
Supplementary information for

Integer topological defects organize stresses driving tissue morphogenesis

Pau Guillamat,1, ∗ Carles Blanch-Mercader,1, 2, ∗

Guillaume Pernollet,1 Karsten Kruse,1, 2, 3, † and Aurélien Roux1, ‡
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SUPPLEMENTARY VIDEOS LEGENDS

Supplementary Video 1. Unconfined monolayer of C2C12 myoblasts. Phase contrast

time-lapse of a proliferating monolayer of myoblasts.

Supplementary Video 2. Spiral-to-aster transition in a C2C12 myoblast disk. Phase

contrast time-lapse of myoblast monolayers under circular confinement. In time, cells rearrange

from spiral arrangements into aster arrangements.

Supplementary Video 3. Formation of cellular mounds. Phase contrast time-lapse

showing the formation of cellular mounds in the center of an aster of myoblasts.

Supplementary Video 4. Cellular spirals. Phase contrast time-lapse of low-density circular

islands of myoblasts featuring spiral configurations. Division was blocked with Mitomycin-C.

Supplementary Video 5. Actin dynamics in cellular spirals. Fluorescence confocal

time-lapse of the bottom plane of a cellular spiral. Actin was stained with SiR-actin.

Supplementary Video 6. Cellular asters. Phase contrast time-lapse of high-density circular

islands of myoblasts. Division was not blocked.

Supplementary Video 7. Actin dynamics in cellular asters. Fluorescence confocal

time-lapse of the bottom plane of a cellular aster. Actin was stained with SiR-actin.

Supplementary Video 8. Actin organization and flows in minimal cellular mounds.

Z-projection of the top of an actin-labelled mound. Actin was stained with SiR-actin.

Supplementary Video 9. Pillar constriction experiment. Differential interference con-

trast (DIC) time-lapse showing myoblasts constricting soft hydrogel pillars of different sizes. The

consequent pillars’ deformation can be observed in the 3D renderings of the pillars obtained from

fluorescence images’ segmentation.

Supplementary Video 10. Dynamics and collapse of 3D cellular protrusions. Phase

contrast time-lapse of a myoblast protrusion, which collapses after confining pattern is degraded.
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SUPPLEMENTARY NOTE 1: HYDRODYNAMIC DESCRIPTION OF MONOLAYERS

OF ANISOTROPIC CELLS

In this section, we present the phenomenological description of monolayers of elongated cells

used in the main text. For details, we refer the reader to Sec. II of Ref. [1].

1.1: Conservation equations

First, we identify the conservation equations characterizing cell monolayers. Let n be the two-

dimensional cell number density. Neglecting cell division, growth, and cell death, we write the

conservation of mass as

∂tn+ ∂γ(nvγ) = 0, (S1)

where γ represents the cartesian coordinates in the substrate plane and v is the in-plane velocity

field. We adopt the Einstein convention such that summation over repeated indices is tacitly

assumed. In addition to the cell number density, the state of the monolayer is characterized by the

polarization field p, which captures the local average orientation of cellular structures.

Next, we consider momentum conservation. In our experiments, the Reynolds number Re is

smaller than one. We thus consider the overdamped limit and the conservation of momentum is

expressed through force balance. In our experiments, the lateral extension of C2C12 cells is an order

of magnitude larger than its height, 50 µm vs 10 µm. We thus consider a thin-film approximation

and turn the three-dimensional force balance equation into a two-dimensional description for the

height-averaged stress and the height itself [2]. We neglect any fluctuations in the latter, such that

force balance is captured by

∂βσ
tot
αβ = ξvα − T0pα. (S2)

Here, σtotαβ are the cartesian components of the in-plane total mechanical stress tensor obtained after

averaging with respect to the height. The terms on the right hand side of the equation capture

external forces resulting from cell-substrate interactions. No net force and torque is applied on the

monolayers as a result of these interactions.

The external force density has two components: ξv describes friction between the monolayer

and the substrate, whereas T0p is the traction force of the cells. The friction force depends on

the velocity field v. The traction force is independent of the velocity v and aligned with the

polarization field p.
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1.2: Constitutive relations

To close the description of monolayers of elongated cells requires constitutive equations. In

particular, we need to specify the expressions for the total stress σtot and the time evolution of

the polarization field p. To obtain these expressions, we followed the standard approach of non-

equilibrium thermodynamics [3] and the procedure is explained in Sec. II B. from Ref. [1].

The total stress tensor σtot is a linear combination of three terms

σtotαβ = σsαβ + σaαβ + σeαβ. (S3)

The first term in (S3) corresponds to the symmetric part of the deviatory stress σtot−σe and reads

σsαβ = 2η

(
vαβ −

1

2
vγγδαβ

)
+ η̄vγγδαβ +

ν

2
(pαhβ + pβhα − pγhγδαβ) + ν ′pγhγδαβ

−
(
pαpβ −

1

2
pγpγδαβ

)
ζ∆µ− δαβζ ′∆µ− pγpγδαβζ ′′∆µ, (S4)

where vαβ = (∂αvβ + ∂βvα)/2 is the symmetric part of the velocity gradient tensor and ∆µ the

chemical potential difference of ATP and its hydrolysis products, which we consider to be uniform.

Furthermore, h = −δF/δp, where F is the equilibrium free energy. In the context of liquid crystals

[8], h is called the molecular field. It describes the restoring forces associated with deformations

of p. The coefficients η, η̄, ν, ν ′, ζ, ζ ′ and ζ ′′ are phenomenological parameters.

The second term in (S3) corresponds to the antisymmetric part of the deviatory stress and reads

σaαβ =
1

2
(pαhβ − pβhα) . (S5)

The third term in (S3) corresponds to the Ericksen stress σe, which is a generalization of the

hydrostatic pressure. For a one-component polar fluid with cell number density n and polarization

field p, the general expression for the Ericksen stress tensor reads [4, 5]

σeαβ = (f − nµ)δαβ −
∂f

∂(∂βpγ)
∂αpγ . (S6)

Here, f is the free energy density, such that the free energy F reads F =
∫
fda, and µ = ∂f

∂n is the

chemical potential of the fluid. The Ericksen stress satisfies the Gibbs-Duhem relation [7], which

links the intensive variables of the free energy and reads [4, 5]

∂γσ
e
αγ = −n∂αµ− hγ∂αpγ . (S7)

Next, the time evolution of the polarization field p is given by the following constitutive equation

∂tpα + vβ∂βpα + ωαβpβ =
hα
γ
− ν

(
vαβ −

1

2
vγγδαβ

)
pβ − ν ′vββpα + λ∆µpα (S8)
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Here, ωαβ = (∂αvβ − ∂βvα)/2 is the antisymmetric part of the velocity gradient tensor. The

coefficients γ, ν, ν ′, λ are phenomenological parameters.

