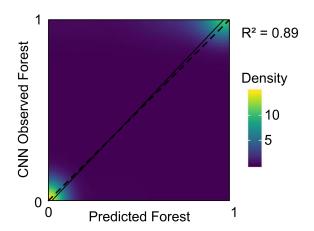

Supplementary information


Climate legacies drive the distribution and future restoration potential of dryland forests

Emilio Guirado*, Manuel Delgado-Baquerizo, Jaime Martínez-Valderrama, Siham Tabik, Domingo Alcaraz-Segura, Fernando T. Maestre

^{*}Corresponding author: emilio.guirado@ua.es

Supplementary Fig. 1: Distribution of the Convolutional Neural Network-classified forest and non-forest plots used in the variation partitioning and random forest analyses.

Supplementary Fig. 2: Density plot of observed (using Convolutional Neural Network, CNN) and predicted (using random forest) forest areas. The 1:1 and regression lines are shown in dashed and solid black, respectively (slope = 1.04; $R^2 = 0.89$), showing that the random forest model is not biased.

Forest class

Networks across different aridity levels. A true positive is an outcome in which the model correctly predicts the forest class. Similarly, a true negative is an outcome where the model correctly predicts the non-forest class. A false positive is an outcome where the model incorrectly predicts the non-forest class (it predicts a forest when it should be a non-forested area). A false negative is an outcome where the model incorrectly predicts

the forest class (it predicts a non-forest when it should be a forest). Map data: Google, Maxar Technologies.

Supplementary Table 1. Climatic, soil and other environmental variables used in this study, with their abbreviations and sources (references are found in the main text).

Variable	Data Source	Abbreviation
Annual Mean Temperature	Worldclim ²³	AMT
Mean Diurnal Range (Mean of monthly (max temp	Worldclim ²³	MDRM
- min temp))		
Isothermality (MDRM/TARBIO) (×100)	Worldclim ²³	IBIO
Temperature Seasonality (SD ×100)	Worldclim ²³	TS
Max Temperature of Warmest Month	Worldclim ²³	MTWM
Min Temperature of Coldest Month	Worldclim ²³	MTCM
Temperature Annual Range (MTWM-MTCM)	Worldclim ²³	TARBIO
Mean Temperature of Wettest Quarter	Worldclim ²³	MTWeQ
Mean Temperature of Driest Quarter	Worldclim ²³	MTDQ
Mean Temperature of Warmest Quarter	Worldclim ²³	MTWaQ
Mean Temperature of Coldest Quarter	Worldclim ²³	MTCQ
Annual Precipitation	Worldclim ²³	AP
Precipitation of Wettest Month	Worldclim ²³	PWM
Precipitation of Driest Month	Worldclim ²³	PDM
Precipitation Seasonality (CV)	Worldclim ²³	PSCV
Precipitation of Wettest Quarter	Worldclim ²³	PWeQ
Precipitation of Driest Quarter	Worldclim ²³	PDQ
Precipitation of Warmest Quarter	Worldclim ²³	PWaQ
Precipitation of Coldest Quarter	Worldclim ²³	PCQ
Albedo	MODIS/Terra ⁴⁶	Albedo
Evapotranspiration	MODIS/Terra ⁴⁸	ET
Soil Slope	$ALOS^{47}$	Slope
Soil Moisture	TerraClimate ⁴⁴	Soil moisture
Elevation in metres above sea level	$ALOS^{47}$	Elevation
PH in water soil	Soilgrids ²⁵	PH
Soil Organic Carbon	Soilgrids ²⁵	SOC
Soil Texture	Soilgrids ²⁵	Sands
Soil Nitrogen	Soilgrids ²⁵	Nit
Piezometric level balance of the aquifer (cumulative groundwater level height over time period)	GRACE ⁴⁹	Water Thickness

Supplementary Table 2. Indicators used to assess the accuracy of the forest/non-forest classification. True positives (TP) correspond to images that were correctly classified by the models, false positives (FP) correspond to images that were classified by the models in one class but were from another class, and false negatives (FN) correspond to images of the targeted class that were classified by the models into another class. The Precision metric measures the quality of the machine learning model in classification tasks. The Recall metric indicates how much the machine learning model can identify. The F1-measure value is an equal balance between Precision and Recall, measuring the quality and exhaustiveness of the model in classifying forest/non-forest areas (Precision, Recall, and F1-measure close to 1 is better).

