## Appendix A. Established algorithms to find the unloaded reference configuration

Unloading algorithms as proposed by Sellier [75] in Algorithm 3 and by Rausch et al. [68] in Algorithm 4.

Algorithm 3 Sellier's Inverse Method [75]. 1: initialize  $\mathbf{X}^0 = \mathbf{x}^{dat}$ ; k = 02: do 3: solve forward problem,  $\mathbf{x}^k = \boldsymbol{\phi} (\mathbf{X}^k)$ 4: calculate nodal error vector,  $\mathbf{R}^k = \mathbf{x}^k - \mathbf{x}^{dat}$ 5: update reference vector,  $\mathbf{X}^{k+1} = \mathbf{X}^k - \mathbf{R}^k$ 6: compute maximal nodal error,  $r^{\|\mathbf{x}\|_{\infty}} = \max_{i \in [1, N_{nodes}]} \|\mathbf{x}_i^k - \mathbf{x}_i^{dat}\|_2$ 7: update counter, k = k + 18: while  $r^{\|\mathbf{x}\|_{\infty}} \ge \epsilon$ 9: uploaded reference configuration,  $\mathbf{X}^* = \mathbf{X}^k$ 

**Algorithm 4** Augmented Sellier's Inverse Method [68]. 1: initialize  $X^0 = x^{dat}$ ; k = 0;  $\beta = 1.0$ 

2: **do** solve forward problem,  $\mathbf{x}^{k} = \boldsymbol{\phi}(\mathbf{X}^{k})$ 3: calculate nodal error vector,  $\mathbf{R}^{k} = \mathbf{x}^{k} - \mathbf{x}^{dat}$ 4: if k > 0 then 5: update augmentation parameter,  $\beta = -\beta \frac{\mathbf{R}^{k-1} : [\mathbf{R}^k - \mathbf{R}^{k-1}]}{[\mathbf{R}^k - \mathbf{R}^{k-1}] : [\mathbf{R}^k - \mathbf{R}^{k-1}]}$ 6: 7: end if update reference vector,  $\mathbf{X}^{k+1} = \mathbf{X}^k - \beta \mathbf{R}^k$ 8: compute maximal nodal error,  $r^{\|\mathbf{x}\|_{\infty}} = \max_{i \in [1, N_{\text{nodes}}]} \|\mathbf{x}_{i}^{k} - \mathbf{x}_{i}^{\text{dat}}\|_{2}$ 9: 10: update counter, k = k + 111: **while**  $r^{||\mathbf{x}||_{\infty}} \ge \epsilon$ 

12: unloaded reference configuration,  $X^* = X^k$ 

### Table A.10

*Comparison of unloading algorithms*: Iteration numbers and computational times in (HH:MM:SS) format for all 19 cases. Error "-" indicates that the unloading algorithm didn't converge within 50 iterations.

