
46 
 

and vehicle control treated mice (n=5 mice/group). Lines in (f) are mean±s.e.m (two-tailed 
Mann-Whitney test). Black dots in (g) show experimental data. (h-i) Numerical example (see 
Supplementary Note) of the model showing increased proportion of tumors resistant to 
displacement by mutant clones (h) and the decrease in tumor density following DEN-treatment 
(i). Experimental data depicts mean±s.e.m. (j) Images of human (top) and mouse (bottom) 
esophagus. Dotted lines delineate lesions. (k) Confocal images of human normal (top) and 
neoplastic (bottom) esophageal epithelium stained with KRT6 (red) and Topro3 (nuclei, blue). 
Scale-bars: 100µm. Simulations in (a, g, h and i) show the mean and range between the 
minimum-maximum outputs of the model run with the accepted parameters from Approximate 
Bayesian Computation (Methods). 

 

Supplementary Tables 

This file contains Supplementary Tables 1-11. Supplementary Table 1 lists the area (µm2) and number 
of tumors measured at different time points post-DEN treatment. Supplementary Table 2 displays the 
targeted sequencing data of isolated tumors from 10 days post-DEN treated mouse esophageal 
epithelium. Supplementary Table 3 displays the targeted sequencing data of isolated tumors from 1 
year post-DEN treated mouse esophageal epithelium. Supplementary Table 4 shows the dN/dS results 
from targeted sequencing data of isolated tumors from 10 days post-DEN treated mouse esophageal 
epithelium. Supplementary Table 5 shows the dN/dS results from targeted sequencing data of 
isolated tumors from 1 year post-DEN treated mouse esophageal epithelium. Supplementary Table 6 
shows the WES results of 9 and 18 month post-DEN tumors. Supplementary Table 7 displays the 
dN/dS results for WES of 9 and 18 month post-DEN tumors. Supplementary Table 8 displays the HGFP 
mean intensity in tumors and surrounding normal esophageal epithelium. Supplementary Table 9 
shows the targeted sequencing data of normal esophageal epithelium from 10 day post-DEN treated 
mice. Supplementary Table 10 displays the dN/dS results from targeted sequencing data of normal 
esophageal epithelium from 10 day post-DEN treated mice. Supplementary Table 11 lists the 
parameters for the mathematical model. 

 

Supplementary Videos 

Supplementary Video 1: Esophageal epithelium at 1 month post-DEN. Mouse esophageal epithelium 
at 1 month post-carcinogen treatment. The tissue was stained with Dapi (blue) and KRT6 (red) and 
imaged by confocal microscopy. Individual images were taken using a 10x objective and merged to 
create a 3D single cell resolution image of the entire esophagus. The video initially shows the entire 
tissue before zooming in on a tumor, characterized by an irregular nuclear distribution and increased 
KRT6 expression. 

Supplementary Video 2: Early angiogenesis in a 10 days post-DEN tumor. Mouse esophageal 
epithelium at 10 days post-carcinogen treatment. The tissue was stained with Dapi (blue), KRT6 (red) 
and CD31 (yellow, to label endothelial cells) and imaged by confocal microscopy using a 40x objective. 
The video shows small capillary circling the tumor (characterized by an irregular nuclear distribution 
and increased KRT6 expression), illustrating the early steps of angiogenesis. 
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Supplementary Video 3: Angiogenesis in an established tumor. Mouse esophageal epithelium at 9 
months post-carcinogen treatment. The tissue was stained with Dapi (blue), KRT6 (red) and CD31 
(yellow, to label endothelial cells) and imaged by confocal microscopy using a 40x objective. The video 
shows a developed vasculature surrounding the established tumor (characterized by an irregular 
nuclear distribution and increased KRT6 expression). 

Supplementary Note: This document sets out the theory and mathematical modelling of tumour 
dynamics in Sections 1–7. Section 1 discusses previous results on the growth and competition of 
mutant clones in normal oesophageal epithelium. Section 2 describes a previously proposed stochastic 
model of tumour dynamics. Section 3 describes the elimination of tumours by highly competitive 
mutant clones in the surrounding normal epithelium. Section 4 shows how reducing the competitive 
imbalance between tumours and highly fit mutant clones in the normal tissue affects tumour survival. 
Section 5 describes the selection pressure on tumours from competition with surrounding clones in 
the normal epithelium. In Section 6, we substitute simple mathematical equations into the model to 
numerically illustrate the principles described in the previous sections. Section 7 is a summary of our 
conclusions. 
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Theory and mathematical modelling 

