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Supplementary Figures 

 

Supplementary Figure 1. Cellular processes targeted in this study. Distribution of cellular processes 

targeted in this study compared to the general distribution of the E. coli genome using Clusters of 

Orthologous Groups (COG)1. 
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Supplementary Figure 2. Layout of mass spectrometry runs. Mutants in each MS run are selected in a 

way that minimized the correlation of chemical genetic fingerprints2 of each mutant with those present in 

the same row or column—to ensure that they targeted different processes (see Online methods for details). 

The 22 MS runs in this study are represented as columns (biological replicate 1) or rows (biological replicate 

2). Distribution of Pearson correlation coefficient of growth phenotypes of the mutant with all the other 

mutants included in the two replicate MS runs—based on the data from Herrera-Dominguez et al.2. Box 

plots are depicted as in Figure 2a (n=20 for all box plots). 
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Supplementary Figure 3. Uncropped gels and blots for Extended Data Figure 1f and Extended Data 

Figure 4c-g.  
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Supplementary Discussion 

Differences in biological replicates are attributable to biological phenomena 

Measurements were largely consistent across biological replicates (95% of the replicate values of log2 fold-

change compared to control (all proteins, all temperatures, all mutants) were within 1.7-fold of each other; 

Extended Data Figure 1b), despite showing only a moderate correlation (Pearson correlation coefficient 

(r)=0.50; Extended Data Figure 1c) that was independent of the temperature measured (Extended Data 

Figure 1d). The correlation was higher (r=0.77) for mutants for which we had only one clone available and 

probed it twice in biological replicates (n=7; Supplementary Data 1). This suggested that for some mutants 

in the Keio collection, the two constructed clones have genetic differences, something that is not uncommon 

in systematic mutant libraries3-5. Therefore, we analyzed proteins which were consistently variable across 

replicates, and found that these were enriched in motility- and chemotaxis-related proteins (e.g., multiple 

flagellar proteins, CheY, CheW, Tar, and Tsr), among other specific processes (Supplementary Data 4). 

Variable proteins were consistently co-regulated within each replicate of our experiments, being either all 

up- or downregulated in one of the two clones (Extended Data Figure 1e). Motility genes were recently 

shown to be upregulated in a large proportion of the Keio library strains, due to the presence of insertion 

sequence elements upstream of the promoter of the flagellar master regulator (FlhDC), which restored its 

expression3. Therefore, we selected seven mutants in which one of the clones showed high expression of 

motility-related proteins, and confirmed that for six of them, the clone with high expression did indeed 

contain insertion elements upstream of the flhDC operon (Δfur presumably has different point-mutations 

reactivating flhDC expression3; Extended Data Figure 1f). Thus, the differences between clone behavior 

are likely due to true biological phenomena, and in the case of motility, due to secondary mutations. 

 

Changes in protein thermal stability reflect protein function 

We assessed the impact that each E. coli mutant elicited in the proteome. On average, each mutant affected 

27 proteins in abundance (range: 0-159) and 41 proteins in thermal stability (range: 1-117) (Extended Data 

Figure 1i). Some genetic perturbations led to a large number of significant proteome changes, such as those 

targeting the essential genes bamA (255 proteins altered in abundance or thermal stability), ftsA (225 

proteins), or lptD (94 proteins), while others led to only a few changes, such as those targeting genes of 

unknown function, e.g., ΔyieP (18 proteins), ΔyfeD (20 proteins), or ΔypjD (20 proteins). There was a 

general trend for mutants with more changes in abundance to also have more changes in thermal stability 

(rS=0.70), yet some genetic perturbations led almost exclusively to changes in thermal stability. For 

example, ΔmrcB (80 proteins changing in thermal stability, no changes in protein abundance) and ΔlpoB 

(74 proteins changing in thermal stability and 6 in abundance)—MrcB and LpoB form a complex involved 

in cell wall biosynthesis6. These changes are driven by multiple mechanisms, from protein interactions with 

other proteins, metabolites or nucleic acids, to changes to the protein environment or post-translational 

modifications, as we elaborate with examples below. 

As previously observed7, deletion of protein complex members generally led to the thermal destabilization 

of other members of the complex. An exception was the outer membrane components of the ExbBD-TonB 

components that were generally thermally stabilized (Extended Data Figure 2a). Interestingly, not all 

protein complex members were thermally destabilized upon the deletion of one of the members. For 

example, both AcrA and AcrB were thermally destabilized in ΔtolC, while only AcrB was thermally 



7 

 

destabilized in ΔacrA and AcrA in ΔacrB; only SdhB was thermally destabilized in ΔsdhA; only NuoG was 

thermally destabilized in ΔnuoF. The abundance of these subunits was not directly linked to their thermal 

stability (Extended Data Figure 2b), since some deletions led to the upregulation of the other complex 

members (e.g., AcrA and AcrB in ΔtolC; or SdhB in ΔsdhA), others led to their downregulation (e.g., AcrB 

in ΔacrA), while some led to no changes (e.g., all other subunits of the respiratory complex I in ΔnuoF). 