|        | Algorithm 3, [7                         | 75]                                     | Algorithm 4,                        | [68]                                    | Algorithm 1                             |                                         |  |
|--------|-----------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
|        | $r^{\ \boldsymbol{x}\ _{\infty}} < 1.0$ | $r^{\ \boldsymbol{x}\ _{\infty}} < 0.1$ | $r^{\ \mathbf{x}\ _{\infty}} < 1.0$ | $r^{\ \boldsymbol{x}\ _{\infty}} < 0.1$ | $r^{\ \boldsymbol{x}\ _{\infty}} < 1.0$ | $r^{\ \boldsymbol{x}\ _{\infty}} < 0.1$ |  |
| 01-CoA | 6 (0:13:39)                             | 10 (0:23:24                             | 5 (0:11:07)                         | 6 (0:13:40)                             | 5 (0:12:36)                             | 6 (0:13:07)                             |  |
| 02-CoA | 7 (0:16:17)                             | 16 (0:37:31                             | 5 (0:10:38)                         | 9 (0:20:21)                             | 6 (0:13:39)                             | 10 (0:21:59)                            |  |
| 03-CoA | -                                       | -                                       | 6 (0:05:11)                         | 9 (0:06:32)                             | 5 (0:03:34)                             | 7 (0:05:03)                             |  |
| 04-CoA | 5 (0:07:16)                             | 9 (0:15:10)                             | 5 (0:07:12)                         | 6 (0:09:10)                             | 4 (0:05:59)                             | 6 (0:08:55)                             |  |
| 05-CoA | 5 (0:08:52)                             | 11 (0:20:39)                            | 5 (0:08:17)                         | 6 (0:09:41)                             | 4 (0:06:26)                             | 6 (0:09:51)                             |  |
| 06-CoA | 5 (0:12:34)                             | 8 (0:19:51)                             | 5 (0:13:18)                         | 6 (0:14:21)                             | 3 (0:07:36)                             | 6 (0:15:23)                             |  |
| 07-CoA | 5 (0:04:55)                             | 9 (0:08:59)                             | 5 (0:04:50)                         | 9 (0:09:22)                             | 5 (0:05:02)                             | 9 (0:09:00)                             |  |
| 01-AS  | -                                       | -                                       | 6 (0:12:42)                         | 10 (0:21:00)                            | 6 (0:12:06)                             | 10 (0:21:17)                            |  |
| 02-AS  | -                                       | -                                       | 6 (0:21:44)                         | 9 (0:30:02)                             | 5 (0:18:08)                             | 9 (0:30:17)                             |  |
| 03-AS  | 50 (2:25:48)                            | -                                       | 8 (0:32:51)                         | -                                       | 5 (0:16:22)                             | 14 (0:49:07)                            |  |
| 04-AS  | -                                       | -                                       | 7 (0:11:23)                         | 10 (0:21:15)                            | 6 (0:12:18)                             | 8 (0:17:33)                             |  |
| 05-AS  | 15 (0:48:38)                            | 29 (1:37:08)                            | 5 (0:16:22)                         | 7 (0:24:52)                             | 5 (0:17:02)                             | 7 (0:24:23)                             |  |
| 06-AS  | -                                       | -                                       | 8 (0:27:13)                         | -                                       | 6 (0:21:12)                             | 18 (1:03:50)                            |  |
| 07-AS  | -                                       | -                                       | 7 (0:11:54)                         | 10 (0:20:02)                            | 6 (0:12:36)                             | 8 (0:14:45)                             |  |
| 08-AS  | -                                       | -                                       | 6 (0:30:05)                         | -                                       | 5 (0:23:31)                             | 14 (1:08:48)                            |  |
| 09-AS  | 23 (0:38:21)                            | 35 (0:45:59)                            | 6 (0:09:10)                         | 9 (0:14:15)                             | 6 (0:09:36)                             | 8 (0:12:49)                             |  |
| 10-AS  | -                                       | -                                       | 6 (0:13:54)                         | -                                       | 6 (0:14:20)                             | 10 (0:23:49)                            |  |
| 11-AS  | 8 (0:16:48)                             | 17 (0:32:28)                            | 5 (0:10:40)                         | 7 (0:14:42)                             | 5 (0:11:01)                             | 7 (0:15:30)                             |  |
| 12-AS  | -                                       | -                                       | 6 (0:18:21)                         | 9 (0:24:47)                             | 5 (0:16:09)                             | 7 (0:23:31)                             |  |

## Appendix B. Klotz relation

Considering the limited availability of clinical data of the EDPVR, the computational method proposed by Klotz et al. [45] is utilized, which enables prediction of the EDPVR by a single measured PV-pair. According to this seminal work the volume of the unloaded geometry  $V_0^{\text{klotz}}$  of the LV can be empirically determined by

$$V_0^{\text{klotz}} = V_{\text{ed}}^{\text{dat}} \left( 0.6 - 0.006 p_{\text{ed}}^{\text{dat}} \right), \tag{B.1}$$

where  $V_{ed}^{dat}$  and  $p_{ed}^{dat}$  is a measured PV-pair at end-diastole. Further, the EDPVR is described by the power law

$$p = \alpha V^{\beta}, \tag{B.2}$$

where *p* is the cavity pressure in mmHg, *V* is the cavity volume in mL, and the constants  $\alpha$  and  $\beta$  are defined by the relations

$$\alpha = \frac{30}{\left(V_{30}^{\text{klotz}}\right)^{\beta}} \quad \text{and} \quad \beta = \frac{\log\left(p_{ed}^{\text{dd}}/30\right)}{\log\left(v_{ed}^{\text{dd}}/v_{30}^{\text{klotz}}\right)}.$$
(B.3)