In Ref. [1], we show that the active isotropic stress proportional to ζ ′ in (S4) and the term

proportional to λ in (S8) amount to a renormalization of parameters aside from possibly introducing

additional surface terms. In the following, these terms are omitted.

1.3: Steady state equations in polar coordinates

In order to apply the equations derived in the previous sections to cell monolayers confined to

circular domains, in the following, we express them in polar coordinates r and θ. We focus on

steady state solutions and assume that they are invariant with respect to rotations around the

center of the domain. Finally, we specify the boundary conditions for this situation.

In steady state and assuming rotational invariance, the conservation equation (S1) becomes

∂r(nvr) +
nvr
r

= 0. (S9)

The absence of flows across the domain boundaries, see below, yields vr = 0.

For the polarization field p, we introduce the polar order parameter S and the angle ψ with

respect to the radial direction, such that pr = S cos(ψ) and pθ = S sin(ψ). In terms of the variables

S and ψ, the dynamic equation (S8) for the polarization field in steady state reads

h‖

γ
− νSvrθ sin(2ψ) = 0 (S10)

h⊥
γ

+ Svrθ (1− ν cos(2ψ)) = 0. (S11)

In these expressions, h‖ = cos(ψ)hr+sin(ψ)hθ and h⊥ = − sin(ψ)hr+cos(ψ)hθ are the components

of the field h parallel and perpendicular to p. Furthermore, vrθ = (∂rvθ−vθ/r)/2 is the off-diagonal

component of the symmetric part of the velocity gradient tensor. The components vrr and vθθ

vanish at steady state.

Using the variables S and ψ, the components of the deviatory stress can be written as

σrr,θθ = ∓1

2
S2 cos(2ψ)ζ∆µ− S2ζ ′′∆µ± ν

2
S
(
h‖ cos(2ψ)− h⊥ sin(2ψ)

)
+ ν ′Sh‖ (S12)

σrθ,θr = 2ηvrθ −
1

2
S2 sin(2ψ)ζ∆µ+

ν

2
S
(
h‖ sin(2ψ) + h⊥ cos(2ψ)

)
± Sh⊥

2
, (S13)

where the upper (lower) signs correspond to the first (second) index pair. The force balance
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equation (S2) takes the form

∂rσ
tot
rr +

σtotrr − σtotθθ

r
= −T0S cos(ψ) (S14)

∂rσ
tot
θr +

σtotθr + σtotrθ

r
= ξvθ − T0S sin(ψ). (S15)

By employing the Gibbs-Duhem relation (S17), which in polar coordinates and considering rota-

tional invariance reads

∂rσ
e
rr +

σerr − σeθθ
r

= −n∂rµ− hr∂rpr − hθ∂rpθ = −n∂rµ− h‖∂rS − h⊥S∂rψ (S16)

∂rσ
e
θr +

σerθ + σeθr
r

= −hr(
−pθ
r

)− hθ(
pr
r

) = −h⊥S
r
, (S17)

we can furthermore eliminate the Ericksen stress in Eq. (S15) and obtain

∂rσθr +
2σθr
r

= ξvθ − T0S sin(ψ). (S18)

The expressions for the Ericksen stress σe and the molecular field h are given in the Supplementary

notes 1.5 and 1.6. In the case of small confinement, our experiments show a disordered region in

the center and orientational order close to the boundary. We choose a corresponding free energy,

where the ground state is isotropic and to boundary conditions that impose orientational order.

We study this case in Supplementary notes 2 and 4 and the corresponding free energy is given in

Supplementary note 1.5. In Supplementary note 8 we study the case of a topological defect in large

confinement. In this case we consider that the system develops spontaneous orientational order

and employ the free energy given in Supplementary note 1.6. Such a situation can be observed in

extended confluent layers of C2C12 cells, which generate spontaneous long-range nematic order [6].

For more details on the liquid crystal properties of monolayers of elongated cells see Ref. [1].

1.4: Boundary conditions in a circular domain

It remains to fix the conditions on the fields at the boundary of the circular domain at r = R,

where R is its radius. Compatible with our experiments, we impose that there is no flux of material

into the domain at the boundary. At the same time, there is no tangential force applied to the cell

monolayer at the edge of the domain. For the boundary conditions on the polarization field, let us

first note that the polar order parameter is maximal at the boundary. Without loss of generality, we

fix this value to be one. Furthermore we impose that there are no gradients in ψ at the boundary.

In summary, we thus have

(S, ∂rψ, σ
tot
θr , vr)|r=R = (1, 0, 0, 0) (S19)
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Note that the total cell number is conserved and thus a parameter of our system.

In our experiments, the monolayers are disordered in the center of the domains, and we impose

S = 0 at r = 0. Due to our assumption of rotational invariance, we also need to impose regularity

of the solutions at r = 0. In total we have

(S, ∂rψ, vθ, vr)|r=0 = (0, 0, 0, 0) (S20)

1.5: Ericksen stress and molecular field for a liquid crystal with an isotropic ground state

In this subsection, we compute for a compressible polar liquid crystal the Ericksen stress tensor

σe and the molecular fields h. We consider the free energy

F =

∫
A

{
B

2

(
1− n

n0

)2

+
χ

2
p2α +

K

2
(∂αpβ)2

}
da. (S21)

For a system with cell number density n and polarization field p, the general expression for the

Ericksen stress tensor is given by Eq. (S6). For the free energy (S21), we obtain

σeαβ =

[
B

2

(
1− n2

n20

)
+
χ

2
p2γ +

K

2
(∂γpδ)

2

]
δαβ −K(∂αpγ)(∂βpγ). (S22)

Writing the radial and the azimuthal components of the polarization vector as pr = S cos(ψ)

and pθ = S sin(ψ), respectively, the components of the Ericksen stress in polar coordinates are

σerr =
B

2

(
1− n2

n20

)
+
χ

2
S2 +

K

2

[
S2

r2
− (∂rS)2 − S2(∂rψ)2

]
(S23)

σerθ = σeθr = −KS2∂rψ

r
(S24)

σeθθ =
B

2

(
1− n2

n20

)
+
χ

2
S2 − K

2

[
S2

r2
− (∂rS)2 − S2(∂rψ)2

]
, (S25)

where we have assumed rotational invariance.