These results suggest that although other complex members and direct interactions generally help a protein 

to acquire more robust folds (and hence be more thermally stable), some complex members (TolC) or sub-

complexes (Fo ATP synthase complex) fold and exist independently of the other parts of the complex. 

Further, the cell seems to sense and react differently to the faulty assembly of certain complexes, by either 

upregulating the expression other complex members in an attempt to compensate (ΔtolC), or by 

downregulating expression or promoting degradation of improperly assembled complexes (ATP synthase). 

We also observed that more general alterations in cell physiology led to changes in protein thermal stability. 

An example of this are the changes in outer membrane composition caused by defects in lipopolysaccharide 

biosynthesis in ΔrfaC (ΔwaaC), ΔrfaF (ΔwaaF) and ΔlapA mutants, which led to thermal stability changes 

in multiple outer membrane proteins. In these three mutants, >30% of the thermal stability hits were outer 

membrane proteins (compared to an average of 4% of detected proteins being located in the outer 

membrane8; p <10-17 for the three mutants in a Fisher’s exact test). This is likely caused by the different 

LPS content and environment in the outer membrane9. 

A large number of proteins known to bind cofactors were also affected. For example, we observed a general 

thermal destabilization of iron-sulfur cluster binding proteins (based on gene ontology annotations) in the 

iron-sulfur cluster biosynthesis mutants, ΔiscA, ΔiscS, and ΔiscU (Extended Data Figure 4a). We 

observed multiple proteins that were thermally destabilized in the three mutants, but not annotated as iron-

sulfur cluster binding proteins. These included Edd, FrdA, GltD, NsrR, NuoC, SdaA, SdhA, YdbK, which 

are all known or predicted to bind iron-sulfur clusters. In the molybdopterin biosynthesis mutant, ΔmoaE, 

we observed a thermal destabilization of FdoG (thermal stability z-score=-13.9) and FdoH (thermal stability 

z-score=-10.4)—two molybdopterin binding proteins10. The orphan proteins YcbX (thermal stability z-

score=-7.5) and YiiM (thermal stability z-score=-5.1) were also thermally destabilized in ΔmoaE, in 

agreement with the prediction that they bind molybdopterin11. We also observed the thermal destabilization 

of the periplasmic copper oxidase CueO in the ΔtatB mutant (thermal stability z-score=-12.7; Extended 

Data Figure 4b). CueO is translocated from the cytosol to the periplasm by the Tat system12. The Tat 

system recognizes an N-terminal signal peptide in CueO, which is cleaved upon translocation. To assess 

the reason for CueO thermal destabilization, we deleted its signal peptide (Δ28-CueO), fused it to a FLAG 

peptide at the C-terminus, and expressed it from a plasmid in a ΔcueO strain. As expected, this construct 

abolished translocation of CueO, bringing periplasmic CueO to basal levels, similar to that of full length 

CueO in a ΔtatB strain (Extended Data Figure 4c). Phenocopying the full length CueO in ΔtatB (Extended 

Data Figure 4e), the Δ28-CueO was thermally destabilized even in the presence of TatB (Extended Data 

Figure 4d and f). This confirms previous findings that only the periplasmic fraction of CueO can bind 

copper13,14, and strongly suggests that the higher thermal stability of the periplasmic CueO is due to copper 

binding. Yet, it is not the periplasmic location per se that selectively switches CueO to an active form that 

can bind copper. It is rather the lack of copper in the cytoplasm which prevents CueO from being thermally 

stabilized in the cytoplasm, as the Δ28-CueO could be thermally stabilized in lysate when copper chloride 

was added (Extended Data Figure 4g). 
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In general, it is possible to rationalize many of the cellular changes as a direct consequence of the genetic 

perturbation—exemplified in this work by changes in ligand levels (metabolite, protein or cofactor) and 

protein environment. Previously, we have observed that nucleic acid binding15 and post-translational 

modifications16-18 can also lead to changes in protein thermal stability, and are likely to explain further 

proteome alterations observed here. However, many changes may be due to more complex and indirect 

cellular responses. Both direct and indirect links contribute alike to our ability to capture new functional 

interactions in a guilt-by-association manner. 