Here,  $V_{30}^{\text{klotz}}$  is the estimated cavity volume at a pressure of 30 mmHg, given by

$$V_{30}^{\text{klotz}} = V_0^{\text{klotz}} + \frac{V_{\text{ed}}^{\text{dat}} - V_0^{\text{klotz}}}{(p_{\text{ed}}^{\text{dat}}/A_0)^{1/B_n}},$$
(B.4)

where  $A_n$  and  $B_n$  were determined empirically as 27.78 mmHg and 2.76 respectively. Equation (B.3) requires that  $p_{ed}^{dat} \le 22 \text{ mmHg}$  (2.93 kPa), which applies to all patient cases in the CARDIOPROOF cohort (see Table 3).

# Appendix C. Full parameter list for the reduced Holzapfel–Ogden law

### Table C.11

Fitted parameters for all N = 19 cases for the reduced Holzapfel–Ogden law; for this default material parameters given in Table 2 are multiplied according to Equation (10) with final scaling parameters given in Table 3.

| Case-ID | a [kPa] | b      | a <sub>f</sub> [kPa] | b <sub>f</sub> | a <sub>n</sub> [kPa] | b <sub>n</sub> | a <sub>fs</sub> [kPa] | b <sub>fs</sub> |
|---------|---------|--------|----------------------|----------------|----------------------|----------------|-----------------------|-----------------|
| default | 0.8090  | 7.4740 | 1.9110               | 22.0630        | 0.2270               | 34.8020        | 0.5470                | 5.6910          |
| 01-CoA  | 0.2765  | 4.4754 | 0.6532               | 13.2113        | 0.0776               | 20.8394        | 0.1870                | 3.4078          |
| 02-CoA  | 0.4673  | 4.2385 | 1.1038               | 12.5119        | 0.1311               | 19.7362        | 0.3159                | 3.2274          |
| 03-CoA  | 0.1708  | 3.7774 | 0.4034               | 11.1506        | 0.0479               | 17.5889        | 0.1155                | 2.8762          |
| 04-CoA  | 0.1058  | 5.1473 | 0.2500               | 15.1948        | 0.0297               | 23.9681        | 0.0715                | 3.9194          |
| 05-CoA  | 0.2652  | 4.0793 | 0.6264               | 12.0420        | 0.0744               | 18.9949        | 0.1793                | 3.1061          |
| 06-CoA  | 0.2084  | 4.6772 | 0.4923               | 13.8070        | 0.0585               | 21.7791        | 0.1409                | 3.5614          |
| 07-CoA  | 0.2954  | 4.0262 | 0.6977               | 11.8853        | 0.0829               | 18.7478        | 0.1997                | 3.0657          |
| 01-AS   | 0 2768  | 3 3603 | 0.6539               | 9 9 1 9 5      | 0 0777               | 15 6470        | 01872                 | 2 5587          |
| 02-AS   | 0.2389  | 4.2206 | 0.5643               | 12.4590        | 0.0670               | 19.6527        | 0.1615                | 3.2137          |
| 03-AS   | 0.2404  | 3.7975 | 0.5679               | 11.2102        | 0.0675               | 17.6829        | 0.1626                | 2.8916          |
| 04-AS   | 0.1254  | 5.0920 | 0.2962               | 15.0315        | 0.0352               | 23.7106        | 0.0848                | 3.8773          |
| 05-AS   | 0.2031  | 5.1331 | 0.4799               | 15.1529        | 0.0570               | 23.9020        | 0.1374                | 3.9086          |
| 06-AS   | 0.2384  | 4.1301 | 0.5632               | 12.1920        | 0.0669               | 19.2316        | 0.1612                | 3.1448          |
| 07-AS   | 0.1712  | 4.3155 | 0.4044               | 12.7392        | 0.0480               | 20.0947        | 0.1157                | 3.2860          |
| 08-AS   | 0.2592  | 5.3245 | 0.6123               | 15.7177        | 0.0727               | 24.7929        | 0.1753                | 4.0543          |
| 09-AS   | 0.1963  | 4.2819 | 0.4638               | 12.6399        | 0.0551               | 19.9381        | 0.1328                | 3.2604          |
| 10-AS   | 0.2672  | 3.7691 | 0.6312               | 11.1264        | 0.0750               | 17.5506        | 0.1807                | 2.8700          |
| 11-AS   | 0.1946  | 4.7064 | 0.4598               | 13.8931        | 0.0546               | 21.9148        | 0.1316                | 3.5836          |
| 12-AS   | 0.1489  | 4.9082 | 0.3516               | 14.4888        | 0.0418               | 22.8545        | 0.1006                | 3.7373          |

