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mutant cell proliferation. This finding might explain the compet-

itive advantage of mutant HSCs over WT HSCs in Jak2V617F

mice (Dunbar et al., 2017). Thus, mutant, Mk-primed HSCs and

elevated IFN signaling are of importance in onset and progres-

sion of JAK2V617F+ ET. We propose a model in which

JAK2V617F mutation occurs in Mk-primed HSCs, leading to

expansion of this population and hypersensitivity to IFN

signaling, which promotes Mk lineage differentiation. An alterna-

tive mechanism cannot be ruled out where the bone marrow

microenvironment (e.g., enhanced IFN signaling) is altered to

preferentially promote Mk differentiation with subsequent acqui-

sition of JAK2V617F in Mk-primed HSCs, which further acceler-

ates Mk production (Figure S4G).

The association between stem cell heterogeneity and thera-

peutic effects in ET was studied further here. We found that

the JAK2V617F+ Mk-primed HSC compartment was reduced

in individuals with ET after treatment. Prior studies in MPN

mice (predominantly manifesting PV phenotypes) have demon-

strated that IFNa can directly target Jak2V617F+ HSCs through

pro-apoptosis or proliferation-associated exhaustion (Austin

et al., 2020; Hasan et al., 2013; Mullally et al., 2013). We

observed this pro-apoptotic effect in HET mutant HSCs in indi-

viduals with ET after treatment, whereas cell cycling was

enhanced only moderately enhanced. Interestingly, HOMO cells

seemed to re-enter quiescence through restoration of the TSC-

mTOR signaling pathway or TP53 activation, implying that these

mutant, quiescent cells are preserved and serve as residual dis-

ease-initiating stem cells. Molecular remission can be achieved

by IFNa treatment (Hasselbalch and Holmström, 2019); howev-

er, rapid molecular relapse occurs in some individuals after

IFNa discontinuation (Ishii et al., 2007). Our findings imply that re-

lapsing cells might originate from quiescent mutant HSCs in in-

dividuals with T-ET. Thus, our results suggest that transient,

low-dose IFN stimulation promotes proliferation and differentia-

tion of JAK2V617F+ Mk-primed HSCs during disease onset,

whereas, upon treatment (including a chronic, therapeutic

dose of IFNa), the mutant Mk-primed HSC population was

reduced by promoting apoptosis or quiescence of mutant cells.

Because HSC heterogeneity underlies the disparate pheno-

types of MPNs harboring the same initiating mutation, malignant

transformation of neoplasms might involve a specific subset of

stem cells within a heterogeneous stem cell population. This

concept might inform pathogenicmechanisms and potential ther-

apeutic strategies for various cancer stem cell heterogeneities.

Limitations of Study
This study is limited by the small number of samples collected

and the complexity of the therapies received by these individ-

uals, which remains to be investigated further. Additionally, the

cellular and molecular basis of the changes in HSCs of individ-

uals with PV upon treatment remains to be established.
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