 

Protein co-expression and co-melting capture different functional associations 

To identify drivers of strong correlation for functionally-associated proteins, we calculated the Spearman’s 

rank correlation between protein pairs based on their abundance or thermal stability changes alone. Despite 

being less powerful (only a maximum of 121 data points were used to calculate these correlations) than 

correlations based to all log2 fold-changes (up to 1210 points per protein), proteins that belonged to the 

same operon had stronger correlations in their abundance levels than in their thermal stability (Extended 

Data Figure 6c). This was similar for protein pairs that belong to the same complex, particularly because 

a large fraction (38%) of these are also part of the same operon (Extended Data Figure 6d). In this case, 

protein thermal stability allows finding within complex interactions (see ‘Protein co-expression and co-

melting capture different functional associations’). For metabolic pathways, this was dependent on the 

protein pair, with some showing strong correlations in their thermal stability, but not abundance levels 

(Extended Data Figure 6e). A case-in-point are the enzymes of UDP-N-acetylmuramoyl-pentapeptide 

biosynthesis pathway, a precursor of peptidoglycan (Extended Data Figure 6f), for which there was a 

strong correlation between the thermal stability of DdlA and MurC (rS=0.79; Extended Data Figure 6g) 

or DdlA and MurF (rS=0.73), while abundance levels were not linked (rS (DdlA-MurC)=-0.13 and rS (DdlA-

MurF)=-0.06). DdlA thermal stability was also moderately correlated with the thermal stability of MurA 

(rS=0.51) and MurB (rS=0.49). MurC, MurD, MurE, MurF, MurG, and MraY (all encoded in the same 

operon) showed a stronger correlation in their abundance levels (Extended Data Figure 6h). 

In summary, this approach offers another way to look at the data that could expand the annotation of 

functionally-associated protein pairs, particularly in cases in which both abundance and thermal stability 

are altered, but only one of them is coordinated. These data are available to be explored at 

http://ecoliTPP.shiny.embl.de. 

 

Protein co-expression and co-melting patterns capture regulatory relationships and protein complex 

architecture 

Apart from the general correlation, as summarized by the Spearman’s rank correlation, a closer look at how 

some protein pairs behave can reveal interesting aspects of protein regulation. For example, the outer 

membrane porin OmpF and the periplasmic protease DegP showed one of the strongest anti-correlations 

(rS=-0.58; Extended Data Figure 3a). This anti-correlation was driven by changes in protein expression, 

generally with OmpF being downregulated and DegP being upregulated. The levels of these two proteins 

are known to be regulated by the Cpx signal transduction system upon cell envelope stress (Extended Data 

Figure 3b)19. In accordance, the mutants responsible for the changes in abundance of these proteins are 

known to cause envelope stress (e.g., ΔrfaC, ΔrfaF, ΔsurA, and ΔcpxA). Interestingly, ΔompR was an 
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outlier in this correlation, in that it only affected levels of OmpF. This is in agreement with OmpR affecting 

only ompF transcription (Extended Data Figure 3b)20. 

Functionally-associated proteins, such as those belonging to the same complexes, were generally highly 

correlated across genetic perturbations. However, a closer look at specific complexes showed substructure 

in these. For example, the ribosome contained three large clusters (two of them could be split further into 

subclusters; Extended Data Figure 7a), separating the components of the 30S and the 50S subunits in a 

rather accurate manner (Extended Data Figure 7a and c). The smallest of these clusters (left most cluster 

in Extended Data Figure 7a) included proteins with weak correlations to most other ribosomal proteins 

(RpsU, RplL, RpmC, RplJ, and RpsA). These proteins are structurally distinct subunits of the ribosome, 

e.g., RpsU belongs to the 30S subunit, but is also known to associate with the 50S subunit21; RplJ and RplL 

belong to the ribosomal lateral stalk22; and RpsA is known to not always be associated with the ribosome23. 

Coloring the subunits of a high-resolution structure of the ribosome24 (PDB: 4YBB) revealed that members 

of the same cluster are commonly physically close to each other (Extended Data Figure 7a-b). Similar 

substructures could be observed for the ATP synthase (PDB: 5T4O; Extended Data Figure 7d-e) and the 

respiratory complex I (PDB: 4HEA; Extended Data Figure 7f-g). We further calculated the distance 

between the centers-of-mass of all subunit pairs of each of these complexes as a proxy for distance 

(Extended Data Figure 7a, d, and e), and observed that strongly correlating subunits were generally at a 

shorter distance from each other (r=-0.21, p<10-11; Extended Data Figure 7h). Therefore, these proteins 

are likely to physically interact and melt coherently, as previously observed7,15,25. Indeed, although there 

was no correlation between strongly correlating subunits and their distance in the complex when 

considering only co-changes in protein abundance (rS=-0.025, p=0.4), there was one when considering only 

thermal stability co-changes (rS=-0.25, p<10-16). Thus, it is the power of combining abundance and thermal 

stability that enables us to functionally annotate protein complexes (based on their abundance co-changes) 

and assess their physical interactions (based on their thermal stability co-changes). Using these data to 

characterize other protein complexes, might aid future structural biology studies. 