 

Modelling aims  

 

Here we describe a general model of tumour loss that allows us to make testable predictions 

without requiring details of cell dynamics in tumours or mutant clones in the epithelium. We 

are interested in particular in whether the tumours are lost due to tumour-intrinsic mechanisms, 

or if the tumours are removed by mutant clones in the adjacent normal epithelium. As we 

discuss the factors affecting tumour loss, the principles of the model are described in 

mathematical terms so that we can later construct a numerical version of the model. This 

numerical version of the model is intended as a demonstration of the model principles, rather 

than a parameter- or model-fitting exercise.  

 

In Section 1, we briefly summarize previous results regarding growth and competition of 

mutant clones in normal oesophageal epithelium. In Section 2, we describe a previously 

proposed stochastic model of tumour dynamics and apply it to the tumour density following 

DEN-treatment. This model shows how tumour loss might occur due to the stochastic nature 
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of the cell dynamics in oesophageal epithelium. However, it does not consider any interaction 

between tumour cells and the surrounding normal tissue. In Section 3, we show that tumour 

loss is increased by the induction of highly fit mutant clones in the normal epithelium. This 

justifies incorporating into the model the effects that mutant clones surrounding the lesions 

could have in tumour loss. To further challenge this hypothesis, in Section 4, we show how 

reducing the competitive imbalance between tumours and highly fit mutant clones in the 

normal tissue increases the number of surviving tumours. If competition with surrounding 

clones can remove early neoplasms, we might expect this competition to act as a selective 

pressure on tumours. This is the topic of Section 5, where we discuss how if certain tumour 

genotypes reduce the competitive imbalance between the tumour and mutant clones in the 

surrounding tissue, those tumour genotypes will have a higher chance of survival and will 

become enriched in the tumour population. In Section 6, we substitute simple mathematical 

equations into the model to numerically illustrate the principles described in the previous 

sections. We show how the various experimental results in this study are all consistent with 

this model in which mutant clones in the normal tissue contribute to the loss of tumours. 

Section 7 is a brief summary of our conclusions. 

 

 

1. Clonal competition in oesophageal epithelium 

 

Before examining the behaviour of tumours in the tissue, we first summarize previously 

published results relating to competition of mutant clones in phenotypically normal murine 

oesophageal epithelium13.  

 

The mouse oesophageal epithelium is maintained by proliferating cells in the basal layer 

(Extended Data Fig. 1a). These cells divide stochastically (randomly) (Extended Data Fig. 

1b), meaning that, if we track the offspring of basal cells, some cell lineages will grow into 

multicellular clones of the original cell, and other lineages will be lost as all basal cells 

differentiate15. A mutation in a basal cell may convey a growth advantage, biasing cell fate 

towards producing more dividing daughter cells and promoting the growth of a mutant clone11-

14,46 (Extended Data Fig. 1c).  

 

When the tissue contains multiple mutant clones, the clones compete for the limited space in 

the tissue13  (Extended Data Fig. 1d). Fitter clones are able to displace less fit clones, but once 

a clone is surrounded by clones of similar competitive fitness it returns towards more neutral 

growth13 (Extended Data Fig. 1d). The expansion and survival of a mutant clone therefore 

depends not only on its own fitness, but the fitness of its neighbours13.  

 

Following DEN treatment, the density of tumours in the oesophagus falls rapidly (Fig. 1d). 

Tumours are not lost due to apoptosis (Extended Data Fig. 6a), abnormal proliferation of 

tumour cells (Extended Data Figs. 6b-g) or elimination by the immune system (Extended 

Data Figs. 6h-p). The tumours grow amongst a dense patchwork of highly fit clones competing 

for their place in the tissue13. In the following sections we explore whether the tumours survival 

is affected by the mutant clones in the normal epithelium around them. 
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2. Stochastic model of tumour dynamics 

 

We start by considering an existing model of cell dynamics in mouse oesophageal epithelial 

tumours to examine whether it is capable of explaining the pattern of tumour loss over time. 

This model was based on the shallow proliferative-differentiated cell hierarchy that operates in 

the normal oesophagus15,16.  

