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Appendix 1: Statistical software and challenges 179 

In addition to the use of msm package in R which can handle maximum likelihood estimation (MLE) 180 
multistate models, the other library within R software is the tdc.msm library developed by Meira-Machado 181 
et al.  (2009) which can fit five different multistate models including time-homogeneous and non-182 
homogeneous Markov multistate models; and Cox Markov and Cox semi-Markov multistate models (1). 183 
The tdc.msm library is a comprehensive package for modelling multistate longitudinal data since different 184 
models can be fitted within one library, and model comparison can be done easily (1). For nonparametric 185 
estimation, the msSurv library within R can be used to estimate state occupation probabilities, initial and 186 
exiting time in a state, and the marginal integrated transition rate for the non-Markov multistate process 187 
(49). The other R package is the mstate developed by Wreede et al. (2011) for both the competing risk 188 
models and multistate models (50). Additional R libraries are the etm library Allignol et al. (2011) for 189 
empirical transition probabilities and the changeLOS (change length of hospital stay) library introduced by 190 
Wangler et al. 2006) for the Aalen-Johansen Estimator is implemented within R software. The limitation 191 
of the changeLOS library is that it does not support the inclusion of covariates in the multistate model and 192 
left truncated data (51). However, the mvna library can handle both left truncated and right censored 193 
multistate data (51).   194 

The STATA software (licensed for use) (52) can fit the MLE multistate models using the multistate model 195 
ado files developed by Cowther and Lambert (2016) which restructures and declares the multistate data as 196 
survival and any survival model within STATA can be used (53). This package can estimate each transition 197 
rate by its unique model structure, assuming either a Markov or semi-Markov process (53). Uniquely to the 198 
STATA models is the ability to estimate each transition rate assuming different hazard functions which best 199 
fit the transition as compared to the R msm models which assumes the same hazard function on all the 200 
model transition processes. Another option in STATA is using illdprep and stpm2illd commands which can 201 
perform a similar analysis as described elsewhere (54). 202 

The Bayesian estimation (BE) multistate models can be implemented in BayesX software using the 203 
bayesreg object. This package can handle several data features which the MLE cannot handle like non-204 
linear effects of continuous covariates, time-varying effects, adjust for individual and spatial random effects 205 
accounting for unobserved heterogeneity. The WINBUGS software which estimates using Gibbs Sampling 206 
also can handle BE multistate model through the use of Kolmogorov-Chapman forward equations. This 207 
modelling approach promotes the use of partially observed aggregated data which the MLE approach 208 
cannot do as illustrated in the main text.  209 

Most of these statistical packages which can handle multistate models, both from the MLE and BE are free 210 
while few may require licensing. Here we highlight a couple of strengths and limitations associated with 211 
each software type which handles multistate models, some of which might not have been discussed in detail 212 
in this manuscript. Firstly, most of the existing software assumes the Markov property and time-213 
homogeneous by default which makes it difficult if these assumptions are violated. Secondly, the Markov 214 
assumption can be difficult to test, and in most cases, studies are silent on pre-model assumption testing of 215 
the Markov property; however, markovchain library implemented in R is one of the packages which can 216 
test for Markov property (26). Thirdly, not all software types are freely available for use like BayesX, 217 
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WinBUGS and R, some of the software types require a license to be granted access, for instance, STATA 218 
and SAS. Fourthly, data argumentation (structure) is different in each of the software, which may be a major 219 
drawback if one wishes to make a comparison across the software. In addition to this, at times convergence 220 
is an issue in multistate models depending on the size of the data, the model complexity of the proposed 221 
model (number of states, reversible transition and number of covariates included) and the preferred method 222 
of estimation (BE or MLE) as the models may take much longer (hours or days) to converge or may fail to 223 
converge at all. Lastly and most importantly, the result outputs vary moving from one software package to 224 
another; hence, methodological background theory for each package is crucial to enable results comparison.  225 
For instance, in the R msm library, one gets the exact transition rate values which can be interpreted directly 226 
while in BayesX outputs, the estimates are based on the flexible predictor on a log scale (39).   227 