Assuming rotational invariance, the free energy (S21) can be written as

F = 2π

∫
A

{
B

2

(
n

n0
− 1

)2

+
χ

2
(p2r + p2θ) +

K

2

[
(∂rpr)

2 + (∂rpθ)
2 +

p2r
r2

+
p2θ
r2

]}
rdr. (S26)

From this expression, we obtain the components of the molecular field as

hr = − δF
δpr

= −χpr + K

[
1

r
∂r(r∂rpr)−

pr
r2

]
(S27)

hθ = − δF
δpθ

= −χpθ + K

[
1

r
∂r(r∂rpθ)−

pθ
r2

]
. (S28)
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After expressing the radial and azimuthal components of the polarization field as pr = S cos(ψ) and

pθ = S sin(ψ), the components of the molecular field parallel and perpendicular to the polarization

field, h‖ = cos(ψ)hr + sin(ψ)hθ and h⊥ = − sin(ψ)hr + cos(ψ)hθ, read

h‖ = −χS + K

[
∂rrS +

∂rS

r
− S

r2
− S(∂rψ)2

]
(S29)

h⊥ = K

[
S∂rrψ +

S∂rψ

r
+ 2(∂rS)(∂rψ)

]
. (S30)

The Gibbs-Duhem relation (S7) can be verified explicitly by using expressions (S23)-(S25) for the

components of the Ericksen stress and (S29) and (S30) for h‖ and h⊥.

1.6: Ericksen stress and molecular field for a liquid crystal with an ordered ground state

In this subsection, we compute the Ericksen stress tensor σe and the molecular field h for a

compressible liquid crystal that exhibits orientational order at equilibrium. We consider the free

energy

F =

∫
A

{
B

2

(
1− n

n0

)2

− χ2

2
p2α +

χ4

4
p4α +

K

2
(∂αpβ)2

}
da. (S31)

For a system with cell number density n and polarization field p, the general expression for the

Ericksen stress tensor is given by Eq. (S6). With the free energy (S31), we obtain

σeαβ =

[
B

2

(
1− n2

n20

)
− χ2

2
p2γ +

χ4

4
p4γ +

K

2
(∂γpδ)

2

]
δαβ −K(∂αpγ)(∂βpγ). (S32)

Writing the radial and the azimuthal components of the polarization vector as pr = S cos(ψ) and

pθ = S sin(ψ), respectively, the components of the Ericksen stress in polar coordinates are

σerr =
B

2

(
1− n2

n20

)
− χ2

2
S2 +

χ4

4
S4 +

K

2

[
S2

r2
− (∂rS)2 − S2(∂rψ)2

]
(S33)

σerθ = σeθr = −KS2∂rψ

r
(S34)

σeθθ =
B

2

(
1− n2

n20

)
− χ2

2
S2 +

χ4

4
S4 − K

2

[
S2

r2
− (∂rS)2 − S2(∂rψ)2

]
, (S35)

where we have assumed rotational invariance.

Assuming rotational invariance of our system, the free energy (S31) can be written as

F = 2π

∫
A

{
B

2

(
n

n0
− 1

)2

− χ2

2
(p2r + p2θ) +

χ4

4
(p2r + p2θ)

2 +
K

2

[
(∂rpr)

2 + (∂rpθ)
2 +

p2r
r2

+
p2θ
r2

]}
rdr.

(S36)
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From this expression, we obtain the components of the molecular field as

hr = − δF
δpr

= χ2pr − χ4(p
2
r + p2θ)pr + K

[
1

r
∂r(r∂rpr)−

pr
r2

]
(S37)

hθ = − δF
δpθ

= χ2pθ − χ4(p
2
r + p2θ)pθ + K

[
1

r
∂r(r∂rpθ)−

pθ
r2

]
. (S38)

After expressing the radial and azimuthal components of the polarization field as pr = S cos(ψ) and

pθ = S sin(ψ), the components of the molecular field parallel and perpendicular to the polarization

field, h‖ = cos(ψ)hr + sin(ψ)hθ and h⊥ = − sin(ψ)hr + cos(ψ)hθ, read

h‖ = χ2S − χ4S
3 + K

[
∂rrS +

∂rS

r
− S

r2
− S(∂rψ)2

]
(S39)

h⊥ = K

[
S∂rrψ +

S∂rψ

r
+ 2(∂rS)(∂rψ)

]
. (S40)

The Gibbs-Duhem relation (S7) can be verified explicitly by using expressions (S33)-(S35) for the

components of the Ericksen stress and (S39) and (S40) for h‖ and h⊥.

SUPPLEMENTARY NOTE 2: STEADY STATE MECHANICS OF ASTERS AND

SPIRALS

In this section, we discuss steady state mechanical patterns generated by integer topological

defects from the theoretical description presented in Supplementary note 1. In particular, we focus

on the velocity and orientational order patterns in spirals as well as the active force density, stress

and cell number density patterns in asters, which are presented in Fig. 4 of the main text. In this

section, we use the free-energy density f described in Supplementary note 1.5. For more details

on the subsequent analysis, we refer to Ref. [1].

To obtain the orientational order and velocity patterns from Fig. 4B-C of the main text, we

use the following procedure. Spirals with a uniform angle of the polarization field ψ = ψ0 that

satisfy the condition ν cos 2ψ0 = 1 are solutions of Eq. (S11) with the boundary conditions (S19)

and (S20). Real solutions for ψ0 only exist for |ν| ≥ 1. The profiles of the polar order parameter

S and azimuthal velocity vθ were obtained by solving numerically Eqs. (S10) and (S18) with the

boundary conditions (S19) and (S20). The theoretical curves presented in Fig. 4B-C of the main

text are fits to the experimental data. The fitting procedure is explained in Section VIB in Ref. [1].

