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Dear Professor Oliveira-Maia, 
 
Thank you once again for your manuscript, entitled "Explicit knowledge of task structure is the 
primary determinant of human model-based action", and for your patience during the peer review 
process. 
 
Your Article has now been evaluated by 3 referees. You will see from their comments copied below 
that, although they find your work of potential interest, they have raised quite substantial concerns. In 
light of these comments, we cannot accept the manuscript for publication, but would be interested in 
considering a revised version if you are willing and able to fully address reviewer and editorial 
concerns. 
 
We hope you will find the referees' comments useful as you decide how to proceed. If you wish to 
submit a substantially revised manuscript, please bear in mind that we will be reluctant to approach 
the referees again in the absence of major revisions. We are committed to providing a fair and 
constructive peer-review process. Do not hesitate to contact us if there are specific requests from the 
reviewers that you believe are technically impossible or unlikely to yield a meaningful outcome. 
 
The chief editorial concern is the degree to which the data and results support your conclusions, an 
aspect that all referees call into question, voicing concerns about the task, the choice of which parts of 
the task that were analyzed, the appropriateness of the comparisons, and the lack of important 
support analyses. We would only be able to consider a revision of your work, if these points were 
addressed in full. This will require not only further analyses, but also collection of additional empirical 
data. 
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Second, the reviewers highlight in a number of instances that previous literature is not sufficiently well 
incorporated, neither in the description of the motivation for and conclusions of the work, nor in the 
way in which it should inform the analyses. 
 
We appreciate that addressing these issues, in particular in light of the requirement for further 
empirical support, is a substantive task. We would therefore understand it if you chose to seek 
publication elsewhere. In that case, please do inform us of your decision. 
 
Finally, your revised manuscript must comply fully with our editorial policies and formatting 
requirements. Failure to do so will result in your manuscript being returned to you, which will delay its 
consideration. To assist you in this process, I have attached a checklist that lists all of our 
requirements. I have also attached a template manuscript file that exemplifies our policies and 
formatting requirements. If you have any questions about any of our policies or formatting, please 
don't hesitate to contact me. 
 
If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. We 
understand that the COVID-19 pandemic is causing significant disruptions which may prevent you 
from carrying out the additional work required for resubmission of your manuscript within this 
timeframe. If you are unable to submit your revised manuscript within 6 months, please let us know. 
We will be happy to extend the submission date to enable you to complete your work on the revision. 
 
With your revision, please: 
 
• Include a “Response to the editors and reviewers” document detailing, point-by-point, how you 
addressed each editor and referee comment. If no action was taken to address a point, you must 
provide a compelling argument. This response will be used by the editors to evaluate your revision 
and sent back to the reviewers along with the revised manuscript. 
 
• Highlight all changes made to your manuscript or provide us with a version that tracks changes. 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
Thank you for the opportunity to review your work. Please do not hesitate to contact me if you have 
any questions or would like to discuss the required revisions further. 
 
Sincerely, 
 
Marike Schiffer 
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Marike Schiffer, PhD 
Senior Editor 
Nature Human Behaviour 
 
 
Reviewer expertise: 
 
Reviewer #1: computational cognitive neuroscience, RL, decision-making 
 
Reviewer #2: computational cognitive neuroscience, RL, decision-making 
 
Reviewer #3: computational cognitive neuroscience, RL, decision-making 
 
 
REVIEWER COMMENTS: 
 
Reviewer #1: 
Remarks to the Author: 
The study by Castro-Rodrigues, Akam et al. looks at the contribution of model-based and model-free 
control to action selection in a simplified version of the classic ‘two-step’ task. In particular, they 
examine whether subjects’ behaviour is initially model-based or model-free when subjects receive 
minimal instruction on the structure of the task. This is potentially of interest because most previous 
studies have given explicit instruction about the structure of the task, and a recent report from Todd 
Hare’s lab has found that when these instructions are sufficiently clear then humans tend to be 
exclusively model-based. 
 
They find that most subjects show behaviour that is initially model-free, not model-based. This 
behaviour persists over several days of repeated exposure to the task, even though subjects show 
implicit measures of learning the task structure. When subjects are explicitly instructed about the 
structure of the task, their behaviour becomes predominantly model-based. Their two central 
conclusions from this are: (i) explicit task structural knowledge determines human use of model-based 
RL, and (ii) this is most readily acquired from instruction rather than experience. 
 
