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Appendix A: Supplementary Experimental Results1

1. Movies2

Supp. Movie 1 Cylindrical branches flow into the organoid body after hydrolysis of the3

collagen matrix.4

Supp. Movie 2 Laser ablation of organoids for branches grown in the attached (left) and5

floating configuration (right).6

Supp. Movie 3 Laser ablation in presence of Cytochalasin D.7

Supp. Movie 4 Representative examples of cell dynamics over one day. All organoids8

stem from the same donor (M25) and were grown in floating gels. Notice that branch9

shape correlates strongly with the type of motion: axial translation in cylindrical branches,10

rotation in nascent and mature alveoli.11

Supp. Movie 5 Long time observation of cell dynamics shows that alveologenesis and12

collective cell rotation are correlated (donor: M28).13

Supp. Movie 6 Addition of HECD1 antibody against E–cadherin abolishes alveolar ro-14

tation within 15–25 hours (donor: M25).15

Supp. Movie 7 Cell dynamics at 25X magnification. This experiment corresponds to16

Supplementary Fig. 4a (donor: M25).17

Supp. Movie 8 Cell dynamics at 25X magnification. This experiment corresponds to18

Supplementary Fig. 4b (donor: M25).19

2. Donors20

Donor Age (years) Parity Alveoli (%) n

M20 67 2 30 80
M25 22 0 69 133
M26 34 2 60 78
M28 38 1 57 106

Table I. Age, parity, and frequency of alveoli occurrence at days 11-13 and number of branches

analysed.
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3. Collagen “cage”21

Confocal microscopy of organoids grown in fluorescent collagen shows that organoid22

branches are surrounded by a thin, dense shell of collagen, which results from an irreversible23

compaction of the bulk collagen matrix due to active cell contractility. This “collagen cage”24

is thinner at the organoid branch tips and approaches a thickness of up to h = 10 µm towards25

the organoid body [1].26

To determine whether the cage is also present around spherical alveoli, organoids were27

cultivated for two weeks in floating gels of collagen I conjugated with Atto 488. Confocal28

imaging of both cylindrical branches and spherical alveoli was done using a Leica SP8 con-29

focal microscope and a 40X/1.1 water immersion objective. Subsequently, we measured the30

fluorescence intensity of the collagen network close to the tip of the branches and normal-31

ized on the maximum background. We found indeed a layer of strong fluorescence around32

spherical alveoli [Supplementary Fig. 1]. This suggests that the formation of the alveolus33

displaces the preexisting collagen cage, inducing a plastic strain of the surrounding ECM as34

the organoid surface pushes against it. As a corollary, a proteolytic mechanism for alveolo-35

genesis - one that would require the dissolution of the fluorescent collagen - seems unlikely.36

Alveologenesis Branch elongation
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Supplementary Fig. 1. Intensity of the fluorescent collagen cage surrounding spherical alveoli

(n = 15) and elongating cylindrical branches (n = 12)
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4. Organoid ablation in the presence of Cytochalasin D37

Laser ablation of organoid branches induces a fast recoil of the organoid tissue surrounding38

the cut. To confirm that this response is due to forces generated by the actomyosin system,39

we performed experiments in presence of Cytochalasin D (CD), which is known to disrupt40

actin organization [2]. We incubated organoids with CD at a concentration of 4 µM for41

30 min, stained membranes with CellMask for 10 min, and replenished medium containing42

CD to perform ablation experiments. We found that the recoil response was no longer axially43

biased and the average strain was significantly lower in the presence of CD (Supplementary44

Fig. 2). This corroborates that the laser ablation experiments probe cortical tension and45

that the anisotropy of the response requires an intact actin cytoskeleton.46

Supplementary Fig. 2. Recoil anisotropy εz− εφ and mean recoil (εz + εφ)/2 as a function of index

shape α in presence of Cytochalasin D (red squares). All organoids were grown in floating gels;

control points are a replotting of the data shown in Fig. 2c,d (blue circles).
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5. Cell boundary segmentation47

Stained cell membranes were analysed with the Multicut segmentation tool included in48

the Ilastik software [3], which decomposes the image into closed regions without dangling49

edges. The respective boundaries of the cells were traced with a custom Python script. To50

characterize whether there is an orientational order in the cell population (i.e. a nematic51

order), we discretized the (smooth) cell boundaries into straight subsegments and computed52

the histogram of subsegment angles relative to the branch axis angle θ0. We found that53

cell boundaries in attached gels are highly biased towards the branch axis, and become54

increasingly isotropic as the shape index increases (Supplementary Fig. 3). Branches with55

α = 0.3 are already very close to an isotropic distribution of cell boundaries.56

Supplementary Fig. 3. Distribution of cell boundary angles θ relative to the branch axis θ0 (n=42

organoids) as a function of shape index α for attached (red) and floating gels (blue).

6. Force inference57

From the segmented images we sought to estimate the surface tension tensor τ . To that58

end, we first computed the line tensions acting along individual cell boundaries using the59

method of force inference developed by Wayne Brodland et al. [4]. This elegant approach60

assumes a 2D vectorial force balance at every junction of boundaries, providing two scalar61

equations per junction for a number of unknown line tensions equal to that of boundaries.62

Arrangements of cells with high connectivity then give an overdetermined homogeneous63

system of equations. To avoid the trivial zero solution, the equation system is made hetero-64
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geneuos by adding an equation that imposes a mean line tension equal to 1. The full system65

is solved by linear least squares. In this way, we obtained (relative) line tensions γi for each66

cell boundary.67

68

To obtain the surface tension tensor, we must integrate the contributions from each bound-69

ary. Specifically, the mean stress tensor in a body can be obtained from the forces acting70

along its boundary as follows [5]:71

τ̄ =
1

2A

∮
dl
[
f ⊗ x +

(
f ⊗ x

)T]
, (A1)

where x refers to the position vectors of each boundary point that is subject a force f dl,72

and A refers to the area of the body. Here, we used a computational scheme that, in73

the end, reproduced an expression that is analogous to Eq. (A1). First, we divided each74

boundary into subsegments of constant length l = 1 µm, where segment j of boundary i is75

oriented in the direction θij relative to the tube axis θ0. Then, we summed the line tensions76

of all subsegments that point along a given angle θ to obtain the total force distribution77

F (θ) =
∑

θij=θ
γi. The corresponding force vector is given by F (θ) êθ, where êθ = (cos(θ −78

θ0), sin(θ−θ0)) refers to the unit vector corresponding to the angle relative to the tube axis,79

θ − θ0. Then, the average tension tensor is proportional to80

τ ∝
∮
dθ F (θ) êθ ⊗ êθ . (A2)

Since the line tension is assumed to be constant along each boundary, the total force distri-81

bution is symmetric with respect to θ → θ+ π/2. Thus, we calculated the normalized axial82

stress component as follows:83

τz =

∫ θ0+π/2

θ0−π/2
dθ F (θ) cos2(θ − θ0)

