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Here, we present methodological details to accompany those presented in the main text of Translating 

from egg- to antigen-based indicators for Schistosoma mansoni elimination targets: A Bayesian latent 

class analysis study.  
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Data 
In March 2017, 30 school-aged children aged between six and 14 (270 total) with an even sex 

distribution were recruited at Bugoto Lake View Primary School, Mayuge District, Uganda. In this 

study we focus on 210 of these children that provided sufficient stool samples for Kato-Katz and urine 

for POC-CCAs pre-treatment with praziquantel and albendazole, three-weeks, nine-weeks and six-

months post-treatment. Kato-Katz were independently read by highly trained personnel, POC-CCAs 

had two readers per test, one of which was consistent throughout all tests.  Of these children, 55 were 

also part of a separate cohort study conducted in parallel, where their infection status was 

parasitologically investigated twice a week for 6-months. Whilst we have Kato-Katz data at the nine-

week post-treatment timepoint for the full cohort including the 55, it is only for these 55 children that 

we also have nine-week POC-CCA data. In short, the sample size for the POC-CCA at nine-weeks 

post-treatment was 55. Not all children 210 were present pre-treatment, three-weeks and six-months 

post-treatment either. However, these missing data do not pose a problem to this analysis because the 

Bayesian framework probabilistically infers missing data. This missing data, however, does not 

contribute to the likelihood (model fitting process). Removal of children with incomplete data does 

not improve the fit of the model, but rather increases uncertainty due to reduced information.  

 

Model details  
We adapted 1 a discrete time latent class model, which was fit using the R (v. 4.0.2) package, Runjags 

2,3.  The mathematical details are as follows.  

 

Infection status 
The model estimates the unobservable infection status for individual at each timepoint (pre-treatment, 

three-weeks, nine-weeks and six-months post-treatment). The status of individual 𝑖 at time 𝑡 is drawn 

from a Bernoulli distribution with the probability 𝑃!  estimated by the model.  

𝑆𝑡𝑎𝑡𝑢𝑠",! = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑃!) 
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Figure S 1. Posterior distributions for the prevalence estimates per timepoint using the G-Score model 

 

Figure S 2. Posterior distributions for the prevalence estimates per timepoint using the POC-CCA+ model 

The status of individual 𝑖 at time 𝑡 is denoted as 

 

𝑆𝑡𝑎𝑡𝑢𝑠",! = 101
𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑	𝑜𝑟	𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑  
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Infection intensity  
We assume that the true infection intensity for individual 𝑖 at time 𝑡 (𝜆",!) for those who are negative 

has to be 0 (top value), whilst the infection intensity when infected is drawn from a Gamma 

distribution with parameters 𝛼	and	𝛽 estimated by the model.  

𝜆",! = ? 0
𝐺𝑎𝑚𝑚𝑎(𝛼! , 𝛽!)

 

 

 
 

 
Figure S 3. Posterior distributions for the shape (alpha) and rate (beta) parameters estimated by the G-Score model (top 
row) and POC-CCA+ model (bottom row). 

 
Data likelihoods 
For the Kato-Katz data, each individual 𝑖 presented a repeat set of stool samples, that produced a 

maximum of six repeated slides, 𝑟 at time 𝑡 giving  

 

𝐾𝑎𝑡𝑜 − 𝐾𝑎𝑡𝑧",!,$ = F
0

𝑁𝐵 H
𝛼%

𝜆",! + 𝛼%
, 𝛼%J
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Again, we assume that someone who is not infected (top value) must have zero eggs. We assume that 

the variation seen between and within samples is generated by a Gamma-Negative Binomial process. 

The shape parameter 𝛼% was estimated by the model.  

 

Figure S 4. Posterior distributions of the shape parameters estimated by the POC-CCA+ (orange) and G-Score (purple) 
models 

The POC-CCA data were modelled to reflect the assumption that the higher the infection intensity 

(i.e., 𝜆",!) the higher the POC-CCA score. We do not make the assumption that the relationship is 

linear but use a logistic function that can take a linear form is this reflects the functional shape of the 

relationship between the unobservable infection intensity and the POC-CCA scores. This approach is 

flexible and makes minimal assumptions regarding the interpretation of the POC-CCA+ Trace score 

or the G2 and G3 scores. The numerator of the logistic function is the maximum value that the POC-

CCA diagnostic can return. We transformed the discrete scores into numeric semi-quantitative 
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integers; 0-4 to represent Negative, Trace, +, ++ and +++ of the POC-CCA+ method, and 0-9 for the 

G1 (negative)-G10 (highest positive score).  