 

In a previous study, oesophageal tumour growth in DEN- and Sorafenib-treated mice was 

found to be consistent with a stochastic model of cell dynamics17. In this model, proliferating 

cells divide to form a pair of proliferating daughter cells, a pair of non-dividing daughter cells, 

or one cell of each type. In the normal tissue, the probabilities of each symmetric division type 

are balanced, so that the total number of proliferating cells remains approximately constant 

(Extended Data Fig. 1b). In the tumours, there was a bias towards producing more dividing 

than differentiated cells, causing the average size of tumours to increase over time (Extended 

Data Fig. 1c)17. Due to the stochastic nature of the process, some tumours expand in size, while 

in others all basal cells differentiate and the tumour is shed and lost from the tissue17,47. This 

variation in outcome due to random chance is known as drift.  

 

The stochastic system here parallels the continuous time Markov process used to model the 

dynamics of mutant clones with imbalanced cell fates in normal epithelium14,46. We can 

therefore modify the equations used in these studies to calculate the probability that a tumour 

will lose all of its proliferating cells due to stochastic drift. The clones in normal epithelium 

are assumed to originate from single cells14,46, so we must alter the equations for this study to 

allow for the likely possibility that the tumours contain multiple proliferating cells at the end 

of the DEN treatment.  

 

Asymmetric divisions do not alter the number of proliferating cells, which means we only need 

to consider the symmetric divisions. Letting P and D represent a proliferating and a 

differentiated cell respectively, the simplified version of the model shown in Extended Data 

Fig. 1c becomes 

𝑃
2𝑟𝜆
→ {

𝑃 + 𝑃 𝑃𝑟𝑜𝑏.  
1

2
+ Δ

𝐷 + 𝐷 𝑃𝑟𝑜𝑏.  
1

2
− Δ

 

 

where 𝜆 is the division rate, 2𝑟 is the fraction of symmetric divisions, and Δ  is the probability 

imbalance between symmetric division and symmetric differentiation (Extended Data Fig. 

1c)46. If ∆=0, equal proportions of proliferating and differentiating cells are produced 

(Extended Data Fig. 1b), as occurs in neutral growth of wild type clones15. The value of ∆ can 

range from -0.5 (all symmetric divisions produce two differentiated cells) to 0.5 (all symmetric 

divisions produce two proliferating cells). 
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The probability that a cell lineage starting from a single cell will go extinct by time t, 𝛼(𝑡), is 

given by 48 

𝛼(𝑡) =
(
1
2 − ∆) 𝑒

2𝑑𝑡∆ − (
1
2 − ∆)

(
1
2 + ∆) 𝑒

2𝑑𝑡∆ − (
1
2 − ∆)

 

 

where 𝑑 is the symmetric division rate of tumour cells (𝑟𝜆).  

 

In this model, each cell is assumed to behave independently of all others, and therefore the 

extinction probability of a population starting with n proliferating cells equals the probability 

that n independent cell lineages starting from single cells all become extinct, i.e. 𝛼(𝑡)𝑛. If we 

assume that fully differentiated tumours are lost from the tissue, then the survival probability 

of a tumour is given by 1 minus the extinction probability: 

 

𝑝𝑠𝑢𝑟𝑣(𝑡) = 1 − 𝛼(𝑡)
𝑛 (1) 

 

where n is the initial number of proliferating cells in each tumour (assumed here to be the same 

for all tumours). With n=1, Eq.1 matches that used in previous studies for the survival 

probability of clones that originate from single proliferating cells14,46. For a full derivation of 

the equations used here and in the cited studies of imbalanced clone dynamics, see 48. 

 

Fitting equation 1 to the tumour density following DEN-treatment results in a steep initial drop 

in tumour numbers followed by a slower downward trend, consistent with the experiment 

(Extended Data Fig. 10a). The median accepted parameters found from fitting the model to 

the data (see Methods) were (95% credible interval lower bound, upper bound) d=0.33/day 

(0.27, 0.36), Δ=0.003 (0.001, 0.005), n=1.2 (1.0, 1.5), and initial tumour density (immediately 

following DEN-treatment)=4.8/mm2 (4.1, 5.6), though these parameters should not be 

interpreted as estimates of the true biological values (see sections below). 

 

However, we will see in the sections below that this model is not capable of explaining the 

results seen in the full range of experiments, and therefore must be rejected (or at least adjusted) 

to account for the clones in the surrounding tissue.   

 

 

3. Elimination of tumours by highly competitive mutant clones in the surrounding normal 

epithelium 

 

Although the stochastic model of tumour drift defined above is sufficient to describe the pattern 

of tumour loss following DEN-treatment, it does not rule out alternative causes of tumour loss. 