/ ∫ θ0+π/2

θ0−π/2
dθ F (θ)/2 , (A3)

where the normalization factor ensures that the stress is adimensional and equal to 1 for84

a uniform stress distribution. Our choice of normalization is justified by the observation85

that the mean recoil (εz + εφ)/2 in our laser ablation experiments remained approximately86

constant for all organoid shapes, cf. Supplementary Fig. 2. A similar equation holds for the87
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circumferential tension:88

τφ =

∫ θ0+π/2

θ0−π/2
dθ F (θ) sin2(θ − θ0)

/ ∫ θ0+π/2

θ0−π/2
dθ F (θ)/2 . (A4)

7. Nuclear anisotropy parameter: an alternative measurement of cellular tension89

The shapes of nuclei closely follow the surrounding cell boundaries. We found that90

nuclei shape could be used to obtain an approximate estimate of the tension anisotropy91

τz− τφ determined by force inference, while offering the advantages of less phototoxicity and92

allowing for precise observation of cell movement. A similar approach was recently discussed93

and validated by Kong et al [6]. Following branch dynamics over 10–20 hours, we found94

that the nuclear anisotropy parameter χ is large and constant in stable cylindrical branches95

[Supplementary Fig. 4a]. It robustly decreases shortly before an alveologenic increase in96

shape index (main text, Fig. 3f), but it can also be seen to increase prior to a reversal97

of alveologenesis, as the branch resumes longitudinal motion towards the organoid body98

(Fig. 4b, t =10 h).99

Supplementary Fig. 4. Shape index α, rotation velocity vφ and nuclear anisotropy parameter χ as

a function of time for two different experiments. a, Data corresponding to Supplementary Movie

7. b, Data corresponding to Supplementary Movie 8.

Plotting the replica-averaged nuclear anisotropy parameter as a function of the shape100

index, we could compare dynamic data with the results of (static) laser ablation and force101
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inference experiments [Supplementary Fig. 5]. We found a good agreement between all102

datasets, suggesting that the contrasting morphologies of organoids grown in attached and103

floating gels can be understood in terms of the same underlying physics.104

Supplementary Fig. 5. Comparison between laser ablation, force inference and nuclear anisotropy

(dynamic) data. Laser ablation and force inference data are replotted from Figs. 2d,h; Nuclear

anisotropy data from Fig. 3f.

8. Rotation of alveoli for several donors105

The rotational motion of mammary gland organoid branches is largely determined by the106

branch shape, and the shape index α suffices to characterize this dependency. Branches un-107

dergoing translational motion have indexes below 0.3, whereas branches displaying persistent108

rotation for at least 5 hours have indexes above 0.2 [Supplementary Fig. 6].109

To determine the generality of alveolar rotation, we counted the number of branches that110

showed a sustained rotation around their axis for at least 5 h. For the 4 donors under study,111

we found that 70%-80% of branches with α > 0.3 rotated, whereas most cylindrical branches112

moved longitudinally (Supplementary Fig. 7).113
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Supplementary Fig. 6. Histogram of shape index α for branches classified as either translating or

rotating according to the dominant cell movement mode for 5 hours. Donor: M26.

Supplementary Fig. 7. Frequency of rotation in cylindrical branches (α ≤ 0.3, red) and alveoli

(α ≥ 0.3, blue) for all donors studied (see Supplementary Table 1 for branch sample size).
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Appendix B: Supplementary Theoretical Discussion114

In the following, we present and discuss in detail our mechanical model of organoid115

branches. We consider an organoid branch as a shell-like cylindrical tissue, where cell con-116

tractility confers an anisotropic surface tension. The lumen of the organoid branch is filled117

by a viscous fluid, while on the outside it is enveloped by an elastic collagen cage as well118

as an elastic extracellular matrix. Our theoretical analysis shows that the initial cylindrical119

shape of an organoid branch becomes unstable against long-wavelength perturbation modes120

when the circumferential component of the anisotropic surface tension exceeds a critical121

value. This critical circumferential tension is determined by the elastic properties of the122

collagen cage and the extracellular matrix. In contrast to the circumferential tension, the123

axial tension penalizes short-wavelength modes and thus only affects the wavelength of the124

fastest-growing mode, but not the onset of the shape instability itself.125

After choosing a suitable (i.e. cylindrical) coordinate system, we discuss the mechanical126

stresses that act on organoid branches: active cell contractility, passive bending of the colla-127

gen cage and deformations of the extracellular matrix. Since viscous stresses asymptotically128

vanish if the dynamics of the organoid branch is sufficiently slow, the applied mechanical129

stresses determine whether a tubular shape is stable or not. To then find conditions un-130

der which a tubular conformation becomes mechanically unstable, we consider linear shape131

perturbations of a tubular shell that has a homogeneous initial radius and vanishing me-132

chanical stress (mechanical steady state). Then, by expanding our theory beyond this linear133

regime and considering nonlinear contributions to the mechanical stress, we investigate how134

an organoid branch responds to an increase in surface tension.135

1. Choice of coordinate system136

We describe an organoid branch as a thin tubular shell that consist of contractile cells, and137

use a cylindrical coordinate system (r, z, φ), where the z-axis is aligned with the centerline138

of the tube, r measures the radial distance from the centerline, and φ is the azimuthal angle139

[Supplementary Fig. 8]. For the sake of simplicity, we restrict ourselves to a rotationally140

symmetric geometry, so that ∂φQ(z, φ) ≡ ∂φQ(z) = 0 for any (scalar, vectorial or tensorial)141

quantity Q(z, φ).142



10

Supplementary Fig. 8. Schematic representation of the organoid branch geometry. a) The cell

population forms a thin tubular shell (gray), whose lumen is filled by an aqueous solution under

hydrostatic pressure p0. On the outside, the cellular tube is surrounded by a dense and rigid collagen

cage (magenta). Further away, the cellular tube is surrounded by a soft extracellular matrix (blue).

b) Enlarged view of the cell population that forms the surface of the organoid branch. Each cell

(within the local tangent plane) is oriented at an angle θ relative to the local axial tangent vector

tz, with corresponding orientation vector êθ. We consider each cell as a contractile force dipole.

To conceptually illustrate how such a contractile force dipole acts, one can envision an idealized

cell with diameter d0 and area A0 (black circle). The cell cytoskeleton exerts contractile forces on

the cell boundary, which we decompose into two contributions: (i) Isotropic contractile forces f0
correspond to an isotropic tension τ0 ≡ f0d0/A0 (black arrows). (ii) In addition, the contractile cell

breaks rotational symmetry in this local frame of reference by increasing contractility (∆f > 0) or

decreasing contractility (∆f < 0) along its axis êθ. Therefore, in addition to the isotropic part of

cell tension, there is also an anisotropic contribution ∆τ ≡ ∆f d0/A0.

