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Performance in groups 

 

 

Table S1. The performance variables in groups. The values are reported as mean (±SD). 

 

 

 

 

 

Figure S1. Participants reward belief distributions across age groups. Participants reward belief reports 

were well distributed across the scale, showing a similar pattern of responses across age groups, expect 

for children having higher frequency of reporting reward belief of 6 and 7.  

 

Children 

(8-9 years) 

Early 

adolescents 

(12-13 years) 

Late 

adolescents 

(17-18 years) 

Proportion of successful trials 

(%) 76.30 (±10.524) 76.12 (±10.146) 73.09 (±8.462) 

Total points won 130.89 

(±17.328) 
129.74 (±16.810) 

124.71 

(±14.438) 

Effort exerted out of max effort 

(%) 81.21 (±4.986) 80.58 (±4.800) 78.97 (±3.454) 

Exerted effort variability 
13.75 (±4.055) 12.37 (±4.451) 11.80 (±4.101) 



Optimism bias 

 

To investigate whether optimism bias changed over the course of the task (as a indirect 

approximation of learning), we examined optimism bias for each block separately. We found 

a marginally significant increase in optimism bias from block 1 to block 2 in children (paired 

t-test: t(26) = -1.96, p = 0.061, d = 0.377). We did not observe this effect neither in early 

adolescents (t(37) = 0.24, p = 0.813, d = 0.039), nor in late adolescents (t(33) = -0.32, p = 

0.751, d = 0.055). This is in line with our main finding that over the course of the task, 

children become more optimistic because they learn less from negative outcomes, and that 

this effect is much less reduced in adolescents. 

 

 
 
Figure S2. Participants’ optimism bias over blocks for each age group. The optimism bias is 

calculated as the the difference between the individual’s average reward belief in a block and the 

average actual reward received in that block. Early and late adolescents had a stable optimism bias 

over the two blocks, whereas in children the optimism bias increased (marginally) in the second 

block.  



Computational Modelling 

 

To capture reward learning in this task, we compared different variants of a Rescorla-Wagner 

model (Rescorla & Wagner, 1972) fitted to subjects’ reward ratings, similar to previous 

modelling approaches capturing an optimism (learning) bias (Lefebvre, Lebreton, Meyniel, 

Bourgeois-Gironde, & Palminteri, 2017). 

 

We assumed that subjects started with a prior belief μ0 about how big a reward will be, which 

is then adjusted based on the task feedback. Model selection (Fig. S3) revealed that models that 

had a free μ0 parameter outperformed models that kept it as a fixed parameter (set at 50; free 

parameter range: 0-100). This parameter can be seen as a static optimism bias, reflecting 

subjects’ prior expectation about how good a reward will be. 

 

Subjects’ belief about the reward they would get was then updated throughout the game using 

a prediction error δ, which was the difference between the reward belief μ𝑡 and the reward they 

received at this trial 𝑟𝑡 

δ𝑡 = rt − μt 

 

This predictions error was then used to update the belief using one or multiple learning rates α 

(range: 0-1) for both positive and negative prediction errors 

μ𝑡+1 = μ𝑡 + αδ𝑡 

 

In the simpler (worse fitting) model family, a single learning rate was used for all outcomes. 

Alternatively, and in line with previous modelling of optimism bias (Lefebvre et al., 2017) we 

used two separate learning rates, one for positive (α+) and one for negative prediction errors 



(α−). A higher learning rate for positive prediction errors was assumed to be an indication of 

optimistic learning. 

μ𝑡+1 = μ𝑡 + α+δ𝑡        𝑖𝑓  δ > 0 

μ𝑡+1 = μ𝑡 + α−δ𝑡        𝑖𝑓  δ < 0 

 

As the subjects used a continuous rating scale, rather than a simple (binary) choice, we assumed 

that the belief was transformed into a rating (i.e. choice) using a Gaussian with mean μ𝑡 and 

standard deviation 10 (fixed parameter). 

π𝑟𝑎𝑡𝑖𝑛𝑔 = 𝒩(μ𝑡, 10) 

 

We additionally considered noise in the reporting using a ‘noise floor’ parameter ξ, which 

increased the likelihood to report the rating anywhere along the rating scale (range: 0-.1). 

𝜋𝑟𝑎𝑡𝑖𝑛𝑔 = 𝒩(𝜇𝑡, 10) + ξ 

 

The π𝑟𝑎𝑡𝑖𝑛𝑔 was normalised so that the policy summed up to 1 

 

π𝑟𝑎𝑡𝑖𝑛𝑔 =
π𝑟𝑎𝑡𝑖𝑛𝑔

∑ π𝑟𝑎𝑡𝑖𝑛𝑔1−100
 

 

 

Model fitting 

 

We fitted six different models to each subject’s behaviour using maximum likelihood 

estimation, estimating the parameters using a genetic algorithm as implemented in Matlab 

(R2020a). Model selection was performed using summed BIC (Schwarz, 1978) across all 

subjects. For illustration, BIC was also presented for each group separately, revealing similar 

results in each group (cf Figure S3). 