 

For the POC-CCA+ the likelihood took the following form  

 

𝐶𝐶𝐴 +",!= F
𝒩(0, 3.47182)

𝒩 H
4

1 + (𝜆",! − 𝑥&)'(
, 3.47182J 

 

 

Whilst the G-Score likelihood was given by  

 

𝐺 − 𝑆𝑐𝑜𝑟𝑒",! = F
𝒩(0, 1.245443)

𝒩 H
9

1 + (𝜆",! − 𝑥&)'(
, 1.245443J 

 

The logistic growth rate −𝑘 and the sigmoidal intercept 𝑥& were estimated by the model. 

 

Figure S 5. Posterior distributions for the growth (k) and intercept parameters estimated by the POC-CCA+ model (orange) 
and the G-Score model (purple). 

The scores were drawn from a normal distribution to further add noise to account for reader variation. 

This allows for those who are not infected to still be given a score of Trace or G2/G3. The intercept 

𝑥& and growth 𝑘 parameters were estimated by the model.   
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Sensitivity Analysis  
Ideally they would be estimated independently at each timepoint as it is conceivable that the 

relationship between egg and antigen changes with treatment (as indicated by our results, see figure 4 

, main text). We lacked the data to do this, however. Additionally, the precision variables here are 

fixed values calculated from the data, reflecting the distribution of POC-CCA scores across the range 

of infection intensities. Allowing the model to estimate this parameter for the POC-CCA+ data did 

not result in a satisfactory fit as indicated in figure S6, for example by the bimodal posterior 

distribution at three weeks. Attempting to estimate this parameter with the G-Score model framework 

was not possible.  

 

Figure S 6. Posterior distributions per time point for the estimated precision on the POC-CCA scores drawn from a normal 
distribution. The three week posterior distribution is bimodal indicating a poor fit. 

We also reduced the precision (i.e., increased the variance) on the normal draw for the POC-CCA 

scores, such that instead of allowing one standard deviation from the mean from the distribution of 

scores across infection intensity, we allowed for two standard deviations from the mean. The 

precision parameter then took on the value of 0.87 for POC-CCA+ and 0.31 for G-Score. This value 

resulted in an unsuitable likelihood on the G-Score data, such that the model did not run. The POC-
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CCA+ did run, however, using the estimated probability of infection as an example (figure S7) it is 

evident that the  estimates are diffuse and thus the model fit not as precise.  

 

Figure S 7. Predicted probabilities of infection associated with each score when the fixed precision parameter is calculated 
to allow POC-CCA scores that are two standard deviations from the mean. The fit is poor as the estimates are diffuse. 
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Simulation details  
Infection status was drawn from a binomial distribution (0/1) with probability = the 

proportional prevalence. For individuals with Status = 0 (uninfected), true egg counts must be 0, 

assuming 100% specificity. For those with Status =1 (infected) infection intensity was simulated so 

that 1% of all infections were ≥400epg as per the WHO current EPHP threshold target. The 

simulation emulated the model, with infection intensity (𝜆) drawn from a gamma distribution, where 

the shape and rate parameters of the gamma distribution were estimated using R’s optim function, to 

provide the EPHP distribution of infection intensities. The rate parameter was estimated, and the 

shape parameter calculated as )*+,
$+!*

 with the mean value taken from literature.4  Two Kato-Katz 

counts from a single sample were simulated, with each individual’s egg count drawn from a negative 

binomial distribution, with the gamma distributed mean and the over-dispersion parameter randomly 

sampled from the G-Score and POC-CCA+ models described above, for each respective simulation. 

As in the models above, those with Status = 0 were allowed Trace scores or G2/G3 (i.e., false 

positives5). For those with Status =1, the scores were drawn from a truncated normal distribution with 

a logistic function as the mean, where the k and intercept parameters were joint-randomly sampled 

from the model posteriors.   

Our simulations show that in low prevalence settings that have achieved EPHP, using + as the 

POC-CCA+ threshold slightly underestimated prevalence (figure S8 , orange) in keeping with the 

ROC curves. For comparison, and to illustrate the impact of considering Trace as positive according 

to our results, we show the inflated estimated prevalence when using Trace as positive (figure S8 , 

blue). A G3 score consistently over estimated prevalence by about 7.5% (figure S8 , purple).  

   

 

 
 
 
 
 
Figure S 8. Predicted prevalence correlated to true prevalence based on simulations. G-score (purple) uses G3 as the first 
positive score. POC-CCA+ (orange) uses + as the first positive score. POC-CCA+ with Trace as positive is in blue. Kato-
Katz is in grey. The dashed line indicates the diagonal. 
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