The tubular shell is located at a distance r = R(z) from the centerline, where it forms an143

interface between the viscous fluid in the lumen of the organoid branch and the extracellular144

matrix outside of the organoid. We parameterize this interface by the two coordinates (z, φ)145

and the corresponding position vector field146

R(z, φ) =


R(z) cosφ

R(z) sinφ

z

 . (B1)

The two (orthogonal but non-normalized) tangent vectors that span the surface of the tubu-147
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lar shell are given by148

tz =


∂zR(z) cosφ

∂zR(z) sinφ

1

 , and tφ =


−R(z) sinφ

R(z) cosφ

0

 . (B2)

In the following, we usually omit the argument of the tube radius, R(z) ≡ R, to keep the149

expressions concise. To measure arc distances on the surface of the tubular shell in terms of150

the coordinates (z, φ), we use the metric tensor gij = ti · tj [7]:151

g ≡

gφφ gφz

gφz gzz

 =

R2 0

0 1 + (∂zR)2

 . (B3)

We complete the local coordinate system that spans the surface of the tubular shell by152

introducing the (outward pointing) unit normal vector, n̂ = (tφ × tz)/
√

det g, which lies153

perpendicular to the surface:154

n̂ =
1

[1 + (∂zR)2]
1
2


cosφ

sinφ

−∂zR

 . (B4)

Thus, to summarize, we have defined a local coordinate system on the surface of the tubular155

shell, which is parameterized by the coordinates (z, φ) and spanned by the two tangent156

vectors (tz, tφ) as well as the normal vector n̂.157

Next, we determine the shape tensor, hij = n̂ ·∂itj, which describes the geometrical shape158

of the tubular shell [7]. Specifically, one can directly read off the two principal curvatures of159

the tubular shell from the following expression:160

h · g−1 =

− R−1

[1+(∂zR)2]
1
2

0

0 ∂2zR

[1+(∂zR)2]
3
2

 ≡
κφ 0

0 κz

 . (B5)

As explained above, we view the organoid branch as a rotationally symmetric cylinder that161

is parameterized by the distance R(z) of its surface from the centerline. In the present work,162

we always assume that deformation gradients are small, so that ∂zR � 1. Then, the two163
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principal curvatures are simply given by164

κφ ≈ −
1

R
, and κz ≈ ∂2zR , (B6)

which are used in the remainder of the Supplementary Material. In the upcoming sections,165

we will discuss the physical processes that can dynamically modify these local geometric166

properties of the organoid branch.167

2. Active cell contractility induces anisotropic tension and Laplace pressure168

As discussed in section B 1 “Choice of coordinate system”, we describe the organoid169

branch as a thin tubular shell. At the surface of the organoid branch, contractile cells form170

a thin confluent tissue. Furthermore, this surface defines an interface between the fluid171

in the lumen of the organoid branch and the extracellular matrix outside of the organoid172

branch [Supplementary Fig. 8]. Since the cells are the only active component of our system,173

their activity determines the dynamics of the organoid branch. Specifically, nonequilibrium174

cell contractility at the surface of the organoid branch confers an active interfacial stress in175

the form of anisotropic surface tension, as we explain in the following.176

Link between cell orientation and tension anisotropy. We consider cells as177

anisotropic force dipoles [8, 9], where the anisotropy stems from the local orientation of178

the cells and their cytoskeleton1. Before we characterize a population of many cells, we179

first focus on describing a single cell. To that end, we consider the local reference frame180

(tangent plane) that is spanned by the two (orthogonal but non-normalized) surface tangent181

vectors (tz, tφ) and whose origin coincides with the position of the cell [Fig. 8b]. The cell is182

oriented at an angle θ relative to the axial surface tangent vector tz, so that we represent183

its orientation with the vector184

êθ = cos(θ)
tφ
‖tφ‖

+ sin(θ)
tz
‖tz‖

≡

cos(θ)

sin(θ)

 . (B7)

Due to orientational order in its cytoskeleton, the cell can exert stronger (or weaker) tensile185

1 In section A 6 “Force inference”, we have represented the average tension tensor of a cell as a boundary

integral of the forces that act on the cell boundary. Here, we consider the body forces that act as a result

of intracellular actomyosin contractility. In the co-moving reference frame of a non-deforming cell, both

descriptions are equivalent because internal stresses must exactly balance externally applied stresses.



13

forces along its axis êθ than along the perpendicular axis. Therefore, we split the tension186

of a cell into two contributions: (i) an isotropic base tension τ0 that preserves rotational187

symmetry in our local reference frame and (ii) an additional anisotropic tension ∆τ along188

the direction specified by the vector êθ that breaks rotational symmetry in our local reference189

frame. Taken together, we model cell contractility with the following cell tension tensor2:190

τ (θ) = τ0 I2 + ∆τ êθ ⊗ êθ . (B8)

The diagonal elements of the cell tension tensor then correspond to the axial τz and the191

circumferential tension τφ, respectively:192

τ (θ) =

τ0 + ∆τ cos2(θ) ∆τ cos(θ) sin(θ)

∆τ cos(θ) sin(θ) τ0 + ∆τ sin2(θ)

 ≡
 τz . . .

. . . τφ

 . (B9)

Now consider a population of cells in which the cells differ in their orientations êθ and193

exert an anisotropic tension τ (θ). We statistically represent the occurrence of different194

cell orientations θ by the probability density function P (θ), which we refer to as angular195

distribution of cell orientations. The average tension tensor in the confluent tissue is then196

given by the weighted average τ̄ =
∫ π
−πdθ P (θ) τ (θ). Thus, the off-diagonal terms of the197

average tension tensor in the confluent tissue vanish for a symmetric angular distribution198

of cell orientations, P (θ) = P (−θ). Furthermore, we note that the trace of the cell tension199

tensor for each cell is independent of the cell’s orientation, tr(τ ) = τz + τφ = 2τ0 + ∆τ .200

Therefore, since the angular distribution of cell orientation is normalized,
∫ π
−πdθ P (θ) = 1,201

the trace of the average tension tensor in the confluent tissue is constant,202

tr τ̄ = τ̄z + τ̄φ = 2τ0 + ∆τ . (B10)

In other words, the total tension in the confluent tissue, τ̄z+ τ̄φ, is independent of the angular203

distribution of cell orientations. This explains our experimental finding that the sum of the204

axial and the circumferential tension remains constant for all experiments.205

If all cells are oriented in the same direction, e.g. along the centerline of the organoid206

branch so that P (θ) = δ(θ), then the difference between the axial and the circumferential207

2 One can also rationalize this form by performing a boundary integral of the forces that act on the cell

boundary, analogous to section A 6 “Force inference”.
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tension is simply given by τ̄z − τ̄φ = ∆τ . In contrast, if all cells are oriented randomly,208

P (θ) = 1/(2π), then axial and circumferential tension are equal τ̄z = τ̄φ. Thus, if the cells are209

initially aligned with the axial surface tangent vector tz (i.e. aligned with the centerline of the210

tube) and subsequently randomize their orientation, then the circumferential tension in the211

tissue will effectively increase at the expense of a decreasing axial tension. These theoretical212

considerations imply that in our experiments the predominant process underlying tension213

anisotropy is due to the reorientation of cells and not a change in their tensile properties τ0214

and ∆τ .215

In the present section, we have investigated how the orientation of cells, treated as216

anisotropic force dipoles, affects the average tension in a confluent tissue. From here on,217

we will not describe the precise distribution of cell orientation. Instead, we simplify our de-218

scription by considering only an axial tension τz and an independent circumferential tension219