 

 



Model parameter recovery analysis 

To assess how precise the model parameters of interest were, we ran a parameter recovery 

analysis for the winning model. We simulated 500 agents with parameter values randomly 

drawn from the respective parameter ranges, and then fit the simulated task behaviour in the 

same way as the real participants (cf Model fitting). To assess the fit between simulated and 

fitted parameters, we used Pearson correlations. 

 

We found that the three parameters of interest all had good to excellent parameter 

recoverability: positive learning rate 𝑟𝛼+ = .87, negative learning rate 𝑟𝛼− = .86, prior reward 

belief 𝑟𝜇0
= .59 (all ps < 0.001). Only the noise floor parameter ξ performed poorly (r = -.04) 

at the given large value range that we used for model fitting to avoid boundary problems (see 

Fig S4 for empirical values that have a much lower than range). Given that models with this 

noise still improve model fits (Fig. S3), this suggest that adding some noise improves the 

model, but that the degree of noise is of limited interpretability. In sum this means that our 

parameters-of-interest are well recoverable, but that the noise floor parameter ξ should not be 

interpreted. 

 

Model recovery analysis 

We were further interested how well that the two best models (1α vs 2α model, both with μ0 

and ξ) were recoverable. We thus simulated 500 agents for each of the models (randomly 

drawing parameter values as described in parameter recovery analysis), and then fitted them 

with both models. Recoverability analysis was then done based on the BIC values, in 

accordance with the model selection procedure. 

 



We found that 86% if the agents simulated with the 1α model were correctly attributed to the 

correct generative model (i.e. had the lowest BIC for the 1α model), and that also 82% of the 

2α agents were correctly attributed. This means that these models were well-dissociable in our 

task. 

 

 

 

Figure S3. Model selection results. We used summed BIC to compare between six competing models 

(across all subjects, top left). Model comparison revealed that the best fitting model was the one that 

had separate learning rates (2α) for positive and negative prediction errors. In addition, this model had 

a free parameter for the prior reward expectation (μ0) and a noise response parameter (ξ). 

 

 

 

  



 
Figure S4. The noise parameter (ξ) of the best fitting model is similar in all groups. yo, year-olds. 

 

 

 

  



 

Effort analysis 

 

No group differences in bias about effort threshold  

To assess whether there was a bias in how the effort threshold was perceived, we 

compared the average effort belief to the average threshold. Importantly, participants did not 

have any explicit feedback on the threshold but rather had to learn from trial and error.  We 

found that in all groups the average effort belief was higher than the threshold (children: t(26) 

= 2.72, p = 0.011, early adolescents: t(37) = 2.62, p = 0.013, late adolescents: t(33) = 3.11, p = 

0.003). However, as participants did not receive any explicit information about the threshold, 

it is evident that they assumed the threshold to be higher as they had to surpass it to succeed. 

We did not find any differences between age groups how the effort belief was perceived 

(F(2,96) = 0.27, p = 0.767, η2 = 0.006) or in the SD of the submitted beliefs (F(2,96) = 1.84, p 

= 0.164, η2 = 0.037).  

Next, we assessed whether effort belief or exerted effort were associated with reward 

belief. We found a weak correlation between the exerted effort and reward belief weak (M = 

0.21, SD= 0.211, t(98) = 9.97, p < 0.001), as well as a weak correlation between effort belief 

and reward belief (M = 0.35, SD = 0.266, t(98) = 13.23, p < 0.001). 

 

Effort belief construction in all groups 

To assess how effort belief was constructed explicitly, we performed a multiple 

regression analysis that predicted effort belief on every trial. We found that previous effort (Fig 

S5B; M = 0.10, SD = 0.202, t(98) = 5.04, p < 0.001), previous failure (M = 0.37, SD = 0.252, 

t(98) = 14.71, p < 0.001), previous reward (M = 0.14, SD = 0.193, t(98) = 7.14, p < 0.001) and 

previous effort belief (M = 0.31, SD = 0.248, t(98) = 12.31, p < 0.01) all contributed to 



estimating effort belief on current trial.  The previous effort and failure regressors highlight 

that participants took their own physical effort exertion, as well as whether they exerted too 

little effort and failed, into account to compute their beliefs about the threshold. Furthermore, 

they used previous reward information to compute their effort belief. This can be considered 

as a ‘bleed-in’ effect as the reward and effort are independent, thus participants should not use 

reward feedback to construct their explicit beliefs about effort. Lastly, participants took their 

own previous effort belief into account, suggesting that their belief construction was not 

random, but was built on their previous beliefs. 