The normal epithelium surrounding the tumours contains a patchwork of competing mutant 

clones (Fig. 2g, Extended Data Fig. 7 and Section 1). Therefore, we speculated that, like 

clones in the surrounding normal tissue, tumours may be displaced by highly fit mutant clones.  
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We considered a general model in which a highly competitive mutation, M, is induced in the 

tissue following DEN treatment. We assume that clones of the mutant M are able to remove 

tumours that they encounter (Extended Data Figs. 8a and 9g). Let 𝑝𝑀(𝑡) be the survival 

probability of a tumour assuming that the mutant M is the only cause of tumour loss. Let 𝑝𝑜𝑡ℎ𝑒𝑟 

be the survival probability of a tumour based on all other sources of tumour loss (such as drift 

– see Section 2, but may include tumours removed by DEN-created clones – see Section 4 

below). For simplicity, we assume that tumour loss due to the mutant M is independent of all 

other causes of tumour loss. The combined survival probability of a tumour is then given by  

 

𝑝𝑠𝑢𝑟𝑣(𝑡) = 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡) 𝑝𝑀(𝑡) (2) 

 

Let M(t) be the proportion of tissue covered by the mutant at time t. We make the following 

additional assumptions for the sake of simplicity:  

 

1. The proportion of tissue covered by M increases monotonically.  

2. Tumours are spread randomly across the tissue. 

3. Tumours are removed instantly with probability 1 when the mutant M colonizes the 

location of the tumour (see the end of this section for a discussion of this assumption).  

 

This means  

𝑝𝑀(𝑡) = 1 −𝑀(𝑡) (3) 

 

and the combined probability of tumour survival is then given by  

 

𝑝𝑠𝑢𝑟𝑣(𝑡) = 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡) (1 − 𝑀(𝑡)) (4) 

 

To make it easier to compare mice in which the initial density of tumours may vary, we looked 

at the proportion of tumours eliminated (PTE) by M, using the tumour density in the non-M-

mutant regions of the tissue to estimate the tumour density in the full tissue in the absence of 

M. 

 

𝑃𝑇𝐸 = 1 −
𝑡𝑜𝑡𝑎𝑙

𝑀𝑛𝑒𝑔
 (5) 

 

where total is the density of tumours over the full tissue, and Mneg is the density of tumours 

in the M-negative region. 

 

The expected PTE for two models - where the M mutant removes tumours it encounters (𝑃𝑇𝐸𝑀) 

and where tumour loss is independent of the mutant in the surrounding tissue (𝑃𝑇𝐸¬𝑀), are 

 

𝑃𝑇𝐸𝑀 = 1 −
𝑝𝑠𝑢𝑟𝑣(𝑡)

𝑝𝑜𝑡ℎ𝑒𝑟(𝑡)
= 𝑀(𝑡) (6) 
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𝑃𝑇𝐸¬𝑀 = 1 −
𝑝𝑜𝑡ℎ𝑒𝑟(𝑡)

𝑝𝑜𝑡ℎ𝑒𝑟(𝑡)
= 0 (7) 

  

 

In other words, if M clones are able to remove tumours in a similar manner to which highly fit 

clones are able to displace weaker clones in the normal tissue, then we will see a reduction in 

tumour numbers proportional to the spread of the M mutant. By definition, models in which 

tumour survival is independent of surrounding tissue (𝑃𝑇𝐸¬𝑀), such as the stochastic tumour 

drift model described in Section 2, predict that tumour numbers will be unaffected by the 

spread of the M clones (Extended Data Fig. 10b). 

 

To test these predictions, we used an inducible DN-Maml1 mutation that prevents Notch 

signalling and forms rapidly expanding clones when induced in murine oesophageal 

epithelium11,13. When DN-Maml1 mutant clones are induced in the normal epithelium, the 

density of tumours is significantly reduced compared to uninduced control tissues (Figs. 3b 

and c). The density of tumours is not altered in regions of the induced oesophagus which are 

not occupied by DN-Maml1 mutant clones, and therefore the tumour density reduction is 

occurring only in the DN-Maml1 mutant areas (Extended Data Fig. 8f). Furthermore, as 

predicted under the assumption that DN-Maml1 clones can remove tumours they encounter 

from the tissue, the data shows a strong correlation between DN-Maml1 clone spread and 

tumour loss (Fig. 3d, Extended Data Figs. 8g and 10b). The results of the experiment 

therefore indicate that DN-Maml1 clones are contributing to the loss of tumours from the tissue.  