τφ on the surface of the tubular shell (i.e. the organoid branch); we also simplify notation220

by omitting the overline indicating the population average.221

Tension anisotropy leads to generalized Laplace pressure. Next, we discuss how222

anisotropic surface tension couples to the organoid shape and how it is different from an223

isotropic surface tension. We consider cells as active agents that perform work as they deform224

the organoid branch (i.e. tubular shell). Instead of formally carrying out variational calculus225

of surfaces, in this section we omit the corresponding surface integrals by considering the226

dynamics of an (approximately homogeneous) infinitesimal surface patch with area A. In the227

case of isotropic surface tension τiso, the cells perform the work δW = −τiso δA [10] as they228

change the area of the surface patch on the tubular shell by δA. For a curved surface such as229

the organoid branch, one can relate a change in surface area to a displacement of the surface230

patch by a distance δu along its normal vector3,4, δA = −(κφ + κz) δuA [7]. Thus, any231

3 This relation can be easily checked for spherical geometries (with radius R, azimuthal angle φ and polar

angle ϑ), where a surface patch has area A ≡ R2 dϑ dcosφ. Then, radial movement of the surface patch by

a distance δu changes its area by δA = ∂RAδu = 2Rdϑdcosφ δu. Identifying the curvature of the sphere

with κφ = κϑ = −1/R, one then finds δA = −(κφ + κϑ) δuA. One can perform an analogous calculation

for straight tubular geometries.
4 For general (i.e. undulating) tubular geometries, one has to determine how the surface area changes upon

a deformation δu(z) via variational calculus. The surface area of the cylinder is given by the functional

A[u] = 2π
∫
dz
√

1 + (∂zu)2 (R0 + u). The variation of the surface area of the cylinder is then also a

functional: δA[u] = −2π
∫
dz (R0 + u) (κφ + κz) δu(z), where the curvatures are given by Eq. (B5). For

sufficiently thin patches, one can then approximate their surface area as 2π
∫
dz (R0+u) ≈ 2πdz (R0+u) ≡

A, to arrive at the expression in the main text.
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Supplementary Fig. 9. Illustration of a surface that moves by a distance δu, thereby decreasing

its surface area from A (initial configuration, sketch) to A+ δA (dashed line), where δA < 0. The

surface consists of contractile cells, which exert a tension τ that drives the dynamics.

surface patch that is curved towards its direction of motion, (κφ+κz) δu > 0, will effectively232

contract [Fig. 9]. This results in a cell-induced Laplace pressure ∆piso = δW
Aδu

= (κφ+κz) τiso.233

Note that this is a generalization of the expression for the Laplace pressure in a sphere,234

∆piso ∼ 2τiso/R, to generic surfaces.235236

Unlike isotropic tension, anisotropic tension breaks rotational symmetry, so that one237

must individually consider the (relative) length changes that occur in different directions as238

the cells deform the organoid branch. Here, it helps to envision (anisotropic) surface tension239

as a meshwork of ropes, which are aligned along the axis and along the circumference of240

the tubular shell, respectively. Then, one may associate axial tension with the work that is241

required for increasing the (relative) length of the tubular shell, and circumferential tension242

with the work that is required for increasing the (relative) circumference of the tubular shell.243

In summary, one then has:244

δW = −
(
τz
δ`z
`z

+ τφ
δ`φ
`φ

)
A , (B11)

where `z and `φ refer to the arc lengths on the surface and A = `z `φ is the area of the245

corresponding surface patch. Upon a displacement of the organoid surface by a distance δu246

along its normal vector, the circumferential arc length `φ and the axial arc length `z change247
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as follows5,6:248

δ`φ = −κφ δu `φ
δ`z = −κz δu `z .

(B12)

With these considerations, the (generalized) Laplace pressure on the tubular shell, δW
Aδu

, is249

given by:250

∆pτ = τφκφ + τzκz . (B13)

By explicitly inserting the expressions for the axial and the circumferential curvatures,251

Eq. (B6), we obtain:252

∆pτ = −τφ
R

+ τz ∂
2
zR . (B14)

The generalized Laplace pressure, Eq. (B14), must be balanced by stresses in the fluid253

(specifically, viscous stresses and hydrostatic pressure) as well as by elastic stresses in the254

extracellular matrix [discussed in sections A 3 “Collagen “cage”” and B 4 “Bulk extracellular255

matrix elasticity does not significantly affect tube stability”].256

3. Collagen cage envelops organoids and confers mechanical stability257

In this section, we discuss the elastic properties of the extracellular matrix, which puts258

constraints on the deformations of the thin tubular shell (i.e. the organoid branch). We base259

our model on the experimental determination of the density and thickness of the collagen260

cage that surrounds branches and alveoli, as discussed above (section A 3 “Collagen “cage””).261

This is built by the contractile activity of the cells in the organoid branches, which gives rise262

to complex mechanical properties. Furthermore, its mechanical properties currently cannot263

be separated from the mechanical properties of the surrounding collagen matrix and the264

mechanical properties of the cells. As a consequence, its elastic modulus is unknown and265

not readily accessible to experiments. In this section, we estimate the elastic modulus of the266

collagen cage.267

Estimate for the rigidity of the collagen cage. From fluorescence intensity mea-268

5 This relation can be illustrated as follows. Any curved line segment can be understood as a circle segment

with angle dφ and radius R. The arc length of this line segment is then given by `φ = Rdφ. Upon

radial displacement by a distance δu, the arc length changes by δ`φ = ∂R`φ δu = dφ δu. Identifying the

curvature as κφ ≡ −1/R, one then finds δ`φ = −κφ δu `φ.
6 Note that from these relations one also finds δA = `zδ`φ + `φδ`z = −(κφ + κz) δuA, where A ≡ `φ`z.
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surements, we know that the collagen cage has a roughly 5-fold higher density than the269

bulk collagen [1]. We now assume that the cage is structurally similar to bulk collagen, but270

concentrated by a factor of 5. In general, the elastic modulus of collagen increases with271

the concentration roughly in a power-law manner with an exponent in the range of 2.2–272

2.6 [11, 12]. At our standard concentration of ρbulk = 1.3 mg ml−1, we measured the shear273

modulus to be µ ' 7 Pa (data not shown; see [12]). The corresponding elastic modulus274

can be calculated from the shear modulus by using [5] E = 2 (1 + ν)µ, where the Poisson275

ratio can be approximated as ν = 0.5 [13]. Taking a concentration-dependence exponent276

of 2.2, we thus obtain a lower estimate of Ecage = 0.72 kPa for the elastic modulus of the277

collagen cage. Instead taking a concentration-dependence exponent of 2.6, we obtain an278

upper estimate of Ecage = 1.38 kPa for the elastic modulus of the collagen cage.279

Passive stretching of the collagen cage induces elastic stresses. As discussed280

in the previous paragraphs, organoid branches and alveoli are surrounded by a thin, dense281

“collagen cage”, which we model as a thin elastic shell. In the following, we first discuss how282

much energy is stored in elastic deformations of the collagen cage, which includes bending283

and stretching [14]. Then, we determine the corresponding elastic boundary stresses that act284

on the surface of a deformed tubular shell. Since we account for the mechanical properties285

of cells by treating them as contractile force dipoles, cf. section B 2 “Active cell contractility286

induces anisotropic tension and Laplace pressure”, we assume in the following that the elastic287

response of the tubular shell is dominated by the elastic properties of the collagen cage and288

not the cell sheet7.289

We begin by considering stretching (or compression) of the collagen cage. To parameterize290

the corresponding deformation field u(z), we use a cylindrical coordinate system that is291

spanned by the normalized basis vectors [cf. section B 4 “Bulk extracellular matrix elasticity292

does not significantly affect tube stability”]:293

b̂r =


cosφ

sinφ

0

 , b̂z =


0

0

1

 , and b̂φ =


sinφ

cosφ

0

 . (B15)

As we assume that the deformation gradients of the surface are small, ∂zR � 1, the radial294

7 A more detailed approach would have to differentiate between the mechanical in-plane deformation of the

collagen cage and the mechanical in-plane deformation of the cell sheet, because motile cells can move

relative to the substrate that they adhere to.
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Supplementary Fig. 10. Illustration of radial deformations (left) and axial deformations (right).