Appendix 2: WinBUGs three state reversible multistate model code 228 

###MODEL 229 
model { 230 
#####Multinomial likelihood for observed data 231 
              for (i in 1:2) 232 
                    { 233 
                    r[i,1:3] ~ dmulti(P[i,1:3],n[i])  234 
                    } 235 
#####Find transition probabilities (for given time) in terms of rates 236 
 237 
h<- sqrt(pow(lambda[1]-lambda[2], 2) + 4*G[1,2]*G[2,1]) 238 
e1<-exp(-.5*(lambda[1] + lambda[2] - h)*(2*t.obs)) 239 
e2<-exp(-.5*(lambda[1] + lambda[2] + h)*(2*t.obs)) 240 
 241 
P[1,1]<-((-lambda[1]+lambda[2]+h)*e1+ (lambda[1]-lambda[2]+h)*e2)/(2*h) 242 
P[1,2]<-((-lambda[1]+lambda[2]+h)*(lambda[1]-lambda[2]+h)*(e1-e2))/(4*h*G[2,1]) P[1,3]<- 1- P[1,1] - P[1,2] 243 
P[2,1]<- G[2,1]*(e1-e2)/h 244 
P[2,2]<- ((lambda[1]-lambda[2]+h)*e1+ (-lambda[1] + lambda[2] + h)*e2)/(2*h) 245 
P[2,3]<-1 - P[2,1] - P[2,2] 246 
 247 
#Give exponential priors for unknown transition rate parameters 248 
              for (i in 1:2) 249 
                   { 250 
              for (j in (i+1):3) 251 
                                       { 252 
                                       G[i,j] ~ dexp(.001) 253 
                                       } 254 
                   } 255 
             for (i in 2:2) 256 
                  { 257 
             for (j in 1:(i-1)) 258 
                                   { 259 
                                  G[i,j] ~ dexp(.001) 260 
                                   } 261 
                   } 262 
lambda[1]<- G[1,2] + G[1,3] 263 
lambda[2]<- G[2,1] + G[2,3] 264 
 265 
######Find P(t.new) for given new time of interest=1 years 266 
e1.new<-exp(-.5*(lambda[1] + lambda[2] - h)*(2*t.new)) 267 
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e2.new<-exp(-.5*(lambda[1] + lambda[2] + h)*(2*t.new)) 268 
Pt[1,1]<-((-lambda[1]+lambda[2]+h)*e1.new+ (lambda[1] -lambda[2]+h)*e2.new)/(2*h) 269 
Pt[1,2]<-((-lambda[1]+lambda[2]+h)*(lambda[1]-lambda[2]+h)*(e1.new-e2.new))/(4*h*G[2,1]) 270 
Pt[1,3]<-  1-Pt[1,1] - Pt[1,2] 271 
Pt[2,1]<- G[2,1]*(e1.new-e2.new)/h 272 
Pt[2,2]<- ((lambda[1]-lambda[2]+h)*e1.new+ (-lambda[1] + lambda[2] + h)*e2.new)/(2*h) 273 
Pt[2,3]<-  1-Pt[2,1] - Pt[2,2] 274 
##### P(t.final)=half a year (put 0.25 in the data) 275 
e1.final<-exp(-.5*(lambda[1] + lambda[2] - h)*(2*t.final)) 276 
e2.final<-exp(-.5*(lambda[1] + lambda[2] + h)*(2*t.final)) 277 
Ptn[1,1]<-((-lambda[1]+lambda[2]+h)*e1.final+ (lambda[1] -lambda[2]+h)*e2.final)/(2*h) 278 
Ptn[1,2]<-((-lambda[1]+lambda[2]+h)*(lambda[1]-lambda[2]+h)*(e1.final-e2.final))/(4*h*G[2,1]) 279 
Ptn[1,3]<-1 - Ptn[1,1] - Ptn[1,2] 280 
Ptn[2,1]<- G[2,1]*(e1.final-e2.final)/h 281 
Ptn[2,2]<- ((lambda[1]-lambda[2]+h)*e1.final+ (-lambda[1] + lambda[2] + h)*e2.final)/(2*h) 282 
Ptn[2,3]<-1 - Ptn[2,1] - Ptn[2,2] 283 
} 284 
###DATA 285 
iist(r=structure(.Data=c(2269,143,78,137,2882,87),.Dim=c(2,3)),n=c(2490,3106),t.obs=0.5, t.new=0.25, 286 
t.final=0.125) 287 
 288 
###INITIAL VALUES 289 
list(G=structure(.Data=c(NA,.1,.1,.1,NA,.1),.Dim=c(2,3))) 290 
Here is an R code for comparable results if one has individual-level data  291 
#StepVL1-is the name of the dataset as saving name 292 
#ID-is the unique identifier 293 
#States-is the variable which defines individual states 294 
#Time1-if the cumulative time 295 
library(haven) 296 
StepVL1 <- read_stata("C:/Users/ WinBUGS/VL_KOL_1.dta") 297 
statetable.msm(States, ID, data=StepVL1) 298 
twoway3.q <- rbind(c(0.25, 0.5, 0.25), c(0.25, 0.5, 0.25), c(0, 0, 0)) 299 
crudeinits.msm(States ~ Time1, ID, data=StepVL1, qmatrix=twoway3.q) 300 
StepVL1.msm <- msm( States ~ Time1, subject=ID, data = StepVL1, 301 
                   qmatrix = twoway3.q, deathexact = 3,  302 
                  control = list (fnscale = 5000, maxit= 500 )) 303 
###To get the transition rates 304 
StepVL1.msm 305 
###To get the transition probabilities 306 
P_1year<-pmatrix.msm(StepVL1.msm,t=1) 307 
P_6months<-pmatrix.msm(StepVL1.msm,t=0.5) 308 
P_3months<-pmatrix.msm(StepVL1.msm,t=0.25) 309 

 310 
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