To obtain the active force density patterns shown in Fig. 4F of the main text, we use the

following procedure. First, we define the active force surface density as

fa,s = T0p +∇ · σact, (S41)
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and the active force line density at the boundary of the circular domain as

fa,l = −σact · r̂|r=R. (S42)

Here, the active stress σact corresponds to the terms in the total stress tensor associated with active

processes. It reads

σactαβ = −ζ∆µ(pαpβ −
1

2
pγpγδαβ)− ζ ′′∆µpγpγδαβ. (S43)

In Fig. 4F of the main text, the magenta arrows correspond to the normalised surface active force

density (S41) and the green arrows to the normalised line active force density at the boundary

(S42).

We obtained the stress and cell number density patterns shown in Fig. 4E and G of the main

text by fitting theoretical curves to experimental data. The analysis is restricted to a parameter

regime where the contribution from active anisotropic stresses dominate that of traction forces.

The theoretical fits in Fig. 4E and G of the main text have been obtained in the limit of small

confinement, such that R �
√

K/χ, where K and χ are elastic parameters of the free-energy

density (S21). In this limit, the cell number density and stress profiles are parabolic.

SUPPLEMENTARY NOTE 3: STEADY STATE MECHANICAL PATTERNS DRIVEN

BY INTERFACIAL EFFECTS

In this section, we study the effects of imposing a tangential velocity at the boundary of the

confinement region. We show that such interfacial effects are not sufficient to account for our

experimental data. To this end, we discuss the steady state solutions when the orientational order

is absent and the system is only driven by interfacial effects. After presenting the steady state

solutions, we compare them to a monolayer of C2C12 myoblasts confined to a circular domain.

In absence of orientational order, S = 0 in the expressions presented in Supplementary note 1. In

this case, the systems lacks an internal driving because the active processes are proportional to the

polar order parameters S. Instead we consider the system to be driven at the boundary. Specifically,

we fix the azimuthal velocity of the cell monolayer at the edge of the domain, vθ|r=R = v0θ . We

keep the remaining boundary conditions given in Eq. (S19).

The components of the total stress can now be obtained from the components of the deviatory

stress (S12) and (S13) and the components of the Ericksen stress (S23) and (S24). The total stress
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reads in this case

σtotrr,θθ =
B

2

(
1− n2

n20

)
(S44)

σtotrθ,θr = 2ηvrθ ≡ η(∂rvθ − vθ/r). (S45)

By inserting these into the force balance equations (S14) and (S18) and enforcing the boundary

conditions (S19) and (S20), we obtain the azimuthal velocity field vθ and cell number density n

vθ = v0θ
I1(r

√
ξ/η)

I1(R
√
ξ/η)

(S46)

n = ntot, (S47)

where the total cell number density is ntotπR2 and Iα denotes the modified Bessel function of the

first kind. The solutions for the total stress are

σtotrr,θθ =
B

2

(
1− (ntot)2

n20

)
(S48)

σtotrθ,θr = σ0θrI2(r
√
ξ/η), (S49)

where σ0θr is a function of v0θ , the geometrical parameter R, and the material parameters η and ξ.

For an aster, we take v0θ = σ0θr = 0.

As explained in [1], in our experiments, we used circular elastic pillars placed in the center of

the circular domain to measure the force exerted by the cell monolayer. Neglecting deviations from

the profiles calculated above that are caused by the finite diameter of the pillar, this force is

fi = σtot(r) · r̂, (S50)

Although this expression is correct only in the limit, where the diameter of the pillars tends to

zero, it gives an approximate value for pillars with finite diameter. For an aster, we find

fi =
B

2

(
1− (ntot)2

n20

)
r̂ = f0r̂. (S51)

Next, we compare these profiles to our experimental data. Specifically, we used the azimuthal

velocity in spirals on islands with radius R = 50 µm, 100 µm and 150 µm, as well as, the cell

number density and stress patterns in asters on islands with radius 100 µm. In the first set of

experiments, spirals were treated with 10 µM mitomycin-C. To quantify the difference between

the experiments and the theoretical profiles, for each experimental condition we used the following

error function

E =
∑
|Y t(ri)− Y e(ri)|∆ri, (S52)
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Supplementary figure 1: Theoretical fits to experimental data. a) Azimuthal velocity vθ as a function of the

radial coordinate r. Profiles for three different confinement radii R = 50 µm, 100 µm and 150 µm are shown

(N=11, 12 and 5, respectivelly). Dashed magenta curves: best theoretical fits given by Eq. (S46). Solid

blue curves: averaged experimental curves. b) Cell number density. Filled dark orange circles: experimental

data for spirals at day 1 after confluence (N=10). Empty purple circles: experimental data for asters at

day 3 after confluence (N=9). Light purple and light orange dashed curves correspond to theoretical fits

of Eq. (S47) for asters and spirals, respectively. c) Radial force density on deformable pillar as a function

of the pillar’s radius r. Blue crosses: experimental data at day 1 after confluence. Light purple dashed

curves correspond to theoretical fits of Eq. (S51). Error bars in theoretical fits correspond to the standard

deviation of parameter values that lead to E < 1.1Emin. Experimental data are presented as mean values

+/- SE.

where Y represents a physical variable, such as n, fi · r̂ or vθ. Here, the superscript t stands for the-

oretical and e for experimental. The sum runs over the radial positions at which the observable Y e

was measured. The difference between sample points ∆ri = ri+1−ri is related to the experimental

resolution, which is typically of the order of 5 µm. To compute the error (S52) for the azimuthal

velocity profiles in spirals, we sum the error function for each of the three experimental islands

with radius R = 50 µm, 100 µm and 150 µm and normalise each error function by the number

of data points for each condition. We analysed separately the error function (S52) for the cell

number density and stress patterns in asters on islands with radius 100 µm. For each experimental

condition, there is a parameter set that gives an absolute minimum for each of the previous error

functions E = Emin. The error bars were computed as the standard deviation of the parameter sets

with E < 1.1Emin.