						Forest			Non-Fores	t	Total
Regions	TP	FP	TN	FN	Precision	Recall	F1	Precision	Recall	F1	F1 mean
Global	234	32	344	28	0.88	0.89	0.89	0.92	0.91	0.92	0.90
1-NothAmerica	26	5	25	0	0.84	1.00	0.91	1.00	0.83	0.91	0.91
2-EastSouthAmerica	16	2	25	4	0.89	0.80	0.84	0.86	0.93	0.89	0.87
3-Europe	15	2	26	1	0.88	0.94	0.91	0.96	0.93	0.95	0.93
4-NorthernAfrica	14	0	37	5	1.00	0.74	0.85	0.88	1.00	0.94	0.89
5-Sahel	19	2	22	4	0.90	0.83	0.86	0.85	0.92	0.88	0.87
6-HornAfrica	27	6	22	2	0.82	0.93	0.87	0.92	0.79	0.85	0.86
7-MiddleEast	12	1	35	1	0.92	0.92	0.92	0.97	0.97	0.97	0.95
8-CentralAsia	20	0	37	1	1.00	0.95	0.98	0.97	1.00	0.99	0.98
9-Australia	22	2	21	1	0.92	0.96	0.94	0.95	0.91	0.93	0.93
10-SouthernAfrica	27	6	22	1	0.82	0.96	0.89	0.96	0.79	0.86	0.87
11-WestSouthAmerica	18	2	34	4	0.90	0.82	0.86	0.89	0.94	0.92	0.89
12-SouthwestAsia	18	4	38	4	0.82	0.82	0.82	0.90	0.90	0.90	0.86
Drylands											
Hyper-arid	3	2	41	1	NA	NA	NA	0.98	0.95	0.96	0.96
Arid	63	6	83	8	0.91	0.89	0.90	0.91	0.93	0.92	0.91
Semi-arid	79	11	108	10	0.88	0.89	0.88	0.92	0.91	0.91	0.90
Dry sub-humid	89	13	111	9	0.87	0.91	0.89	0.93	0.90	0.91	0.90

TITO .	~
ree	Cover

< 0.10	1	5	120	1	NA	NA	NA	0.99	0.96	0.98	0.98
10-40%	74	12	98	10	0.86	0.88	0.87	0.91	0.89	0.90	0.88
41-65%	79	6	66	11	0.93	0.88	0.90	0.86	0.92	0.89	0.89
66-100%	80	9	60	6	0.90	0.93	0.91	0.91	0.87	0.89	0.90

Supplementary Table 3. Summary of the indicators used to assess classification accuracy. True positives correspond to images that were correctly classified by the model, false positives correspond to images that were misclassified by the model, and false negatives correspond to images of the targeted class that were classified by the models into another class. See examples of true/false positives and negatives in Supplementary Fig. 3.

Accuracy indicator	Equation	Interpretation
Precision (or positive	true positives	How many detected forests
predictive value)	true positives + false positives	(or non-forests) are true.
Recall (or sensitivity)	true positives	How many actual Forests (or
	true positives + false negatives	Non-forests) are detected.
F1-measure (or F1-score)	2 * Precision * Recall Precision + Recall	Index that evaluates the
		balance between Precision
		and Recall.

Supplementary Table 4. Importance of variables predicting the current forest distribution in global drylands from random forest permutation analysis. Current Climate (CC), mid-Holocene (MH). %IncMSE indicates the increase of the Mean Squared Error when a given variable is randomly permuted and p-value (for one-sided testing).

Variable	%IncMSE	p-value
Albedo	41.42877	0.01
РН	36.91288	0.01
Latitude	25.61112	0.01
Water Thickness	21.82914	0.01
Elevation	21.71287	0.01
PWaQ (CC)	19.8868	0.01
Slope	19.31883	0.01
Soil Moisture	18.85622	0.01
PDQ (MH)	18.48542	0.01
PCQ (MH)	18.33577	0.01
Longitude	17.9886	0.01
MDRM (CC)	17.78976	0.01
MDRM (MH)	17.782	0.01
PWaQ (MH)	16.29423	0.01
Sand	15.81528	0.01
MTDQ (CC)	15.73885	0.01
PCQ (CC)	15.66399	0.01
PDQ (CC)	15.14815	0.01
Evapotranspiration	14.875	0.01
Soil Organic Carbon	14.76194	0.01
MTWeQ (MH)	14.30748	0.01
MTCM (MH)	14.1081	0.01
MTWM (CC)	13.7493	0.01
PSCV (CC)	13.29451	0.01
PDM (MH)	13.25064	0.01

TARBIO (CC)	13.19653	0.01
MTWaQ (CC)	13.1097	0.01
MTCQ (MH)	12.98462	0.01
MTCM (CC)	12.9202	0.01
AP (CC)	12.8788	0.01
MTWeQ (CC)	12.48877	0.01
MTDQ (MH)	12.15014	0.01
MTWM (MH)	12.09465	0.01
IBIO (MH)	12.09444	0.01
IBIO (CC)	11.85019	0.01
Nitrogen in soil	11.72474	0.01
AP (MH)	11.56379	0.01
TS (MH)	10.99323	0.01
PSCV (MH)	10.89148	0.01
MTWaQ (MH)	10.79875	0.01
MTCQ (CC)	10.73665	0.01
PDM (CC)	10.71321	0.01
AMT (CC)	10.65666	0.01
QWeQ (MH)	10.63615	0.01
PWM (MH)	10.53345	0.01
TARBIO (MH)	10.52528	0.01
PWeQ (CC)	10.23841	0.01
TS (CC)	9.3317	0.01
PWM (CC)	8.66222	0.01
AMT (MH)	7.801763	0.01

Supplementary Data 1. Dataset for train Convolutional Neural Networks.

Supplementary Data 1 is available online as a comma separated values file under the Figshare repository. https://doi.org/10.6084/m9.figshare.13635212

Supplementary Data 2. Dataset of 16,739 plots (0.5 ha) location and classification.

Supplementary Data 2 is available online as a comma separated values file under the Figshare repository. https://doi.org/10.6084/m9.figshare.13635212