### Appendix D. Choice and comparison of model functions

As default we chose the model function in Equation (8) for its similarity to the constitutive laws and to keep  $b \neq 0$ . Nevertheless, the fitting method also worked for other model functions, e.g., those listed below:

$$\Phi_1(x, x_0) = \frac{a}{2b} \left\{ \exp\left[ b\left(\frac{x - x_0}{x_0}\right) \right] - 1 \right\},$$
 (energy-Demiray)



Fig. D.13. Fitting results of case 06-CoA (left) and 03-AS (right) using different model functions are shown. The normalized Klotz EDPVR (dashed gray) is visualized along with the respective fitted curves.

$$\Phi_{2}(x, x_{0}) = a \left\{ \exp\left[b\left(\frac{x - x_{0}}{x_{0}}\right)\right] - 1 \right\}, \qquad (exp-function)$$

$$\Phi_{3}(x, x_{0}) = \frac{a}{2b} \left\{ \exp\left[b\left(\frac{x - x_{0}}{x_{0}}\right)^{2}\right] - 1 \right\}, \qquad (exp-squared)$$

$$\Phi_4(x, x_0) = a \left(\frac{x - x_0}{x_0}\right)^b, \qquad \text{(power-function)}$$

$$\Phi_5(x, x_0) = a \left(\frac{x - x_0}{x_0}\right) \exp\left[b \left(\frac{x - x_0}{x_0}\right)^2\right] \left[\left(\frac{x + v_{\text{wall}}}{x}\right)^{2/3} - 1\right], \qquad \text{(Laplace-law)}$$

$$\Phi_5(x, x_0) = a\left(\frac{x - x_0}{x_0}\right) \exp\left[b\left(\frac{x - x_0}{x_0}\right)^2\right] \left[\left(\frac{x + v_{\text{wall}}}{x}\right)^{\gamma_3} - 1\right], \quad \text{(Laplace-law)}$$

with parameters a and b. Similar to Section 2.3.2, a Levenberg-Marquardt least-squares algorithm was used (i) to fit the model function  $\Phi_i(x, x_0)$  to the Klotz relation, with x the volumes as predicted by the Klotz power law (B.2) and  $x_0$  the volume of the unloaded geometry volume  $V_0^{\text{klotz}}$  (B.1); and (ii) to fit the model function  $\Phi_i(x, x_0)$  to the re-loading curve in the current step k of the unloading algorithm, with x the volumes at the different loading points and  $x_0$  the cavitary volume of the current reference configuration  $X^k$ . All model functions are designed such that  $\Phi(x_0, x_0) = 0$  to ensure loading curves that have zero pressure at the unloaded reference configuration with volume  $V_0$ . The first model function (energy-Demiray), the same as in Equation (8), was inspired by the constitutive law of Demiray (3); the second (exp-function) is a standard exponential fitting function; the third (exp-squared) was inspired by the anisotropic contributions in the HO models (6); the fourth (power-function) is related to the Klotz power law (B.2); and the fifth (Laplace-law) was inspired by an extension of the Laplace law [53] to take the volume of the LV wall,  $v_{wall}$ , into account:

$$\boldsymbol{\sigma} = \frac{p}{\left(\frac{x+v_{\text{wall}}}{x}\right)^{2/3} - 1},$$

where the stress tensor  $\sigma$  at pressure p is computed from the constitutive law (exp-squared) above

$$\sigma = \frac{\partial \Phi_3(x, x_0)}{\partial \lambda}, \quad \lambda := \left(\frac{x - x_0}{x_0}\right).$$