Supplementary figure 1 shows the comparison between the theoretical profiles and the experi-

mental data, and the material parameters that were obtained are summarized in Supplementary

table 1. We found a parameter set that provides a good fit to the azimuthal velocity profiles for

varying confinement radii, Supplementary figure 1a, which provided the parameter values for the

velocity scale v0θ and
√
η/ξ in Supplementary table 1. This shows that the velocity patterns in
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spirals are compatible with a description of a compressible fluid driven by interfacial effects. In

contrast, the experimental cell density profiles for both asters and spirals decrease as a function of

the radial coordinate r, whereas the theoretical profiles (S47) are uniform, Supplementary figure 1b.

Similarly, the radial force density on elastic pillars near the center fi · r̂ increased with the radius

of the pillar, whereas the theoretical predictions (S51) are uniform, Supplementary figure 1c. This

analysis shows that our experimental data are not captured by an active fluid without orientational

order and driven by interfacial effects.

v0θ(µm/h)
√
η/ξ(µm) ntot(10−3µm−2) f0(kPa)

25± 1 37± 4 3.0± 0.2 −1.5± 0.1

Supplementary table 1: Table of material parameters for a compressible fluid driven by interfacial effects.

The value of ntot corresponds to the fit for asters. Error bars correspond to std of all parameter value with

E < 1.1Emin.

SUPPLEMENTARY NOTE 4: COMPARISON BETWEEN THE MECHANICAL STRESS

PATTERNS OF ASTERS AND SPIRALS AT STEADY STATE

In this section, we compare the steady state stress patterns generated by integer topological

defects in the limit of small confining domains. In addition, we use these results to interpret the

growth of multicellular protrusions in C2C12 assemblies confined to circular domains, where we

observed structures presenting spirals and asters.

We use the free-energy density (S21), such that orientational order is induced by the boundary

and focus on the case, where R is smaller than the penetration length of the orientational order√
K/χ. Here K and χ are elastic parameters of the free-energy density (S21). For |γν sin(2ψ)vrθ| �

χ, the steady state profiles for the polar order parameter are well-approximated by S = r/R. This

result is exact for asters, ψ0 = 0. The value of ψ0 in spirals is set by the condition ν cos(2ψ0) = 1

from Eq. (S11), which needs |ν| ≥ 1 for a real solution to exist.

To quantify stress in the system, we use the trace of the total stress tensor and define

σ =
σrr + σθθ

2
≈ −S2ζ ′′∆µ+

B

2

(
1− n2

n20

)
+
χ

2
S2. (S53)

Because the profiles of the polar order parameter S are the same for asters and spirals, the difference
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in the stress σ between them takes the form

σA − σS =
B

2n20

(
n2S − n2A

)
, (S54)

where the subscript A stands for aster and the subscript S for spirals. Considering that the cell

number density variations are small compared to the reference density n0 and that the total cell

number density is the same for asters and spirals, we can use Eqs. (32) and (60) from Ref. [1] and

recast Eq. (S54) into

σA − σS ≈
(
T0R

2
(cos(ψ0)− 1)− ζ∆µ(cos(2ψ0)− 1)

)(
r2

R2
− 1

2

)
. (S55)

The stress difference σA − σS between asters and spirals depend on two different active processes:

traction forces proportional to T0 and gradients of anisotropic active stresses proportional to ζ∆µ,

but not on the gradients of isotropic active stresses proportional to ζ ′′∆µ. Supplementary figure 2a-

b shows σA−σS (S55) for varying values of the spiral angle ψ0 and for each of the active processes.

Let us use the above results to interpret the growth of multicellular protrusions in C2C12

assemblies confined to small circular domains. The orientational order corresponds to an aster at

the base of such a protrusion and transits to a spiral as the distance to the base increases. We can

qualitatively discuss the stress along the axis of the protrusion by considering a planar spiral on

top of a planar aster, see Supplementary figure 2c. In Ref. [1], we concluded that the mechanics of

asters and spirals showed that active anisotropic stresses are predominant in C2C12 monolayers in

small circular domains. In this case, σA < σS near the center of the circular domains and σA > σS

near the boundary, Supplementary figure 2b. This suggests that the stress σ increases from the

base to the top near the geometrical center of the system and decreases from the base to the top

at the outer interface. Such a stress gradient pattern could drive vortical flows in the direction

perpendicular to the substrate plane, such that cells flow upwards in the center and downwards at

the surface of the protrusion.

SUPPLEMENTARY NOTE 5: FABRICATION OF PEG HYDROGEL DISKS AND

MEASUREMENT OF THEIR ELASTIC PROPERTIES

To characterize the elastic modulus of the PEG hydrogels we prepared 300 µm-high disks of

4arm-PEG (MW 20, 000) with different densities (20, 10, 5 and 2.5%w/v). In order to prepare

the disks, we added photopolymerizable solution (described in Methods) in circular PMDS wells

(14 mm diameter, 300 µm high) placed onto plasma-treated glass-bottom dishes (Mattek). We
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Supplementary figure 2: Difference in the trace of the total stress tensor between asters and spirals. a, b)

Difference of the stress σA − σS between asters and spirals as a function of the radial coordinate (S55) and

for varying values of ψ0 as indicated in the legend. a) Dominant active processes generate traction forces and

the stress scale is T0R. b) Dominant active processes generate anisotropic active stress and the stress scale

is ζ∆µ. The radius of the circular domain is R. c) Schematic of the orientational order in a multicellular

protrusion. An aster at the base z = 0, which is poised below a spiral. Both defects are aligned in the z

direction.

then covered the wells with a glass coverslip. Subsequently, we polymerized the whole content

of the wells by illuminating the samples 1 min in a UV-curing chamber (375 nm, Asiga Flash),

obtaining hydrogel disks 14 mm in diameter and 1 mm in height. After polymerization, gels were

rinsed with double-distilled water and kept under water at 4◦C.

Force-displacement curves were obtained by using a FT-S100 micro-force sensing spherical probe

(r = 250 µm, Femtotools). We performed 9 indentations for each gel at 2 µm/s and obtained

Force vs Displacement curves (Supplementary figure 3a,b). Calibration hydrogels (4 and 50 kPa,

Petrisoft) were employed to complete the measurements. The elastic modulus of the lowest density

gel (2.5%) was ∼ 4 kPa (Supplementary figure 3c).

SUPPLEMENTARY NOTE 6: COMPRESSIVE BEHAVIOR OF CELLULAR MOUNDS

AND RINGS

The use of pillars for monitoring compressive stresses within cellular mounds may promote the

formation of actin/multicellular rings, thus leading to defect-independent stresses.