Any elastic body that is stretched or compressed exhibits elastic stresses that counteract these

deformations.

basis vector coincides with the unit surface normal, b̂r ≈ n̂ , and the axial basis vector295

coincides with the (in that case normalized) surface tangent vector, b̂z ≈ t̂z, cf. section B 1296

“Choice of coordinate system”. We consider u ≡ u(z) as the radial (or normal) component297

of the surface deformation field, which accounts for radial displacements of the surface. Such298

radial deformations change the radius of the tubular shell from R0 in its cylindrical reference299

configuration to R = R0 +u in its deformed configuration. In addition, we also consider the300

axial (or tangential) component of the surface deformation field, u‖ ≡ u‖(z), which however301

has no effect on the shape of the tubular shell. To summarize, in our cylindrical geometry302

the surface deformation field is given by u = u b̂r + u‖ b̂z303

In the present work, we analyze the linear stability of the tubular shell and therefore304

consider only infinitesimal deformations of the collagen cage from its cylindrical reference305

configuration8. The corresponding linearized surface strain tensor is given by [5]:306

εlin =
1

2

[
∇⊗ u + (∇⊗ u)T

]
=

∑
i,j∈{φ,z}

εij b̂i ⊗ b̂j , (B16)

where the circumferential component εφφ and the axial component εzz of the surface strain307308

tensor are given by [Fig. 10]:309

εφφ ≈
u

R0

, and εzz ≈ ∂zu‖ . (B17)

Circumferential strain εφφ corresponds to a change of the circumferential arc length `φ due310

8 For a nonlinear analysis, one would have to calculate the nonlinear (Green) strain tensor, εg = εlin +
1
2 (∇⊗u)T · (∇⊗u), where εlin refers to the linear part of the strain tensor (B16). Such an analysis was

carried out by Hannezo et al. [15].
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to an out-of-plane displacement u, cf. Eq. (B12) and Fig. 9. Axial strain corresponds to311

a compression or dilatation due to in-plane deformations. Neglecting in-plane shear strain312

εzφ, stretching of the tubular shell is associated with the following free energy density per313

surface area [14]:314

fs =
Ecage h

2 (1− ν2)
[
ε2φφ + ε2zz + 2νεφφεzz

]
, (B18)

where ν ≈ 0.5 refers to the Poisson ratio of the collagen cage. The total energy that is stored315

in stretching of the collagen cage is given by Fs[u, u‖] =
∫
dS0 fs, and is thus a functional316

of the surface deformation field (u, u‖). Here,
∫
dS0 refers to a surface integral over the317

reference configuration of the collagen cage. In the cylindrical reference configuration, the318

(positive definite) stretching energy Fs vanishes and is therefore minimal. Consequently, any319

deformation of the collagen cage is accompanied by a finite energy cost so that a further320

deflection (u, u‖)→ (u+ δu, u‖+ δu‖) costs an energy δFs = Fs[u+ δu, u‖+ δu‖]−Fs[u, u‖].321

When external stresses are relieved, the collagen cage will gradually move back from the322

deformed configuration to its reference configuration by releasing the stored elastic stretching323

energy in the form of work. Thus, stretching of the collagen cage induces elastic stresses that324

drive movement towards the mechanical reference configuration. We distinguish between two325

possible (and independent) directions of movement, axial/tangential and radial/normal,326

which couple to the respective stress fields. Tangential movement by some infinitesimal327

distance δu‖ is driven by a shear stress along the interface:328

σrzcage = −δFs

δu‖
= − Ecage h

2 (1− ν2)
δ

δu‖

∫
dS0

[( u
R0

)2
+
(
∂zu‖

)2
+ 2ν

( u
R0

)(
∂zu‖

)]
= ∂z

[
Ecage h

1− ν2
(
εzz + νεφφ

)]
.

(B19)

Here, the term in square brackets corresponds to the axial component of the elastic sur-329

face tension in response to deformations of the thin shell. Specifically, by identifying the330

axial tension with τel,zz := ∂fs/∂εzz, cf. Eq. (B18), one finds that σrzcage = ∂zτel,zz. Thus,331

Eq. (B19) illustrates that tangential shear stresses correspond to surface tension gradients,332

where regions with larger tension effectively pull on regions with lower tension.333

These elastic shear stresses in the organoid branch are balanced by viscous stresses of the334

fluid that fills the organoid branch and by elastic stresses of the extracellular matrix. Since335

the cells are motile, they can move relative to the collagen cage. By extension of argument,336
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the collagen cage can slip against the cell sheet and the fluid in the lumen of the organoid337

branch, so that the tangential shear stresses induced by the collagen cage relax quickly338

compared to the normal stresses. Assuming such a timescale separation, the tangential339

shear stresses in the collagen cage will vanish on the timescales relevant for perpendicular340

motion of the interface9. Then, one finds from Eq. (B19) that εzz = C − νεφφ, where C341

is some constant. With this adiabatic approximation, the free energy density (per surface342

area) that is stored in stretching deformations of the tubular shell simplifies to:343

f ?s =
Ecage h

2

[
ε2φφ +

C2

(1− ν2)

]
. (B20)

Since, by definition, both the free energy that is stored in deformations and the corresponding344

tensions vanish in the reference configuration, the constant C = 0 must also vanish. Just as345

tangential movement is driven by a shear stress along the interface, perpendicular motion346

of the surface by some infinitesimal distance δu is driven by a normal stress that acts on347

the surface:348

∆ps = −δFs

δu
≈ ∂uf

?
s = − 1

R0

[
Ecage h

u

R0

]
. (B21)

The deformed radius of the tubular shell is given by R = R0 + u and the reference radius349

is given by R0. The term in square brackets corresponds to the circumferential component350

of the elastic surface tension in response to deformations of the thin shell. Thus, Eq. (B21)351

can be understood as a Laplace pressure that is associated with tension due to elastic352

deformations.353

Passive bending of the collagen cage is counteracted by elastic stresses. Next,354

we discuss the Helfrich free energy density per surface area that is stored in bending defor-355

mations of the collagen cage [16]:356

fb =
1

2
kb

[
(κφ − cφ)2 + (κz − cz)2

]
, (B22)

where cφ is the circumferential spontaneous curvature and cz is the axial spontaneous cur-357

vature of the tubular shell. In the following, we assume that the tubular shape corresponds358