 

Effort belief construction develops over childhood 

We found that there were age differences in how previous effort was included in effort 

belief (Fig S5B; F(2,96) = 5.82, p = 0.004, η2 = 0.108), driven by difference between children 

and adolescents (children vs early adolescents: t(63) = -2.71, p = 0.009, d = 0.674 ; children vs 

late adolescents: t(59) = -3.14, p = 0.003 d = 0.801; early vs late adolescents: t(70) = 0.60, p = 

0.552, d = 0.140). In addition, there were age differences how the previous failure affected the 

effort belief (F(2,96) = 7.29, p = 0.001, η2 = 0.132). Children updated their effort belief less 

after a failure compared to adolescents (children vs early adolescents: t(63) = -2.77, p = 0.007 

d = 0.708 ; children vs late adolescents: t(59) = -4.06, p < 0.001, d = 1.039; early vs late 

adolescents: t(70) = 0.83, p = 0.412, d = 0.196). This shows that both adolescent groups used 

the information from their previous actions more to update beliefs, thus learning more than 

children. Additionally, all the groups took previous reward into account similarly (F(2,96) = 

0.18, p = 0.839, η2 = 0.004). They also used their own effort belief from previous trial to 

estimate their current belief similarly (F(2,96) = 1.14, p = 0.323, η2 = 0.023), showing that all 

groups incorporated their own beliefs to construct effort beliefs on current trial. 



 

Effort learning for all groups 

To assess effort learning, we performed a multiple regression analysis that predicted 

how much physical effort was exerted on every trial with button presses. Replicating our 

previous results (Hauser, Eldar, & Dolan, 2017), we found that there was a significant effect 

of previous effort (Fig S5A, t(98) = 8.82, p < 0.001), failure (t(98) = 10.22, p < 0.001) and 

reward (t(98) = 7.05, p < 0.001). The effect of previous effort indicates that participants did 

not exert effort randomly but took into account their previous action. The previous failure effect 

implies that participants exerted effort according to their previous failure and learned from it. 

Subsequent analysis showed that participants compensated their failure by increasing effort 

after failure (M =14.59, SD = 6.938, t(98) = 20.71, p < 0.001) and decreasing it after a 

successful trial (M = -4.66, SD = 3.002, t(98) = -15.44, p < 0.001) – a clear sign that they 

dynamically adapted the effort based on previous performance (Hauser et al., 2017). The 

weight of the previous reward on the effort exerted highlights the motivation to apply more 

effort on high-value trials. 

 

Effort learning develops over childhood and adolescents 

We found that there were age effects on learning how much effort to exert.  Firstly, 

there were age effect on how participants approximated their previous effort exertion to execute 

effort (Fig S5A; F(2,96) = 7.34, p = 0.001, η2 = 0.133). Children did not use the information 

about how much effort they used in the previous trial as much as early adolescents (t(63) = -

2.23, p = 0.029, d = 0.556) and late adolescents (t(59) = -3.87, p < 0.001, d = 0.982). There 

was also a trend of early adolescents taking previous effort less into account compared to late 

adolescents (t(70) = 1.74, p = 0.087, d = 0.411). Secondly, there were age effects on how the 



groups exerted effort after a failure (F(2,96) = 5.06, p = 0.008, η2 = 0.095). Children had similar 

sensitivity to failure compared to early adolescents (t(63) = -1.49, p = 0.143, d = 0.375), but 

were less sensitive to failure compared to late adolescents t(59) = -3.00, p = 0.004, d = 0.785). 

There was marginal difference in failure sensitivity between early and late adolescents (t(70) 

= 1.91, p = 0.060, d = 0.449). Both of these effects together show that the learning abilities 

develop over time as it is very important to incorporate information about one’s own behaviour 

(this case their exerted effort) and the environment’s feedback (this case failure) for a good 

learning strategy. Previous reward affected the exerted effort similarly between all ages 

(F(2,96) = 0.87, p = 0.421, η2 = 0.018), showing that all groups were more motivated by higher 

rewards, but did not use this information differently to exert effort. 

 

 
 

Figure S5. Effort learning behaviour (A) Analysis shows that the exerted effort was predicted by factors 

of the previous effort, failure to surpass the threshold on the previous trial, and the reward magnitude 

on previous trial, demonstrating that subjects successfully learned about reward and effort requirements. 

Additionally, the factor of previous effort and failure to surpass the threshold change over development. 

The factor of previous effort is lower in children compared to the adolescent groups, and the previous 

failure factor is lower in children compared to late adolescents (16-17 yo). (B) Analysis split by groups 

showing that effort belief was predicted by factors of previous effort, previous failure, reward and 

participant’s own previous reported effort belief. Previous effort and previous failure factors are lower 

in predicting effort belief in children (8-9 year-old) compared to adolescents (12-13 yo and 16-17 yo). 

*** p<.001; ** p<.01; * p<.05; yo year-olds. 
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