Indeed, whereas the orientation and velocity fields at the periphery of the confinement in the

presence of pillars were similar to those for asters in the absence of pillars (Extended Data Fig. 6),

cells near the pillar surface appeared aligned with the pillar walls (Extended Data Fig. 7). To test

the contribution of multicellular rings to pillar compression, mounds around pillars were treated

with the ROCK inhibitor Y-27632. From the pillar volume difference before and after treatment,
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we observed a reduction of the compressive stress of 0.87±0.04 kPa (N=23) (Fig. 5E). Importantly,

pillars in mounds often did not completely relax after Y-27632 treatment (Fig. 5D,left), showing

the existence of residual compressive stresses within the cell monolayers.

Finally, we plated cells on low-adhesion ring micro-patterns, which formed multicellular rings

around pillars (Fig. 5D,right). Also, in this condition, we observed compression of the pillars

and inferred a stress of 0.35 ± 0.08 kPa (N=5) (Fig. 5E), lower than for cellular mounds. This

result shows that distal cells, forming spirals and asters in mounds, contributed to the generation

of the compressive stresses. Differently from cellular mounds, pillars surrounded by multicellular

rings completely relaxed after application of Y-27632 (Fig. 5D,right). Altogether, these results

evidence the existence of defect-mediated stresses in multicellular mounds that are independent

from actomyosin or multicellular rings.

Supplementary figure 3: Mechanical characterization of PEG hydrogels. a) Force-displacement curves

(N = 9) for gels of different densities and calibration gels with E = 4 and 50 kPa. b) Averaged curves

from a (N=9). Data is normalized by the distance at which indentation starts (d0, inflection points in a).

F0 corresponds to the force at d0. c) Average slopes from curves in b obtained by linear fits and prior to

averaging (N=9 indentations per composition). Data are presented as mean values ± SD.
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SUPPLEMENTARY NOTE 7: DEFLECTION OF ELASTIC PILLARS

In this section, we discuss some characteristics of the force patterns in cellular mounds by

analyzing the deformation of elastic pillars that are clamped away from the geometrical center of

the circular domains, see Fig. 5 in the main text. Specifically, we apply the theory of slender

elastic rods and small deflections to interpret the experimental data.

We describe the elastic pillar as a slender rod of length L and with a circular cross-section of

radius δ. As shown in Supplementary figure 4a, we consider that the bending deformation of the rod

takes place in the x− z plane, with z being the direction perpendicular to the substrate plane and

x the direction parallel to the substrate plane that connects the center of the circular domain with

the center of the elastic pillar. The center line of the rod can be parametrized as r(z) = (x(z), 0, z).

The end of the rod in contact with the substrate is at the position r(z = 0) = (x(0), 0, 0), where

x(0) = x0, and the other end of the rod is at position r(z = L) = (x(z = L), 0, L).

The mechanical interactions between cells from the multicellular mounds and the elastic pillar

are described as an external force density K, Supplementary figure 4a. This force per unit length

may depend on the specific details of the interactions at the cell-pillar interface and the material

properties of the mound. As we motivate below, Supplementary note 7.1, we approximate the

external force density generated by the multicellular mounds on the elastic pillars by

K = (−kox(z), 0, 0), (S56)

where ko is an effective parameter that depends on the material of the cellular mounds and geo-

metrical parameters and x corresponds to the in-plane distance to the geometrical center of the

circular domains. For simplicity, we ignore the effects associated with the spatial variations of

ko. The external force density (S56) is oriented towards the center of the circular domains, which

in this section corresponds to the x direction. Furthermore, we consider ko > 0 because in our

experiments the elastic pillars bend towards the center.

Assuming that the deflections of the slender rod are small, the beam theory states that the

bending moment M(z) normal to the x− z plane at position z obeys the relation, Ref. [9, 10],

M(z) = EI∂zzx, (S57)

where E is the Young’s modulus of the elastic pillar and I is the geometrical moment of inertia of

the elastic pillar’s cross-section. For a circular shape the moment of inertia is related to the radius

by I = πδ4/4. In the presence of the external force given by Eq. (S56), the equilibrium equation
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Supplementary figure 4: Steady-state profiles patterns of a slender rod of length subjected to a uniform

external force. a) Schematic of the geometry of the system. x represents the spatial coordinate in the

direction defined by the geometrical center of a circular island and the center of the elastic pillar. The

radial position of the pillar is x0 and its height at rest L. z corresponds to the vertical coordinate. b)

Equilibrium profiles of the shape of a slender rod of length that is subjected to a uniform external force

(S56). The equilibrium solutions are given by Eq. (S59) with L = 100 µm and x0 = 75 µm. The values of

the length-scale ` are indicated in the legend in µm.

for our slender rod, Ref. [9, 10], reads

∂zzM(z) = −kox(z). (S58)

The ratio between EI and ko defines a length scale ` given by ` = (EI/ko)
1/4. To determine the

profile x(z) from Eq. (S58), we need four boundary conditions. Because the rod is clamped to the

substrate, we impose x(z = 0) = x0 and ∂zx(z = 0) = 0. In addition, we consider that the other

end is free, meaning that there is no moment or force. This gives the conditions ∂zzx(z = L) = 0

and ∂zzzx(z = L) = 0. The equilibrium profile x(z) that is compatible with the previous boundary

conditions takes the form

x(z) =
x0(cosh(z′) cos(L′ − z′) + (cosh(L′ − z′) + 2 cosh(z′)) cos(z′))

(2 + cos(L′) + cosh(L′))

+
x0(sinh(L′ − z′) sin(z′)− sinh(z′) sin(L′ − z′))

(2 + cos(L′) + cosh(L′))
(S59)

where z′ = z/(
√

2`), L′ =
√

2L/`. Supplementary figure 4b shows equilibrium profiles for varying

values of ` and with a fixed L = 100 µm and x0 = 75 µm. Although Eq. (S59) only provides a good

quantitative approximation for small deflections of the slender rod, it is in qualitative agreement

with our experimental observations on the shapes of elastic pillars that are clamped away from the

geometrical center of the circular domains and inside multicellular mounds.
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7.1: Approximation of the net force exerted on an elastic pillar by an aster at steady state

In this subsection, we express in terms of the stress pattern the net force generated by an aster

topological defect on an elastic pillar that is placed away from the geometrical center of the circular

domain.