 

GO enrichments of co-changing partners of proteins of unknown function can reveal their function 

The gene ontology (GO) enrichment of the highly correlated proteins of each protein provided possible 

hints for the function of orphan proteins, with many of them being supported by previous studies (Extended 

Data Figure 8). For example, YcjX is part of the σ32 response which is related to heat stress26; YbiX is 

upregulated during iron suppression and YncE is hypothesized to be involved in iron acquisition27; YggX 

is reported to play a role in resistance to oxidation of iron-sulfur clusters28; WbbJ and WbbK are encoded 

in the same operon as other proteins involved in lipopolysaccharide biosynthesis; YbhC is an outer 

membrane lipoprotein29, while YeaY has been predicted to be one based on its sequence30; YiaD is reported 

to be involved in the function of BamB, which is a member of the β-barrel assembly machinery31; the 

knockout mutants of YciI and YdiJ display a phenotypical fingerprint similar to other mutants of amino 

acid biosynthesis2; YagU expression is induced upon low pH stress32 and we find a correlation between its 

thermal stability and survival at pH 4 (r=0.38, p=0.009)—this correlation was mostly driven by the thermal 

destabilization of YagU in ΔcpxA, in which other proteins involved in pH regulation are also downregulated 

(e.g., YdiY, DtpA, and NhaB), suggesting a possible mechanism for the sensitivity of ΔcpxA to acidic 

conditions; YaaA is important to protect against hydrogen peroxide treatment, which causes DNA 

damage33; YebC and YhgF are important for survival after ionizing radiation exposure34; YejK affects DNA 
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replication35; YcbZ has genetic interactions with multiple genes involved in translation and ribosome 

biogenesis36. 

 

Disentangling molecular mechanisms of protein interactions 

While it is impossible to directly pinpoint the exact molecular function of an orphan protein or the molecular 

reason for why two proteins are functionally linked, the data presented here provide strong leads for further 

studies. First, it directly provides the means to infer the function in a guilt-by-association manner—i.e., if 

a protein is highly correlated with proteins from a certain biological process, it is likely that the protein is 

involved in that process. Second, it is possible to evaluate the reason two proteins are linked: if the 

correlation is driven by changes in protein abundance, it likely indicates co-regulation, while if they are 

driven by changes in thermal stability, it likely indicates a physical interaction (direct or mediated by a 

metabolite). Finally, it is possible to know which conditions drive the correlation. This might give direct 

insight into the interaction (e.g., by looking for mechanism of the perturbations, which can be further aided 

by evaluating which other proteins are affected in those mutants), or allow further studies in those 

perturbations (which might exacerbate the interaction and facilitate its observation). 

 

Mutant phenotypes are explained by proteome changes beyond the deleted gene 

We observed a moderate correlation between MdtK abundance and sensitivity to metformin2 (r=0.44, 

p<0.001; Extended Data Figure 10b). MdtK is a multidrug efflux pump, which when deleted causes a 

severe fitness defect in the presence of metformin (S-score=-22.3)2, and when overexpressed causes 

resistance to metformin37. Therefore, it likely reduces intracellular concentrations of metformin. We thus 

wondered if mutants with low MdtK abundance (ΔahpC (abundance z-score=-4.4) and ΔcpxA (abundance 

z-score=-3.3)) were sensitive to metformin (S-scoreΔahpC=-10.5 and S-scoreΔcpxA=-6.5) due to the low levels 

of this pump. To test this, we used plasmids to ectopically express mdtK, ahpC or cpxA, which in all cases 

complemented the corresponding mutant phenotype and restored the resistance to metformin (Extended 

Data Figure 10c-d). However, only mdtK ectopic expression could restore sensitivity of the non-cognate 

mutants (ΔahpC and ΔcpxA) or that of the double mutants (ΔmdtKΔahpC and ΔmdtKΔcpxA), 

demonstrating that MdtK levels are important for metformin sensitivity in these mutants. 

We further noticed a correlation between RecR abundance and sensitivity to UV38 (r=0.53, p<10-4; 

Extended Data Figure 10e). RecR is a DNA repair protein and when absent, cells are sensitive to UV38. 

This correlation was mostly driven by the low levels of RecR in ΔybaB (abundance z-score=-5.6), a gene 

located just upstream and in the same operon as recR (Extended Data Figure 10f). Therefore, we 

postulated that the UV sensitivity of ΔybaB was due to the low abundance of RecR and not due to the lack 

of YbaB itself, as it has previously been suggested39. Indeed, only overexpression of recR (and not ybaB) 

in both ΔybaB and ΔrecR was able to recover UV sensitivity to the same level as wildtype cells (Extended 

Data Figure 10g), confirming our hypothesis.  
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