9 For a more general treatment, we would have to explicitly model the relaxation dynamics of the tangential

shear stresses by considering the viscous properties of the collagen cage and/or the surrounding elastic

medium.
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to the mechanical reference configuration of the organoid branch, which therefore minimizes359

the bending energy. Thus, we set the axial spontaneous curvature to cz = 0 and the cir-360

cumferential spontaneous curvature to cφ = −1/R0. This is a plausible ansatz since the361

collagen cage grows due to the contractility of the pre-existing organoid branch and persists362

even after washing out the epithelial cells [1]. Nevertheless, one would have to modify this363

assumption if the initial tubular shape corresponds to a pre-strained configuration, or if364

the shell-like organoid branch itself also significantly contributes to the bending energy10.365

For small deformations u, the two principal curvatures of the tubular shell are in good ap-366

proximation given by κz = ∂2zu and κφ = −1/R, along the axis z and the circumference367

φ respectively, cf. Eq. (B6). The free energy density (per surface area) that is stored in368

deformations of the collagen cage is then given by:369

fb =
1

2
kb

[(
1

R
− 1

R0

)2

+ (∂2zu)2

]
≈ 1

2
kb

[
u2

R4
0

+ (∂2zu)2
]
, (B23)

for sufficiently small deformations of the tubular shell, u � R0. The total bending energy370

of the collagen cage is given by Fb[u] =
∫
dS0 fb, and is a functional of the radial component371

of the surface deformation field, u. Here, as above,
∫
dS0 refers to a surface integral over the372

reference configuration of the collagen cage. In the cylindrical reference configuration, the373

(positive definite) bending energy Fb vanishes and is therefore minimal. Consequently, any374

deformation of the collagen cage is accompanied by a finite energy cost so that a further375

deflection u → u + δu costs an energy δFb = Fb[u + δu] − Fb[u]. When external stresses376

are relieved, the collagen cage will gradually move back from the deformed configuration377

to its reference configuration by releasing the stored elastic bending energy in the form of378

work. Thus, bending deformations of the collagen cage induce elastic stresses that drive379

movement towards the mechanical reference configuration. In principle, as above, we distin-380

guish between two possible (and independent) directions of movement, axial/tangential and381

radial/normal, which couple to the respective stress fields. However, since the free energy382

that is stored in bending deformations does not depend on the axial component of the defor-383

mation field, δFb/δu‖ = 0, the tangential shear stresses vanish. Note that there is a deeper384

reason as to why there are no tangential shear stresses in response to bending. For tangen-385

10 Cell contractility can effectively lead to a spontaneous curvature of thin cell sheets due to an asymmetric

positioning of the cells’ actomyosin cytoskeleton relative to the middle surface of the cell sheet [17]. If

the spontaneous curvature is induced by cell contractility, then it can also be influenced by the local

orientation of cells.
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tial deformations, the material points of the thin shell only move along the surface, thus386

leaving its shape unchanged. Since the bending energy (B23) only depends on the shape of387

the thin shell, it follows that tangential deformations cannot induce bending stresses. This388

only leaves perpendicular motion of the surface by some infinitesimal distance δu, which is389

driven by a normal stress that acts on the surface:390

∆pb = −δFb

δu
= −kb

[
u

R4
0

+ ∂4zu

]
, (B24)

where the deformed radius of the tubular shell is given by R = R0 + u and the reference391

radius is given by R0. Summing up the stresses that arise in response to stretching and392

bending of the collagen cage, Eq. (B21) and Eq. (B24),393

∆pcage = −Ecage h
u

R2
0

− kb
[
u

R4
0

+ ∂4zu

]
, (B25)

yields the normal component of the total boundary stress due to elastic deformations. As394

our notation suggests, one can interpret the normal component of the boundary stresses as395

a pressure jump between the lumen of the organoid branch and the surrounding medium.396

This corresponds to an effective pushing stress (if positive) or pulling stress (if negative) on397

the interface from outside of the organoid branch.398

Linear stability analysis. A cylindrical configuration of the thin tubular shell (i.e.399

the organoid branch) is stable whenever the combined effect of all elastic stresses and the400

active cellular tension counteracts any small shape perturbation. In this section, we use401

this argument to find conditions for which a cylindrical shape becomes linearly unstable.402

To that end, as we have done in the previous sections, we consider rotationally symmetric403

deformations of the tubular shell, R = R0 + u, that are small compared to the equilibrium404

radius of the tube, u � R0. At the organoid branch interface, there is a local balance405

between fluid stress, generalized Laplace pressure [Eq. (B14)] and the elastic stress induced406

by deformations of the collagen cage [Eq. (B25)]:407

σrrvisc = p0 −
τφ
R

+ τz∂
2
zu− Ecage h

u

R2
0

− kb
[
u

R4
0

+ ∂4zu

]
≈ p0 −

τφ
R0

+

[
τφ
R2

0

− Ecage h

R2
0

− kb
R4

0

+ τz∂
2
z − kb∂4z

]
u .

(B26)
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Supplementary Fig. 11. Stress dispersion relation as a function of the mode q. A reorientation of

cells can increase the circumferential tension at the expense of the axial tension, thus shifting the

stress dispersion relation upwards (blue arrow) and inducing a band of unstable modes.

The left-hand side of the stress-balance equation, Eq. (B26), corresponds to dynamic viscous408

stresses σrrvisc that vanish in steady state. Hence, only the right-hand side of the stress-balance409

equation (B26), where we have collected the hydrostatic pressure, the generalized Laplace410

pressure, and elastic stresses, determines the stability of the tubular shell. The stress-411

balance equation, Eq. (B26), must hold for any deformation of the tubular shell, including412

the reference configuration itself (u = 0). Therefore, the hydrostatic pressure is given by413

p0 = τφ/R0. Finally, we express the small deformations u in terms of Fourier components,414

u =
∑

q uq cos(qz), and thus obtain the following stress dispersion relation near mechanical415

equilibrium [Fig. 11]:416

∆pq =

[
τφ
R2

0

− Ecage h

R2
0

− kb
R4

0

− τzq2 − kbq4
]
uq . (B27)

Since the last two terms of equation (B27) are stabilizing (positive axial tension τz and417

positive bending rigidity kb), a band of unstable modes can only emerge if11:418

τφ > τc = Ecage h+
kb
R2

0

. (B28)

These results indicate a long-wavelength instability according to the Cross/Hohenberg clas-419420

sification scheme [19]; specifically, the mechanical driving stress is largest for the q = 0421

mode. However, note that here this will not be the fastest-growing mode, as homogeneous422

modes q = 0 are prohibited by the incompressibility of the fluid in the lumen of the organoid423

branch.424

11 The classical result for the pearling instability has an additional factor of 2/3 in the second term, because

it considers a material with zero spontaneous curvature along both principal directions [18]. Then, the

bending energy acts as an additional destabilizing term.
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In general, increasing the circumferential tension will increase the mechanical driving425

stress [cf. right-hand side of the stress-balance equation (B26)], and will therefore speed426

up the pearling instability. Furthermore, we note that the pearling instability occurs when427

the circumferential tension and the corresponding Laplace pressure are sufficiently strong428

to overcome the stabilizing effects conferred by the elastic properties of the collagen cage429