Here, x is a substitute for the volume of the cavity at pressure p for the Klotz law and the reloading, respectively;  $x_0$  a substitute for the reference volume; and  $\lambda$  a strain-like value.

Results The unloading and parameter estimation was performed as in Section 3.1 for cases 06-CoA and 03-AS. Normalized fitting results for all different model functions and both cases are shown in Fig. D.13 and Table D.12. We see that all model functions work well for case 03-AS with only minor differences in the goodness of fit and the fitted parameters. For case 06-CoA the fitting with the (exp-squared) model did not converge and the fitting with the power-function showed a considerably slower convergence compared to the other model functions. Differences between (energy-Demiray) and (exp-function) are very small, both show fast convergence and excellent fitting results, rendering these model functions a favorable choice for the fitting. We noticed for all cases, also visible in Fig. D.13, that the fitting with the (Laplace-law) model function gives results that are closest to the Klotz curve in the lower pressure range but further afar in the higher pressure range, overall resulting in the largest values of the area error  $r^{A_n, rel}$ . However, the (Laplace-law) fitting always had the lowest deflection error defined as

### Table D.12

Fitting results for case 06-CoA and 03-AS using different model functions are shown in terms of fitted scaling parameters and measures of goodness of fit.

|                                                                 | Case 06-CoA                               |                                           |                                                        |                                   | Case 03-AS                           |                                                |                                       |                                  |
|-----------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------|-----------------------------------|--------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------|
|                                                                 | Fitted Parameters                         |                                           | Goodness of Fit                                        |                                   | Fitted Parameters                    |                                                | Goodness of Fit                       |                                  |
| Model Function                                                  | a <sub>scale</sub>                        | b <sub>scale</sub>                        | r <sup>V<sub>0</sub>,rel</sup><br>[%V <sup>dat</sup> ] | $r^{A_n, rel}$ [% $A_{klotz}$ ]   | a <sub>scale</sub>                   | b <sub>scale</sub>                             | $r^{V_0, rel}$<br>[% $V_{ed}^{dat}$ ] | $r^{A_n, rel}$ [% $A_{klotz}$ ]  |
| energy-Demiray<br>exp-function<br>exp-squared<br>power-function | 0.2576<br>0.2558<br>-<br>0.2878<br>0.2258 | 0.6257<br>0.6267<br>-<br>0.6076<br>0.6587 | 0.13<br>0.11<br>-<br>0.59<br>0.28                      | 7.39<br>7.36<br>-<br>7.14<br>8.40 | 0.2971<br>0.2968<br>0.3120<br>0.3260 | 0.5076<br>0.5078<br>0.4956<br>0.4721<br>0.5201 | 0.19<br>0.19<br>0.16<br>0.19<br>0.25  | 14.77<br>14.77<br>14.64<br>14.59 |

$$r^{\text{shape}} = \max_{p \in [0, p_{\text{ed}}]} \left| V^{\text{klotz}}(p) - V^{\text{sim}}(p) \right|.$$

(D.1)

Hence, for certain cases it can be a good alternative to the (energy-Demiray) function.

Model functions  $\Psi_i$  given above are only a small subset of functions that we tried for our fitting to the Klotz curve. All of them showed satisfying results and convergence rates but other functions might work as well for the procedure. Since the Klotz curve resembles an exponential function, it is not surprising that the (energy-Demiray) and (exp-function) worked best. However, as our method would work for all kinds of target EDPVR other than the Klotz law, the choice of the model function is specific to the problem.