Supplementary Video 1 I A tendon fascicle at baseline (unstretched condition), showing sparse spontaneous Ca²⁺ signals in tenocytes. See also corresponding Fig. 1b,c.

Supplementary Video 2 I A tendon fascicle during tissue stretching from 0–10% strain, showing a tissuewide Ca²⁺ response in tenocytes. See also corresponding Fig. 1b,c.

Supplementary Video 3 I Propagation of Ca²⁺ signals to neighbouring cells, potentially through cell–cell communication.

Supplementary Video 4 I Isolated human tenocytes showing Ca²⁺ signals on stimulation with 5-Pa shear stress. See also corresponding Fig. 2d.

Supplementary Video 5 I A tendon fascicle stimulated with the PIEZO1-agonist Yoda1, showing a prompt Ca²⁺ response in tenocytes. See also corresponding Supplementary Fig. 6g.

Supplementary Fig. 1 I The mechanosensitive Ca²⁺ response in tendon explants and the normalized overall change in fluorescence intensity as an estimate of the mechanical threshold. a, Quantification of intracellular Ca²⁺ elevations during stretching protocols from 0-10% strain at medium strain rate (0.1% strain/s, n=7 fascicles) and high strain rate (1.0% strain/s, n=6 fascicles). b, The overall change in Ca²⁺ fluorescence intensity (normalized to the maximum intensity) of tendon fascicles stretched at high strain rate. c, Significant correlation between the overall threshold and the mechanical threshold for the high strain rate data (y = 1.212 x - 0.249; $R^2 = 0.715$; p = 0.034) and (d) the medium strain rate data (y = 1.041 x - 0.805; $R^2 = 0.913$; p < 0.001). Hence, mechanical thresholds can be estimated with the overall threshold, which represents a straightforward approach. e, The mechanical data corresponding to the Ca²⁺ imaging experiments (see Fig. 1c and d) with tendon fascicles stretched at low, medium and high strain rate. Replicates are biological. Data are means±SEM.

Supplementary Fig. 2 I The OGB-1 FLIM calibration and the characterization of baseline [Ca²⁺] in tenocytes. **a**, Normalized fluorescent lifetime decays of OGB-1 in calibration solutions at different [Ca²⁺]. **b**, The OGB-1 FLIM readout, obtained from a double-exponential tailfit of the lifetime decays and a subsequent nonlinear fitting with Hill slope of the amplitude weighted average lifetime $(y = \frac{4.074 x^h}{65.87^h + x^h}; h = 0.6935; R^2 = 0.998)$. **c**, Representative example of the normalized fluorescent lifetime decay measured in a tenocyte at baseline and post-stretch. Corresponding quantification is shown in Figure 1g. **d**, Subcellularly measured normalized fluorescent lifetime decays of a representative quiescent tenocyte. Corresponding quantification is shown in panel f. **e**, Heterogenous landscape of resting [Ca²⁺] in tenocytes (scale bar, 10 µm). **f**, Subcellular quantification of [Ca²⁺] in quiescent tenocytes (n=66 cells from 8 fascicles), paired Student's t-test. Replicates are biological. Data are means±SEM.

Supplementary Fig. 3 I Analysis of Ca²⁺ images from shear stress experiments. **a**, Entire field of view showing tenocytes seeded in the flow chamber and stained with Fluo-4 (scale bar, 100 μ m). **b**, Segmentation of single cells (scale bar, 50 μ m). **c**, Corresponding time traces of the fluorescence signals measured in the single segmented cells.

Supplementary Fig. 4 I Magnitude dependency of the shear stress response in human tenocytes. a, Time traces of Ca²⁺ signals induced by 5 Pa or 20 Pa shear stress. b, Median amplitude and (c) duration of the Ca²⁺ signals depend on the magnitude of shear stress stimulus (for each condition n≥4 chambers, cells from human flexor digitorum tendons), one-way ANOVA with multiple comparisons (Tukey's test). Replicates are biological. Data are means±SEM.

Supplementary Fig. 5 I Full scan of the Western blot shown in Fig. 3d.

Supplementary Fig. 6 I PIEZO1-mediated shear stress response of rat tenocytes. a, Efficient CRISPR/Cas9-induced knockouts of the candidate genes. Quantitative PCR with a normalization to the expression of the corresponding gene in the control cells using the 2^{-ddCT} method (data from n=3 separate trials, cells from 3 rats) shows a significant reduction (P < 0.0001) for all candidates, one-way ANOVA with multiple comparisons (Dunnett's test). **b**, Immunofluorescence images of control and *Piezo1* knockout tenocytes (scale bar, 20 µm). **c-e**, *Piezo1* knockout tenocytes show a reduced % of cells responding to shear stress (5 Pa for 5 s) and a diminished intracellular Ca²⁺ response (averaged over all single segmented cells). For each condition n≥8 chambers were tested with cells from 3 rats, one-way ANOVA with multiple comparisons, (Dunnett's test). **f**, mRNA expression profile of *Piezo1* examined with quantitative PCR in various rat tissues including lung, muscle and tendons. Normalization to the lung, which was reported as one of the body organs with highest *Piezo1* expression¹⁶, using the 2^{-ddCT} method. *Gapdh* was the reference gene (data from n=3 separate trials, 3 rats). **g**, Intracellular Ca²⁺ time traces (averaged over all detected Ca²⁺ signals) in tendon fascicles stimulated with 50 µM PIEZO1-agonist-Yoda1 (n=3 fascicles). Onset of the Yoda1-stimulus is indicated by the arrow. Scale bar, 100 µm. Replicates are biological. Data are means±SEM.