 

In the experiment, there remained a small number of tumours in close contact with DN-Maml1 

mutant regions (Fig. 3e). This may indicate that there is a lag time between contact with DN-

Maml1 clones and tumour removal and that the surviving tumours seen in the DN-Maml1 areas 

are in the process in being removed (Fig. 3e and Extended Data Figs. 9a to c). The clear 

significance of the experimental results and the small number of tumours surviving in the DN-

Maml1 mutant regions suggest that the lag time is small compared to the timescale of the 

experiment. It may also be the case that a small proportion of tumours are able to survive 

despite the competition with DN-Maml1 clones (see Section 5 below).  

 

 

4. Reducing competitive imbalance 

 

Now that we have shown that the induction of a highly fit mutant following DEN treatment 

can eliminate tumours, we asked whether mutant clones already present in the DEN-treated 

tissue are able to remove tumours too. Fit clones present in the normal epithelium might be 

able to out-compete the tumours, eliminating them from the tissue (Extended Data Figs. 9d-

f). By removing the competitive advantage of those clones, we can examine the impact they 

are having on tumour survival. 

 

We assume there is a type of highly fit mutant clone, N, in the DEN-treated tissue that is able 

to remove tumours. As in the section above (Equation 2), we assume that the removal of clones 
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by mutant clones N is independent of other causes of tumour loss. Tumour survival probability 

is given by 

 

 

𝑝𝑠𝑢𝑟𝑣
𝑐𝑡𝑙 (𝑡) = 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡) 𝑝𝑁

𝑐𝑡𝑙(𝑡) (8) 

 

where, similar to above, 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡) is the survival probability of a tumour based on all sources 

of tumour loss other than elimination by N clones, and 𝑝𝑁
𝑐𝑡𝑙(𝑡) is the survival probability of a 

tumour assuming that the mutant N is the only cause of tumour loss. We assume that, without 

intervention, N clones spread progressively throughout the tissue and outcompete tumours they 

encounter, so 𝑝𝑁
𝑐𝑡𝑙(𝑡2) < 𝑝𝑁

𝑐𝑡𝑙(𝑡1) for 𝑡2 > 𝑡1.  

 

If we can raise the fitness of the surrounding tissue and tumours to a similar level as N clones, 

this would both prevent the spread of the N clones across the tissue (reducing the number of 

tumours directly competing with N clones) and reduce the elimination of tumours that are 

already adjacent to N clones, as they will now be competing neutrally (Extended Data Fig. 

10c). Assuming that we have an intervention that completely levels the fitness of N clones with 

the rest of the tissue and tumours, the loss of tumours due to N clones will cease during that 

period, i.e. if the intervention starts at time 𝑡1 and lasts until 𝑡2, 𝑝𝑁
𝑖𝑛𝑡(𝑡2) = 𝑝𝑁

𝑖𝑛𝑡(𝑡1) =

𝑝𝑁
𝑐𝑡𝑙(𝑡1) > 𝑝𝑁

𝑐𝑡𝑙(𝑡2) and  

 

𝑝𝑠𝑢𝑟𝑣
𝑖𝑛𝑡 (𝑡2) = 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡2) 𝑝𝑁

𝑖𝑛𝑡(𝑡2)  >  𝑝𝑜𝑡ℎ𝑒𝑟(𝑡2) 𝑝𝑁
𝑐𝑡𝑙(𝑡2) = 𝑝𝑠𝑢𝑟𝑣

𝑐𝑡𝑙 (𝑡2) 

 

where, for the experiment in which the intervention is applied, 𝑝𝑠𝑢𝑟𝑣
𝑖𝑛𝑡 (𝑡) is the overall tumour 

survival probability and 𝑝𝑁
𝑖𝑛𝑡(𝑡) is the tumour survival probability related to the mutant N. 

Therefore, if we can remove or reduce the competitive imbalance between a mutant that can 

remove tumours and the rest of the tissue (including the tumours), then we should see an 

increase in surviving tumours compared to control experiments (Extended Data Fig. 10d).  

