Supplementary material 2: Combining school-catchment area models with geostatistical models for analysing school survey data from low-resource settings: inferential benefits and limitations

Peter M. Macharia^{a,b,*}, Nicolas Ray^{c,d}, Caroline W. Gitonga^b, Robert W. Snow^{b,e}, Emanuele Giorgi^a

^aCentre for Health Informatics, Computing, and Statistics, Lancaster Medical School, Lancaster University, Lancaster, LA1 4YW, UK

^bPopulation Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, PO, Box 43640, Nairobi, Kenya

^cGeoHealth group, Institute of Global Health, University of Geneva, Geneva, Switzerland

^dInstitute for Environmental Sciences, University of Geneva, Geneva, Switzerland ^eCentre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7LG, UK

Preprint submitted to Spatial Statistics

^{*}Corresponding author

Email address: pmacharia@kemri-wellcome.org (Peter M. Macharia)

1. Datasets

Figure S2.1: The spatial layers used to compute geographic access and school catchment areas: school locations and factors that affect travel

2. Travel time and school Catchment areas (SCAs)

SCA and household locations

Figure S2.3: Spatial overlay of modelled SCAs (model W- walking only scenario) and household location of school-going children.

Figure S2.5: Spatial overlay of modelled SCAs (model WM-walking/motorized scenario) and household location of school-going children.

(I IBULC NZ.	o), WIUUUU WID (AT AA TONOTAT NITO (1.70 OTNOTAT AT	T (TIBUTE NEW)		
Model	HHs within	Range of HHs within	% of SCAs with	% of SCAs with	% of SCAs with
	SCAs (%)	SCAs per school $(\%)$	$\geq 50\% \text{ HHs}$	$\geq 70\%$ HHs	$\geq 90\%$ HHs
M	74.4	27.7%-99.1~%	89.1%	67.4%	19.6%
WB	72.8	29.8% - 99.1%	82.1%	63.0%	17.4%
WM	68.8	22.8% - 100%	76.1%	56.5%	21.7%

Table S2.1: Proportion of children within modelled SCAs from the overlay SCAs and geolocated household locations for Model W (Figure S2.3), Model WB (Figure S2.4) and Model WM (Figure S2.5)

\mathbf{Mesh}

Figure S2.6 shows the mesh used to define the piece-wise linear approximation of the Gaussian field S(x)

Figure S2.6: Mesh generated using the inla.mesh.2d function from the INLA R package (Krainski et al., 2018).

References

Krainski, E., Gómez Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F., Rue, H., 2018. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. doi:10. 1201/9780429031892.

Constrained refined Delaunay triangulation