Supplementary Fig. 7 I Similar levels of sports participation and physical activity between E756del carriers and non-carriers. a, No difference in highest level of sports participation between the two groups. b, No difference in current activity level assessed with the Physical Activity Scale (PAS). Mann-Whitney test, n=22 E756del carriers and n=43 non-carriers. Replicates are biological. Data are means±SEM.

Supplementary Table 1 | sgRNAs used for human and rat CRISPR/Cas9-mediated knockouts.

Target	sgRNA Target Sequence	
PIEZO1 (hu) 395 - 417	CCTTGGAGGCCGCATCGGGT	
PIEZO1 (hu) 555-577	GACCCCTATGTGTCGCGAGA	
PIEZO1 (hu) 786 - 808	CAGCCGTGACCTCCGTGTAG	
PIEZO2 (hu) 1335-1357	GGTAATGGGTTGCGTACCAC	
PKD2 (hu) 245-267	AGATCGAGATGCAGCGCATC	
TMEM63A (hu) 701-723	TTGTAGCAATAGGAGTCGTT	
TMEM63B (hu) 495-517	CAGAGGTGAGACGCTCATAC	
TRPC1 (hu) 997-1019	GAGGCTCGTCACTAGACGTA	
TRPM7 (hu) 1686-1708	CTTCCAGTCTCGGAATGGTA	
TRPV4 (hu) 739-761	CGGAGCGCACCGGCAACATG	
Hu Non-Targeting 40	GACTTATAAACTCGCGCGGA	
Piezo1 (rat) 840-862	TGCGCCGTGATCCGGAAGCG	
Piezo2 (rat) 479-501	CGTGTCTGGGCGGCGTAGTC	
Pkd2 (rat) 243-265	GGCATGGAGCCGCGACAACC	

Supplementary Table 2 | Forward and reverse primer sequences used for real-time PCR.

Forward Primer	Forward Primer Sequence	Reverse Primer	Reverse Primer Sequence
hu PIEZO1-269-F	GTGCTCGGCGCGGTC	hu PIEZO1-412-R	GAGGCCGCATCGGGTG
hu PIEZO1-490-F	GATCTGCCTGCATATTGTGCC	hu PIEZO1-573-R	CCTATGTGTCGCGAGAGGG
hu PIEZO1-708-F	ATCCACGGGAGCTGGATGAT	hu PIEZO1-807-R	AGCCGTGACCTCCGTGTAG
hu PIEZO2-1256-F	TGCAGGATGAGGGGACCAAA	hu PIEZO2-1356-R	GTAATGGGTTGCGTACCACAG
hu PKD2-960-F	GTACTGGAAGATGCAGCCCA	hu PKD2-1063-R	CTCGGAGTTGCCGTATTCGT
hu TMEM63A-578-F	CATCCACAGTCCTTCCTTCCC	hu TMEM63A-722-R	TGTAGCAATAGGAGTCGTTGGG
hu TMEM63B-432-F	GCAGGAGAGGGACCGAGTG	hu TMEM63B-516-R	AGAGGTGAGACGCTCATACCG
hu TRPC1-911-F	GAGGAACTAGCCCGGCAATG	hu TRPC1-1019-R	GAGGCTCGTCACTAGACGTA
hu TRPM7-1580-F	AGTGGCTGGTTGGATCCTTG	hu TRPM7-1706-R	TCCAGTCTCGGAATGGTAAGG
hu TRPV4-652-F	CATCTACGGGGAAGACCTGC	hu TRPV4-768-R	TGAACTCCCTCATGTTGCCG
hu ANXA5-633-F	CCTTCAGGCTAACAGAGACCC	hu ANXA5-728-R	CCCCATTTAAGTTCTCCAGCC
rat Piezo1-710-F	ACGCCTCACAAGGAAAGCC	rat Piezo1-858-R	CCGTGATCCGGAAGCGA
rat Piezo2-426-F	CCTGGCGGTCTTTAGCTCAC	rat Piezo2-500-R	GTGTCTGGGCGGCGTAG
rat Pkd2-137-F	GGGGCCTGGAGATTGAGAT	rat Pkd2-262-R	GGTTGTCGCGGCTCCAT
rat Anxa5-526-F	TCCTCCTTCAGGCCAATAGAG	rat Anxa5-642-R	ACTTTTCTTCATCCGTCCCCC
rat Gapdh-50-F	AGTGCCAGCCTCGTCTCATA	rat Gapdh-180-R	GAAGGGGTCGTTGATGGCAA