[Eq. (B27)]. As the alveolus grows, the Laplace pressure will then decrease, while the430

hydrostatic pressure will remain approximately constant (if the alveolus is still connected431

to an organoid branch). Furthermore, the stress due to elastic bending of the collagen cage432

is much smaller than the stress due to elastic stretching, given that the former scales with433

the thickness of the collagen cage h and the latter scales with h3. Therefore, for a spherical434

alveolus whose radius grows from R0 to R at the tip of an organoid branch, we can make435

the following approximation:436

σrrvisc = ∆p =
τφ
R0

− τφ
R
− Ecage h

R−R0

R2
0

. (B29)

The final equilibrium radius of the alveolus is then determined by the steady-state condition437

σrrvisc = 0 and is therefore given by438

R

R0

=
τφ

Ecage h
. (B30)

We conclude that the above theory predicts that an increase in surface tension will lead to439

larger alveoli that also form faster. These results hold on sufficiently short timescales, where440

the deformation of the extracellular matrix is elastic and fully reversible. On long timescales,441

if the stresses in the extracellular matrix are above the plastic yield threshold, then the442

reference radius R0 will effectively increase due to plastic deformation of the extracellular443

matrix thus leading to a robust and continued growth of spherical alveoli as we have discussed444

in the main text.445

Estimating the critical circumferential tension. We next estimate the magnitude446

of the critical tension. For a homogeneously elastic sheet with elastic modulus Ecage, Poisson447

ratio ν and thickness h, the bending modulus is given by [5] kb = Ecage h
3/[12(1 − ν2)]. In448

section A 3 “Collagen “cage””, confocal microscopy data showed that the collagen cage has449

a typical thickness of h ' 5 µm. Furthermore, we have estimated in section A 3 “Collagen450
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“cage”” that the elastic modulus of the collagen cage should lie in the range between Ecage =451

0.72 kPa and Ecage = 1.38 kPa. Furthermore, analogously to section A 3 “Collagen “cage””,452

we assume that the collagen cage (which has a collagen concentration of roughly 6.5 mg ml−1)453

is incompressible, such that ν = 1/2 [20]. For a branch radius of R0 = 30 µm, we find that454

the critical circumferential tension τc of the organoid branch [Eq. (B28)] lies in the range455

between τc = 3.6 mN m−1 and τc = 6.9 mN m−1. Values for the cortical tension of single456

contractile cells have been measured via micropipette aspiration to be about 0.4 mN m−1
457

for L929 fibroblasts [21] and have similar values for chick fibroblasts [22], 4.1 mN m−1 for458

Dictyostelium discoideum [23], and via traction force microscopy to reach up to 5 mN m−1 for459

human microvascular endothelial cells [24] (HMEC-1). Furthermore, micropipette aspiration460

of spheroids consisting of MCF-10A (human mammary epithelial) cells has yielded a value461

of 10 mN m−1 [25] for the corresponding surface tension.462

We conclude that the active tension induced by cellular contractility is strong enough463

to trigger a pearling instability against the mechanical resistance of the collagen cage. In464

addition, the active tension induced by cellular contractility is sufficiently small so that465

an axial alignment of cells [cf. section B 2 “Active cell contractility induces anisotropic466

tension and Laplace pressure”] could keep the circumferential component of the tension467

tensor below the critical value, Eq. (B28). Finally, our cell tracking data show that collective468

rotations of cells around the circumference of the organoid branch typically begin at the tips469

of the organoid branches [cf. Fig. 3 in the main text]. This observation is rooted in the470

fact that at the tips of the organoid branches, cells have to repolarize and either migrate471

back or begin collectively migrating around the circumference (i.e. rotations); the latter472

corresponds to the least frustrated state where cells can keep migrating with the least number473

of changes in direction. Therefore, cell reorientation and an increase in circumferential474

tension at the expense of axial tension also typically begin at the tips of the organoid475

branches. Furthermore, note that Buchmann and Meixner et al. [1] have shown that the476

collagen cage is thinner at the organoid branch tips and approaches a thickness of up to477

h = 10 µm towards the organoid body. In that case, the critical tension would increase478

by a factor of at least 2 (relative to our estimated value, assuming that the collagen cage479

has the same elastic modulus near the organoid body) towards the organoid body. These480

two observations (preferred cell reorientation and thinner collagen cage) rationalize why the481

pearling instability preferably occurs at the organoid branch tips.482



26

4. Bulk extracellular matrix elasticity does not significantly affect tube stability483

So far, we have assumed that a tubular configuration of the shell-like organoid branch is484

stabilized by a rigid collagen cage. In addition, the organoid branch is also surrounded by an485

elastic extracellular matrix. Thus, one may wonder whether a collagen cage is required, or486

if a homogeneous extracellular matrix itself would be sufficient to stabilize tubular shapes.487

In the following, we argue that a homogeneously elastic extracellular matrix is too soft to488

stabilize the cylindrical organoid branch against its own contractility.489

To that end, we use linear elasticity theory. The extracellular collagen matrix is a three-490

dimensional body and thus requires a treatment in terms of three-dimensional bulk coordi-491

nates492

r(r, z, φ) =


r cosφ

r sinφ

z

 , (B31)

which match the surface coordinates at the interface of our tubular geometry [cf. section B 1493

“Choice of coordinate system”]. The three (orthogonal but non-normalized) basis vectors494

that span the three-dimensional of our tubular geometry are then given by495

br =


cosφ

sinφ

0

 , bz =


0

0

1

 , and bφ =


−r sinφ

r cosφ

0

 . (B32)

In the present section, we use contravariant notation to express vectors, v = vi bi, and496

tensors, σ = σij bi ⊗ bj. Contravariant notation indicates that the components of any497

vector field, vi, transform inversely in response to any basis transformation, so that the498

vector field v itself remains invariant. As before, we assume a rotational symmetry around499

the z-axis.500

We associate the mechanical reference configuration of the organoid branch and of the ex-501

tracellular matrix with the initial shape of the tubular shell. Then, we consider infinitesimal502

deviations from this reference configuration, which are parameterized by the deformation503
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field u. The corresponding linearized strain tensor is given by [5]:504

εlin =
1

2

[
∇⊗ u + (∇⊗ u)T

]
=

∑
i,j∈{r,φ,z}

εij bi ⊗ bj . (B33)

In contrast to section A 3 “Collagen “cage””, as discussed above, we have here expressed the505

linearized strain tensor in contravariant notation. In our rotationally symmetric cylindrical506

coordinate system, the strain tensor is given by:507

εlin ≡


εrr εrz εrφ

εzr εzz εzφ

εφr εφz εφφ

 =


∂ru

r (∂zu
r + ∂ru

z)/2 ∂ru
φ/2

(∂zu
r + ∂ru

z)/2 ∂zu
z ∂zu

φ/2

∂ru
φ/2 ∂zu

φ/2 ur/r3

 . (B34)

