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Appendix A. Linearization

We will give a short summary of the linearization of a cavity volume VCAV defined by

VCAV :=
1
3

∫
ΓCAV

x · n dsx .

Using Nanson’s formula and x = X + u we can rewrite this as

VCAV =
1
3

∫
ΓCAV,0

(X + u) · J F−⊤ N dsX

Using the known linearizations

∂ J
∂F

: Grad∆u = J F−⊤
: Grad∆u (A.1)

∂F−⊤

∂F
: Grad∆u = −F−⊤(Grad∆u)⊤ F−⊤ (A.2)

we can calculate the linearization around ∆u as

dCAV(u;∆u) := D∆uVCAV = D∆u
1
3

∫
ΓCAV

x · n dsx (A.3)

= D∆u
1
3

∫
ΓCAV,0

J (X + u) · F−⊤ N dsX (A.4)

=
1
3

∫
ΓCAV,0

J (F−⊤
: Grad∆u)x · F−⊤ N dsX (A.5)

−
1
3

∫
ΓCAV,0

J x · F−⊤(Grad∆u)⊤ F−⊤ N dsX (A.6)

+
1
3

∫
ΓCAV,0

J∆u · F−⊤ N dsX (A.7)

ppendix B. Static condensation for inhomogeneous Neumann boundary condition

While homogeneous Neumann boundary conditions do not alter the process of static condensation, the procedure
eeds to be adapted to for inhomogeneous ones. First, looking at the definition of the nonlinear residual Rvol in (6)
e see that this can be split as
Rvol = Rvol,Ω0 + Rvol,ΓN ,0
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where Rvol,Ω0 holds all the terms coming from integration over the domain Ω0 and Rvol,ΓN ,0 holds all the terms
oming from integration over the Neumann surfaces. Next, note that the bubble functions ψ̂B for tetrahedral elements
s well as their hexahedral counterparts ψ̂B,1, ψ̂B,2 have compact support in the FE interior. However, the respective
radients do not vanish on the FE boundary. Consider an arbitrary FE K ∈ Th with K ∩ΓN ,0 ̸= ∅. The gradient of
bubble function occurs in bilinear-form ak

N in (17), for the argument ∆u ∈ Vh . This yields a non-zero contribution
o the element-stiffness-matrix, whereas there is no contribution from Rvol,ΓN ,0 to the total element residual vector.
sing the decomposition of local degrees of freedom into exterior, E and interior, I it follows that the local block

ystem can be written in the following form⎛⎝K EE + KΓ ,EE K EI + KΓ ,EI BE
K IE K II BI
CE C I DE

⎞⎠ ⎛⎝∆uE
∆uI
∆p

E

⎞⎠ =

⎛⎝−Rvol,E − Rvol,Γ ,E

−Rvol,I
−Rinc,E

⎞⎠ .

The interior degrees of freedom can be statically condensed. On element level this leads to the static condensed
system(

K̃ B̃
C̃ D̃

)
  

:= Ã

(
∆uE
∆p

E

)
+

(
K̃Γ B̃Γ

0 0

)
  

:= ÃΓ

(
∆uE
∆p

E

)
=

(
−R̃vol
−R̃inc

)
  

:=−R

+

(
−R̃Γ ,upper

0

)
  

:=−RΓ

,

where

K̃ := K EE − K EI K−1
II K IE, B̃ := BE − K EI K−1

II BI,

C̃ := CE − C I K−1
II K IE, D̃ := DE − C I K−1

II BI,

K̃Γ := KΓ ,EE − KΓ ,EI K−1
II K IE, B̃Γ := −KΓ ,EI K−1

II BI,

R̃vol := Rvol,E − K EI K−1
II Rvol,I, R̃Γ ,vol := RΓ ,E − KΓ ,EI K−1

II Rvol,I,

R̃inc := Rinc,E − C I K−1
II Rinc,I.

The individual element matrices/vectors Ã, ÃΓ , R̃, and R̃Γ can be assembled into a global stiffness matrix through
oops over volume elements and surface elements respectively. In the case of an attached circulatory system a static
ondensation can be performed in an analogous way⎛⎜⎜⎝

K EE + KΓ ,EE K EI + KΓ ,EI BE ECAV,E
K IE K II BI 0
CE C I DE 0

FCAV,E FCAV,I 0 GCAV

⎞⎟⎟⎠
⎛⎜⎜⎝

∆uE
∆uI
∆p

E
∆p

CAV

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−Rvol,E − RΓ ,vol,E

−Rvol,I
−Rinc,E
−RCAV,E

⎞⎟⎟⎠ ,

where we assumed nCAV = 1 for brevity of presentation. The generalization to nCAV > 1 is straightforward. Static
condensation of all interior degrees of freedom leads to⎛⎝ K̃ B̃ ECAV,E

C̃ D̃ 0
F̃CAV H̃CAV GCAV

⎞⎠
  

:= Ã

⎛⎝ ∆uE
∆p

E
∆p

CAV

⎞⎠ +

⎛⎝K̃Γ B̃Γ 0
0 0 0
0 0 0

⎞⎠
  

:= ÃΓ

⎛⎝ ∆uE
∆p

E
∆p

CAV

⎞⎠ =

⎛⎝−R̃vol
−R̃inc
R̃CAV

⎞⎠
  

:=−R

+

⎛⎝−R̃Γ ,vol
0
0

⎞⎠
  

:=−RΓ

,

where

F̃CAV := FCAV,E − FCAV,I K−1
II K IE,

H̃CAV := −FCAV,I K−1
II BI,

R̃CAV := RCAV − FCAV,I K−1
II Rvol,I

ppendix C. Tensor calculus

We use the following results from tensor calculus, for more details we refer to, e.g., [68,122].

∂C
= J−

2
3P with the projection tensor P := I−

1
C−1

⊗ C,

∂C 3
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F

e

∂C−1

∂C
= −C−1

⊙ C−1,

(A ⊙ A)i jkl :=
1
2

(
Aik A jl + Ail A jk

)
.

or symmetric A it holds

P : A = Dev(A) = A −
1
3

(A : C)C−1

with the deviatoric operator in the Lagrangian description

Dev(•) = (•) −
1
3
((•) : C)C−1. (C.1)

The isochoric part of the second Piola–Kirchhoff stress tensor as well as the isochoric part of the fourth order
lasticity tensor are given as

Sisc := 2
∂Ψ (C)
∂C

= J−
2
3 Dev(S), (C.2)

S := 2
∂Ψ (C)

∂C
,

Cisc := 4
Ψ (C)
∂C∂C

= J−
4
3PCP⊤

+ J−
2
3

2
3

tr(C S)P̃−
4
3

Sisc
S
⊗ C−1, (C.3)

C := 4
∂Ψ (C)

∂C∂C
,

P̃ := C−1
⊙ C−1

−
1
3

C−1
⊗ C−1,

A
S
⊗ B :=

1
2
(A ⊗ B + B ⊗ A) .
29
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