For simplicity, we ignore the effects associated with the spatial variations of the physical fields

along the direction perpendicular to the substrate plane, and thus we restrict the next analysis to

a single plane parallel to the substrate. Besides, we neglect deviations from the stress profiles that

are caused by the finite radius of pillars δ.

The parametrization of the elastic pillar interface is given by r = (x0 + δ cos(φ))x̂ + δ sin(φ)ŷ,

where x0 corresponds to the position on the x-axis of the geometrical center of the elastic pillar,

δ is the pillar radius, φ is the parametrization variable that varies from 0 and 2π and (x̂, ŷ) are

the cartesian unit vectors. The unit tangent to the elastic interface is given by t̂ = ∂φr/|∂φr| =

− sin(φ)x̂ + cos(φ)ŷ, where ∂φr = −δ sin(φ)x̂ + δ cos(φ)ŷ, and the unit normal given by n̂ =

cos(φ)x̂+ sin(φ)ŷ. By relating the previous parametrization to the polar coordinates, we find that

the radial coordinate r and the azimuthal angle θ satisfy the relations,

r2 = (x0 + δ cos(φ))2 + (δ sin(φ))2 (S60)

cos(θ) =
x0 + δ cos(φ)√

(x0 + δ cos(φ))2 + (δ sin(φ))2
(S61)

sin(θ) =
δ sin(φ)√

(x0 + δ cos(φ))2 + (δ sin(φ))2
(S62)

Under the above-mentioned approximations, we consider that the force per unit area fi exerted on

an elastic pillar reads

fi(r) = σtot(r) · n̂. (S63)

The force per unit area fi includes a contribution in both the normal direction n̂ and the tangential

direction t̂.

The expression of the normal to the pillar interface in polar coordinates is

n̂ = (cos(φ) cos(θ) + sin(φ) sin(θ))r̂ + (sin(φ) cos(θ)− cos(φ) sin(θ))θ̂, (S64)

where r̂ = (cos(θ), sin(θ)) is the unit vector in the radial direction and θ̂ = (− sin(θ), cos(θ)) is the

unit vector in the azimuthal direction. Using the previous expression, we can rewrite Eq. (S63) as

fi(r) = σtotrr (r)(cos(φ) cos(θ) + sin(φ) sin(θ))r̂ + σtotθθ (r)(sin(φ) cos(θ)− cos(φ) sin(θ))θ̂, (S65)
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where we have assumed that σtotrθ = σtotθr = 0, as it is the case for the steady-state stress patterns

generated by aster topological defects, see Section IV in Ref. [1].

Using Eqs. (S60)-(S62) and the definitions of the radial r̂ and azimuthal θ̂, we can express

Eq. (S65) in the cartesian base, as

fi(r) =
(
σtotrr (r)(x0 cos(φ) + δ)(x0 + δ cos(φ))− σtotθθ (r)(x0 sin(φ))(δ sin(φ))

) x̂
r2

+
(
σtotrr (r)(x0 cos(φ) + δ)(δ sin(φ)) + σtotθθ (r)(x0 sin(φ))(x0 + δ cos(φ))

) ŷ
r2
, (S66)

where r is given by Eq. (S60).

Using the relation between the normal n̂ and the tangential t̂ unit vector to the pillar interface

and the cartesian base, we can identify both the normal fi,n = fi · n̂ and tangential fi,t = fi · t̂

components of the force per unit area fi by recasting Eq. (S66) as

fi,n(r) =
σtotrr (r)(x0 cos(φ) + δ)2 + σtotθθ (r)(x0 sin(φ))2

r2
(S67)

fi,t(r) =
(σtotθθ (r)− σtotrr (r))(x0 cos(φ) + δ)x0 sin(φ)

r2
, (S68)

where we used that x̂ = cos(φ)n̂ − sin(φ)t̂ and ŷ = sin(φ)n̂ + cos(φ)t̂. Notably, defining the trace

of the total stress σ = (σtotrr + σtotθθ )/2 and the difference ∆σ = (σtotrr − σtotθθ )/2, one can simplify the

previous equations as

fi,n(r) = σ(r) +
∆σ(r)((x0 cos(φ) + δ)2 − (x0 sin(φ))2)

(x0 + δ cos(φ))2 + (δ sin(φ))2
(S69)

fi,t(r) =
−2∆σ(r)(x0 cos(φ) + δ)x0 sin(φ)

(x0 + δ cos(φ))2 + (δ sin(φ))2
, (S70)

The net force per unit length on the elastic pillars corresponds to

Fi =

∫
fi(r)δdφ. (S71)

To linear order in ε = δ/x0 � 1, the contribution to the net force of the normal forces to the pillar

interface is found to be

Fi,n =

∫
fi,n(r)n̂δdφ ≈ πδ2

2x0
(2∆σ + x0(∂r∆σ + 2∂rσ)) |r=x0 x̂ (S72)

Likewise, the contribution to the net force of the tangential forces to the pillar interface up to

linear order in ε = δ/x0 � 1 is found to be

Fi,t =

∫
fi,t(r)t̂δdφ ≈ πδ2

2x0
(2∆σ + x0∂r∆σ) |r=x0 x̂. (S73)
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Considering the stress components σ = σ0 + αr2/R2 and ∆σ = βr2/R2 scale quadratically with

r, as it is the case for the steady-state stress patterns in aster topological defects, Ref. [1], one

obtains that the previous equations become

Fi,n =
2πδ2

R2
(α+ β)x0x̂ (S74)

Fi,t =
2πδ2

R2
(β)x0x̂. (S75)

For the specific choice of the stress components made above, the components of the net forces

(S74)-(S75) are exact solutions irrespective of the order of ε.

In general, the total net force (S71) exerted on an elastic pillar is a linear combination of

Eqs. (S74) and (S75) due to asymmetries in the transmission of both tangential and normal forces

on the pillar’s interface. Both of these force components have an x component that scales linearly

with the distance between the pillar’s center and the confinement center x0 and their y component

vanishes. These features justify our choice for the external force (S56). The pre-factors α and

β may depend on the specific details of the active force generation mechanism or the boundary

conditions at the pillar interface. Furthermore, expressions (S74) and (S75) are independent of

the constant σ0, which suggests that this force is independent of mechanisms that give a constant

stress like a surface tension.