 

Notch1 mutant clones dominate competition in the normal oesophageal epithelium13, even at 

early time points (Fig. 2g-i and Extended Data Figs. 7f-h), and therefore is a good candidate 

mutation to test this prediction. The Notch inhibitor Dibenzazepine (DBZ) prevents Notch 

signalling and would affect all cells in the tissue, effectively raising the fitness of all Notch 

wild type clones and tumours to the level of the Notch mutant clones11. The competitive 

advantage of Notch mutants is thus removed during the DBZ intervention. Furthermore, by 

raising all cells to a high background level of fitness, this may also reduce the relative fitness 

advantage conveyed by mutations which work independently of the Notch pathway49. 

 

We indeed saw the predicted increase in surviving tumours when DBZ is administered between 

10 days (𝑡1) and 24 days (𝑡2) after DEN treatment (Extended Data Figs. 10e-g). This suggests 

that competition from clones in the surrounding tissue is removing a substantial proportion of 

the tumours lost in the first few weeks following DEN treatment.  
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5. Selection pressure on tumours from competition with surrounding clones in the normal 

epithelium 

 

There are genetic differences between the tumours sequenced 10 days and 1 year after DEN 

treatment, as shown by the dN/dS ratios (Fig. 2c) and the proportion of tumours mutant for 

each selected gene (Extended Data Fig. 4j). This genetic change over time could be consistent 

with ongoing selection of mutant subclones within tumours24. However, the elimination of 

early neoplasms by mutant clones in the surrounding tissue could also act as a selective pressure 

on tumours.  

 

As described in Section 4 above, the competitive fitness of a tumour compared to the 

surrounding clones in the normal tissue will affect the survival prospects of the tumour (Fig. 

3a). If certain tumour genotypes have a competitive fitness comparable to or higher than the 

fittest mutant clones in the surrounding tissue, they would be more likely to survive. For 

example, Notch1 is the dominant mutant gene in normal tissue, occupying almost the entire 

tissue 12 months after DEN treatment13. We might expect that, similar to the Notch1 mutant 

clones in the normal tissue, tumours which are also Notch1 mutant would be able to resist 

displacement by the mutant clones in the surrounding tissue. Consistent with this, we saw an 

increase in the proportion of Notch1 mutant tumours from the 10-day to the 1-year time point 

(Extended Data Fig. 4j). We also see a large increase in the proportion of Atp2a2 mutant 

tumours (Extended Data Fig. 4j), suggesting that these too may be able to resist displacement 

by clones in the surrounding tissue.  

 

To explore this hypothesis, we expanded the model to include two tumour phenotypes: 

sensitive and resistant. Sensitive tumours can be removed by clones in the surrounding tissue, 

while resistant tumours cannot. We expect that the mutation rate is low following the cessation 

of DEN treatment (very few mutations spontaneously occur in untreated aged mice13), and 

therefore assume that, post-DEN treatment, sensitive tumours do not evolve resistance through 

mutation. The probability of tumour survival is then given by  

 

𝑝𝑠𝑢𝑟𝑣(𝑡) = 𝑆(0) 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡) 𝑝𝑁(𝑡) + 𝑅(0) 𝑝𝑜𝑡ℎ𝑒𝑟(𝑡)  (9) 

 

where 𝑆(0)  and 𝑅(0) are the proportions of tumours at day 0 following DEN treatment which 

are sensitive and resistant respectively.  

 

The proportion of surviving tumours which are resistant to displacement by mutant clones, 

𝑅(𝑡), is given by 

 

𝑅(𝑡) =
𝑅(0)

𝑅(0) + 𝑆(0)𝑝𝑁(𝑡)
 (10) 
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Assuming that the number of sensitive and resistant tumours are non-zero, and that, as we 

assumed earlier, 𝑝𝑁(𝑡) is a decreasing function of time, then the proportion of surviving 

tumours which are resistant will increase over time. 

 

The increasing proportion of the surviving tumours which are Notch1 and/or Atp2a2 mutant is 

consistent with the hypothesis that these mutations may increase the tumour’s ability to resist 

displacement by clones in the surrounding tissue. The presence of a subset of tumours which 

are able to resist displacement by clones also could explain why a small fraction of tumours 

are able to survive over 1 year after DEN treatment (Fig. 1d) when the surrounding normal 

tissue is almost entirely populated by highly fit mutant clones13.  

 

 

6. Numerical model example 

 

So far, we have mostly defined properties of the tumour survival probabilities rather than given 

specific equations for their values. This has allowed us to make testable predictions without 

requiring the details of the clonal or tumour dynamics to be defined.  

