vs iron dextran (IV)	120	Hb at delivery, mater outcomes, safety, blo
NCT03456258	Egypt	Lactoferrin vs Ferrous fumarate	100	Hb at 8 wks, Sf at 8 v
ACTRN12617001634369	Bangladesh	Lactoferrin vs Ferrous sulphate	608	Hb at 24 & 34 wks of & 34 wks of gestation values, maternal and adherence, safety
Clinical trial CT registration ID	Country	Comparison	Sample size	Outcomes
ACTRN12614000988651	Australia	Lactoferrin vs Ferrous sulphate	800	Change in Hb, Chang laboratory values, ma outcomes, quality of
EudraCT 2017-000994-35	Spain	Ferric pyrophosphate vs Ferrous sulphate	130	Efficacy, Quality of 1 perinatal outcomes
EudraCT 2010-018940-15	Germany	Ferrous (II) glycine sulphate complex vs IFG	40	Change in Hb
CTRI/2019/02/017553	India	Ferric carboxymaltose (IV) vs Iron sucrose (IV)	100	Improvement in anae haematological asses safety, maternal and Hb and Sf at 4 & 8 w
CTRI/2018/12/016771	India	Ferric carboxymaltose (IV) vs Iron sucrose (IV)	200	iron, RBC indices, ne transfusion, perinatal postpartum haemorrh transfusion
CTRI/2018/12/016537	India	Tab-Dhatrilauha vs cap-Autrin	100	Sf, Serum total iron b

Appendix 10 Upcoming trials evaluating effect of iron preparation in iron deficient anaemia in pregnancy

CTRI/2017/06/008884	India	Ferric carboxymaltose (IV) vs Ferrous sulphate	173	No details available
CTRI/2015/07/006049	India	Dhatri Lauha vs Punarnava Mandura vs Ferrous sulphate	35	Improvement in signs Garbhini Pandu, Incre
CTRI/2014/01/004369	India	Ferric carboxymaltose (IV) vs Iron sucrose (IV)	230	Hb (mean change) at
CTRI/2013/11/004142	India	Iron sucrose (IV) vs Ferrous sulphate	100	No details available
CTRI/2009/091/001077	India	Iron sucrose (IV) vs Ferrous fumarate	100	Improvement in bloor reticlocyte response, Clinical improvement

Hb, haemoglobin; Sf, serum ferritin; wks, weeks; IV, intravenous; RBC, red blood cell