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1. Datasets

The spatial layers used to compute geographic access and school catch-
ment areas; schools, road network, land use and digital elevation model. The
schools database consisted of a geocoded listing of schools in Kenya devel-
oped through a nationwide mapping survey in 2009 Mulaku and Nyadimo
(2011). There were, 15,439 schools in western Kenya with circa 4,000 being
public primary schools (PPS). After removing duplicates and erroneous en-
tries, 2,137 schools were within the study region. After including, other PPS
in the region that were part of the 2009 malaria survey Gitonga et al. (2010),
a total of 2170 schools were included in the study (Figure S1.1).
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Figure S1.1: All- 2170- primary public day schools in the study area and with those
included in the study colored red.
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To account for on road movement for the students (walking, cycling, and
motorized transport) we leveraged on previously assembled databases of road
for this region Macharia et al. (2021); Joseph et al. (2020); Macharia et al.
(2017) (Figure S1.2).

Figure S1.2: Road network in western Kenya.
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Land cover layer to represent the travel impedance in spaces between the
roads was obtained from RCMRD Geoportal (http://geoportal.rcmrd.org/)
at 20 metres spatial resolution based on the 2016 Copernicus Sentinel-2 satel-
lite(Figure S1.3).

Figure S1.3: Land use/cover in western Kenya.
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A digital elevation (DEM) was used to derive slope that impedes walking
and bicycling speeds. It was as obtained from RCMRDGeoportal (http://geoportal.rcmrd.org/)
at 30 metres spatial resolution based on based on Shuttle Radar Topographic
Mission (SRTM)(Figure S1.4).

Figure S1.4: Elevation variation in western Kenya.
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2. Geographic Access

Spatial accessibility based on three travel models showing travel time to
the nearest school, Figure S1.5 is the walking model (W ), Figure S1.6 is the
combination of walking and bicycling model (WB) while Figure S1.7 is the
combination of walking and motorised transport(WM )

Figure S1.5: Travel time to the nearest school based on walking colored coded from green
(0 minutes) to red (233 minutes) in western Kenya.
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Figure S1.6: Travel time to the nearest school based on walking/bicycling model colored
coded from green (0 minutes) to red(203 minutes) in western Kenya.
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Figure S1.7: Travel time to the nearest school based on walking/motorized model colored
coded from green (0 minutes) to red(123 minutes) in western Kenya.
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School catchment area

School catchment areas were modelled for all 2170 schools and subset for
84 sampled primary schools in western Kenya.

Figure S1.8: Eighty-four school catchment areas based on walking model of transport (W )
in western Kenya for the sampled schools.
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Figure S1.9: Eighty-four school catchment areas based on walking and bicycling model of
transport(WB) in western Kenya for the sampled schools.
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Figure S1.10: Eighty-four school catchment areas based on walking and motorized model
of transport (WM ) in western Kenya for the sampled schools.
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Explanatory analysis

Enhanced vegetation index(EVI) was excluded from the analysis, since
this found to be highly correlated (Figure S1.11) with both the precipitation
and the temperature. The three remaining covariates, temperature, precipi-
tation and night time lights(NTL) (Figure S1.11) showed an approximately
linear relationship with the empirical logit and were were used as predictors
the geostatistical models.
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Mesh

Figure S1.12 shows the mesh used to define the piece-wise linear approx-
imation of the Gaussian field S(x)

Constrained refined Delaunay triangulation

Figure S1.12: Mesh generated using the inla.mesh.2d function from the INLA R package
(Krainski et al., 2018).
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