 

Here we substitute feasible functions into Equation 9 to construct a numerical expression of 

the model. The functions are intended to be simple and introduce only a small number of model 

parameters, and the purpose here is to illustrate the concepts described in the previous sections 

rather than accurately and verifiably model the data.  

 

Firstly, we need to define 𝑝𝑜𝑡ℎ𝑒𝑟, the non-clone related probability of tumour survival. As we 

have shown that apoptosis, abnormal proliferation of tumour cells, and the immune system are 

not contributing to tumour loss (Extended Data Fig. 6), we assume that 𝑝𝑜𝑡ℎ𝑒𝑟 is simply the 

survival probability based on drift (Equation 1). Secondly, we need to define 𝑝𝑁(𝑡), the 

probability of tumour survival based on highly fit mutant clones in the surrounding tissue. 

Following the assumptions in Sections 4 and 5, we assume that there is a single mutant 

population N capable of removing tumours and that N mutant clones remove tumours as soon 

as they occupy the location of the tumour in the tissue. Our starting time occurs after the end 

of DEN treatment, and so much of the tissue may already be occupied by the N clones. 

Therefore, we modify Equation 3 to account for the sensitive tumours existing in the remaining 

non-N proportion of the tissue.  

 

𝑝𝑁(𝑡) =
1 − 𝑁(𝑡)

1 − 𝑁(0)
 (11) 

 

This still leaves us having to define 𝑁(𝑡), the growth pattern of the mutant clones. Growth of 

mutant clones in oesophageal epithelium have previously been modelled using branching 

processes14, but these don’t consider competition between clones and limitations of the tissue 

size13,25. Cellular automaton simulations have also been used to model clones in this tissue13, 

but this does not allow for easy integration with the mathematical formulation. Instead, we used 
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the logistic equation, which captures the key features of clonal spread: fast growth at early time 

points when mutant cells are mostly competing with surrounding wild type cells, slower growth 

at late time points when the tissue is already largely mutant, and an upper bound on total mutant 

spread13. Therefore, 

𝑁(𝑡) =
1

1 + (
1 − 𝑥0
𝑥0

) 𝑒−𝑘𝑡
(12)

where 𝑥0 is the initial proportion of tissue covered by N mutant clones and 𝑘 is the clone growth 

rate. To represent the experiment in which the DBZ Notch inhibitor is applied between 10 and 

24 days after DEN, we can define  

𝑁𝐷𝐵𝑍(𝑡) =  {
𝑁(𝑡) 𝑡 < 10
𝑁(10) 10 ≤ 𝑡 ≤ 24

(13) 

The full model can then be constructed by substituting these expressions into equation 9. 

We have 7 independent parameters: 𝑑, Δ, 𝑛, 𝑥0, 𝑘, 𝑆(0), and the initial tumour density 

(Supplementary Table 11). We used Approximate Bayesian Computation (ABC) to find the 

parameter combinations for which the model most closely matched the mean tumour density 

from 10 days to 18 months after DEN treatment and the mean tumour density in CTL and DBZ 

experiments at 24 days after DEN treatment (see Methods). The parameters were constrained 

as listed in Supplementary Table 11. The results are shown in Extended Data Figs. 10h-i. 

The median acceptable parameters found were (95% credible interval lower bound, upper 

bound) d=0.29/day (0.17, 0.35), Δ=0.020 (0.007, 0.047), n=1.4 (1.0, 2.5), 𝑥0=0.80 (0.42, 0.99), 

k=0.032 (0.019, 0.040), S(0)=0.64 (0.44, 0.82) and initial tumour density=4.2/mm2 (3.4, 5.4), 

although, given the simplifications and approximations used in this numerical example of the 

model, they should not be interpreted as estimates of their biological counterparts.  

The numerical example of the modelling principles demonstrates how the elimination of (a 

subset of) tumours by mutant clones in the surrounding normal tissue leads to the experimental 

observations of decreasing tumour numbers following DEN treatment, higher tumour survival 

when competitive imbalance is removed (DBZ experiment), and a selection pressure on tumour 

genotype 

7. Summary

Together, the experimental data and modelling indicate that tumours in the DEN-treated 

oesophageal epithelium are eliminated by mutant clones in the surrounding normal tissue. The 

data also suggests that the tumour genotype influences the chance of a tumour surviving, 

possibly by allowing the tumours to better compete with mutant clones in the surrounding 

tissue. 
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