The trace of the strain tensor in our cylindrical coordinate system,508

trg(εlin) =
∑

i∈{r,φ,z}

b̂i · εlin · b̂i = εrr + εzz + r2εφφ

= ∂zu
z +

1

r
∂r(r u

r) = ∇ · u ,
(B35)

indicates volumetric changes (i.e. isotropic compression and dilatation) due to the deforma-509

tion field u. Splitting the strain tensor into a pure shear component and a pure volumetric510

part, the linear elastic stress tensor is given by [5]:511

σel = 2µ

[
εlin −

1

3
trg(εlin)I3

]
+

2µ

3

1 + ν

1− 2ν
trg(εlin)I3

= 2µ

[
εlin +

ν

1− 2ν
trg(εlin)I3

]
,

(B36)

where I3 refers to the identity matrix. A mechanical force balance in the bulk of the ex-512

tracellular matrix implies that the body force that acts on an infinitesimal volume element513

vanishes [26]:514

f = ∇ · σlin =


1
r
∂r(rσ

rr
el ) + ∂zσ

rz
el − rσφφel

1
r
∂r(rσ

rz
el ) + ∂zσ

zz
el

1
r
∂r(rσ

rφ
el ) + 2

r
σrφel + ∂zσ

zφ
el

 = 0 . (B37)

The circumferential component of the body force vanishes in the absence of torques. Then,

the remaining mechanical force balance equations in the bulk of the extracellular matrix are
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given by:

∂z

[
1

1− 2ν

1

r
∂r(r u

r) + 2
1− ν
1− 2ν

∂zu
z

]
+

1

r
∂r(r ∂ru

z) = 0, (B38a)

∂r

[
2

1− ν
1− 2ν

1

r
∂r(r u

r) +
1

1− 2ν
∂zu

z

]
+ ∂2zu

r = 0, (B38b)

where ur and uz refer to the radial and axial deformation field, in contravariant notation,515

respectively. To solve these equations, we introduce the stress function Φ via an implicit516

definition:517

ur = −∂r∂zΦ , uz = 2(1− ν)∆Φ− ∂2zΦ . (B39)

By inserting Eq. (B39) into Eqs. (B38a) and (B38b), one finds that the stress function Φ518

must satisfy the biharmonic equation in cylindrical coordinates [26]:519

∆2Φ = 0 . (B40)

We are interested in undulations of the tubular organoid branch, and therefore decompose520

the deformation field of the extracellular matrix into Fourier modes: ur =
∑

q u
r
q(r) cos(qz)521

and uz =
∑

q u
z
q(r) sin(qz). Thus, we may also express the stress function in terms of522

Fourier modes: Φ =
∑

q Φq(r) sin(qz). The general real-valued solution to the biharmonic523

equation (B40) is then given by:524

Φq(r) = a1

[
Y0(−iqr) + iI0(qr)

]
+ a2I0(qr) + ia3r

[
I1(qr) + Y1(−iqr)

]
+ a4rI1(qr) , (B41)

where Ik(x) refers to the modified Bessel function of the first kind and Yk(x) refers to the525

Bessel function of the second kind, respectively. As we consider the extracellular matrix as526

an elastic medium in the half-space r ≥ R, we are only interested in real-valued solutions527

(ur, uz) that decay in the far field and approach zero as r → ∞. This constraint fixes two528

of the four coefficients in Eq. (B41), a2 = 0 and a4 = 0, which correspond to solutions that529

would vanish at r → 0 and diverge in the far field r →∞. The remaining two coefficients a1530

and a3 can be determined by imposing boundary conditions on the deformation field. Here,531

we choose a general radial deformation, urq(R), and impose no-slip conditions on the axial532
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Supplementary Fig. 12. a) Exemplary deformation field around a tubular branch, for an incom-

pressible extracellular matrix ν = 1/2 and a Fourier mode q = 2π/R. The gray region indicates

the wall of the organoid branch. b) Illustration of the function Λ(x), which saturates (dashed line)

for large arguments and grows (approximately) linearly for small arguments. Thus, the normal

component of the elastic stress grows quadratically for small arguments qR and linearly for large

arguments qR. For simplicity, we have assumed an incompressible material, ν = 1/2.

deformation, uzq(R) = 0. Then, the stress function is given by the following expression:533

Φq(r) =
urq(R)

q2
K0(qr)

K1(qR)

[
1 + qΘ(qR)

(
RB(qR)− r

B(qr)

)]
, (B42)

where we have defined534

Θ(x) :=
B(x)

x−B(x)
[
4(1− ν) + xB(x)

] , and B(x) :=
K0(x)

K1(x)
, (B43)

and where Kk(x) refers to the modified Bessel function of the second kind. Using Eq. (B39),

we readily obtain the full (rotationally symmetric) deformation field of the extracellular

matrix. Then, we calculate the radial component of the elastic stress tensor, σrrel , where µ

refers to the shear modulus of the extracellular matrix [cf. Eq. (B36)]:

σrrel (R) = −2µ

R

∑
q

(
1 + qRΛ(qR)

)
urq(R) cos(qz) , (B44a)

Λ(x) := −2(1− ν)B(x)Θ(x) . (B44b)

The above function Λ(x) and the deformation field are depicted in Supplementary Fig. 12.535

For the no-slip boundary conditions that we have chosen here, the normal stress grows536

quadratically for small arguments qR� 1 and linearly for large arguments qR� 1.537
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Replacing the thin bendable collagen cage with an extended homogeneous extracellu-538

lar matrix, the mechanical driving stress [cf. right-hand side of the stress-balance equa-539

tion (B26)] on the shell-like organoid branch is given by540

∆pq =

[
τφ
R2

0

− τzq2 −
2µ

R0

(
1 + qR0 Λ(qR0)

)]
uq . (B45)

The first term (Laplace pressure due to circumferential tension) in the square brackets is541

destabilizing and does not depend on the wavelength. The second term (Laplace pressure542

due to axial tension) in the square brackets stabilizes short wavelengths. The third term in543

the square brackets (elastic stress) has a contribution that stabilizes long wavelengths (q = 0)544

and a contribution that stabilizes short wavelengths (q > 0). In particular, for the no-slip545

boundary conditions that we have chosen here, the function Λ(x) grows monotonically as546

its argument x increases, cf. Supplementary Fig. 12b, with xΛ(x) ∝ x2 for small arguments.547

We conclude that a pearling-like instability at low wavelengths (i.e. for q → 0) will only548

occur if the Laplace pressure due to circumferential tension can overcome the stabilizing549

effects conferred by the extracellular matrix:550

τφ > 2µR0 (B46)

For a shear modulus of µ ≈ 7 Pa this yields a critical surface tension of 0.4 mN m−1, which is551

far below the reference tension of 10 mN m−1 for the surface tension of spheroids consisting of552

MCF-10A (human mammary epithelial) cells [25]. Thus, we conclude that the homogeneous553

extracellular matrix alone is unlikely to stabilize a tubular geometry in our experiments,554

which further emphasizes the mechanical role of the collagen cage.555
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