Here, we have assumed that the stress patterns are unaltered by the presence of an elastic

pillar. The deviations of the stress patterns due to the presence of an elastic pillar could introduce

corrections to Eqs. (S74)-(S75) of linear order in ε. Although these expressions are correct only

in the limit, where the diameter of the pillars tends to zero, they give an approximate value for

pillars with finite diameter. In particular, we expect that the qualitative features mentioned above

remain to linear order in ε.

SUPPLEMENTARY NOTE 8: STEADY-STATE MECHANICS OF INTEGER

TOPOLOGICAL DEFECTS IN LARGE CONFINING DOMAINS

In this section, we discuss the influence of the boundary on the steady state solutions. To this

end, we study the confining domain radius R to be large compared to the characteristic length

scale associated with the active polar fluid. Correspondingly, we consider the free energy F given

by Eq. (S31) in Supplementary note 1.6, which is supported by the fact that C2C12 myoblasts

form long-ranged orientational order patterns in large confining domains, Ref. [6]. However, the

results of this section show that this situation is not appropriate for describing our experiments.
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We consider that the equilibrium value of the polar order parameter Seq =
√
χ2/χ4 = 1, which

is equal to the order at the boundary of the circular domain that we impose in the main text and

Supplementary notes 2 and 4. Additionally, we set the lengthscale to be
√

K/χ2 = 1, which is

related to the size of the disordered domain around the topological defect center.

We focus on integer topological defects with ψ = ψ0 = const, such that h⊥ = 0, Eq. (S40).

where asters correspond to ψ0 = 0, spirals to 0 < ψ0 < π/2, and vortices to ψ0 = π/2. For

ψ0 = 0, Eq. (S11) is satisfied, because vrθ = 0 due to the symmetries of asters. In the general

case, Eq. (S11) implies ν cos(2ψ0) = 1. This conditions requires that |ν| ≥ 1 for a real solution of

ψ0. The steady-state profile of the polar order parameter S is in general determined by Eq. (S10),

which shows that shear flows can generate long-ranged orientational order. In this section, we

neglect this possibility and limit our discussion to the case where |γν sin(2ψ0)vrθ| � h‖. In this

situation, flow alignement does essentially not contribute to the polar order S and according to

Eq. (S10), we have h‖ ≈ 0. Instead the steady state profile of S is set by Eq. (S39) with boundary

conditions (S19)-(S20) for both asters and spirals. Supplementary figure 5a shows the steady-state

profiles of S(r) for different radii R.

Using the previous approximations, the components of the deviatory stress for spirals read

σrr,θθ ≈ ∓
1

2
S2 cos(2ψ0)ζ∆µ− S2ζ ′′∆µ (S76)

σrθ,θr ≈ 2ηvrθ −
1

2
S2 sin(2ψ0)ζ∆µ. (S77)

Furthermore, the force balance equations (S14) and (S18) simplify to

∂r

(
B(n− n0)

n0

)
≈ T0S cos(ψ0)− ζ∆µ cos(2ψ0)

(
S2

r
+ S∂rS

)
− ζ ′′∆µ2S∂rS (S78)

η

(
∂rrvθ +

∂rvθ
r
− vθ
r2

)
− ξvθ ≈ −T0S sin(ψ0) + ζ∆µ sin(2ψ0)

(
S2

r
+ S∂rS

)
(S79)

where for simplicity, we considered the limit of small deviations of the cell number density n with

respect to the reference value n0. We can define the friction length λ =
√
η/ξ.

Next, we study the dependence on the confinement radius R of the steady-state cell number

density n and azimuthal velocity vθ profiles. Equation (S78) shows the cell number density patterns

n generated by three different active processes, namely, gradients of the anisotropic and isotropic

active stresses, which are proportional to ζ∆µ and ζ ′′∆µ respectively, and traction forces, which

are proportional to T0. The azimuthal velocity vθ is generated by the anisotropic stress and the

traction forces (S79). Because these equations are linear in n and vθ, we computed numerically

their steady-state profiles for each of the three different active processes separately for different
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Supplementary figure 5: Steady-state patterns around integer topological defects for varying confining

radius R and parameter λ. a) Polar order parameter S, b-d) cell number density n − ntot and e-h) az-

imuthal velocity vθ profiles at steady state. The density scale in panel b) is n0T0RSeq cos(ψ0)/B, in c) is

n0ζ∆µ cos(2ψ0)S2
eq/B and in d) is n0ζ

′′∆µS2
eq/B. The velocity scale in panels e and g) is T0Seq sin(ψ0)/ξ

and in panels f and h) is ζ∆µ sin(2ψ0)S2
eq

√
K/χ2/η. In panels (a-d), the values of R are in the legend; in

panels (e-f), the values of R are in the legend and λ =
√
η/ξ = 1; in panels (g-h) the values of λ are in the

legend and R = 5. The black dashed curves in panel b-d) correspond to Eq. (60) in Ref. [1] for each of the

three different active processes and in the limit γ tan(2ψ0)2/4η → 0. The black dashed curves in panels e)

and f) correspond to Eq. (43) and (48) in Ref. [1].

confining radii R. Supplementary figure 5b-h shows that for a broad range of radii R, the cell

number density and the azimuthal velocity profiles are qualitatively similar to the steady state

profiles in the limit of small domains, R� 1. Quantitative differences are found in the profiles of

the previous physical variables for varying radius R, Supplementary figure 5b-h. For a fixed radius

R = 5 and varying friction length λ =
√
η/ξ, we found that in the case the azimuthal velocity

profiles are generated by the active anisotropic stresses decay from the boundary over a length

scale controlled by the friction length λ =
√
η/ξ, Supplementary figure 5h. This feature was also

reported in the limit of small confining domains [1]. Altogether, these results show that qualitative

features of the mechanical patterns around the center of integer topological defects, such as cell

number density and azimuthal velocity profiles in both aster and spirals, are independent of the

presence of a confining domain.
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[4] J. F. Joanny, F. Jülicher, K. Kruse, and J. Prost, New J. Phys. 9, 422 (2007).

[5] S. Fürthauer, M. Neef, S. W. Grill, K. Kruse, and F. Jülicher, New J. Phys. 14, 023001 (2012).
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