In addition to this, the authors explore variation of these behaviours between patients with OCD and 
other disorders. While there are some differences in the degree to which OCD patients use model-
based control, in that uninstructed behaviour is even more biased towards model-free behaviour in 
these patients, the overall pattern of behaviour is similar to healthy controls (in other words, the 
patients become more model-based with instruction). 
 
The paper overall provides an interesting contribution to the study of this task, and in some ways 
complements the recent study by Silva and Hare, by showing what behaviour is like in the “naïve” 
state of not knowing anything about the task structure. Overall, I thought that the data were well 
analysed/modelled and clearly presented. 
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On the other hand, I was left slightly concerned about whether the two central conlusions mentioned 
above can really be generalised to all learning tasks where the structure of the task is unknown, or 
whether the conclusions are actually far more narrow and only apply to the situation studied here. I 
outline these concerns below. 
 
1. My first concern is that subjects performed this task exceedingly quickly, without much deliberation 
at all (reaction times were typically below 400ms, and subjects completed 1200 trials per session). 
This leads to a concern that participants were optimising speed over accuracy in completing the task – 
in which case, a model-free controller might well be the optimal strategy. The task appears to be 
entirely self-paced (although I couldn’t find details on the duration of reward presentation, duration of 
inter-trial interval, duration of interval between light 1 being extinguished and light 2 appearing, etc. 
in the methods), and subjects may well not be trying to optimise number of rewards but instead trying 
to complete the task reasonably quickly. One possible way to address this would actually be to collect 
a small additional dataset where the number of trials is brought down considerably (e.g. 300 trials per 
session), and the pace of the task is slowed right down (e.g. each light presentation event lasts 1 
second before the subject can respond, and there is a 1 second ITI). In such circumstances, would 
subjects still appear entirely model-free until they were instructed otherwise? My suspicion is that they 
would not. Although I accept that the timings of the task are unchanged in session 4 (the instructed 
session), the instructions are essentially telling participants that they need to pay attention to these 
features when performing the task (and indeed, they become more deliberative on rare transitions in 
these circumstances (figure 4d). 
2. More broadly, it is unclear whether the general conclusion that participants need explicit task 
knowledge in order to use model-based RL is really true – or whether it is only true in a task with a 
very limited state space, like the present task. Model-based control seems far more important in tasks 
with much larger state spaces than the one considered here. So while the present study provides 
interesting insights into this particular task, and provides an interesting comparison with the many 
previous studies that have used this task, it is unclear whether it can be used to draw a broader 
conclusion about the use of model-based versus model-free control per se. 
3. Figure S3 shows that in about 10% of trials, participants make invalid presses at the second stage. 
It would be interesting to know if these invalid presses reflect implicit learning of the transition 
probabilities (i.e. whether they are more common on rare transitions than common triansitions), and if 
so, when this develops across the different sessions (and whether it is at all predictive of the degree of 
model-based control, or the strength of the common/rare reaction time effect in figure 2e). The fact 
that subjects appear to be learning the model structure implicitly makes me feel more strongly that if 
participants were forced to become slower in their responses (comment 1, above), they would likely 
become more model-based. 
4. In a version with changing probabilities, which was run as a pilot study, the authors conclude that 
subjects were not really able to learn anything at all about the task structure. But a comparison of 
supplementary figure S6a and figure S6f suggests that a small subset of subjects could learn the task 
structure, and the proportion of participants didn’t really differ between instructed vs. non-instructed 
versions. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
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In this manuscript, Castro-Rodrigues and colleagues aim to study the effect of extensive task 
instruction (or the lack of it) on one of the most commonly used experimental paradigm related to 
model-based vs. model-free learning in healthy individuals as well as individuals with OCD and other 
mood and anxiety disorders. 
The authors use a simpler version of the two-step learning task by Daw et al 2011, by presenting all 
choice options with four circles at once and removing the second-step choice while keeping the main 
components of the task in terms of state transitions. 
The main finding is that in the absence of explicit instruction about the structure of the task, normal 
and clinical groups predominately adopt a model-free approach while a minority of subjects slowly 
moved toward model-based approach over time. Moreover, they only found a small difference 
between healthy and clinical groups in terms of the learning strategy. 
 
It is refreshing to see that finally there is an investigation into the effect of explicit/extensive task 
instructions in the original version of a task that has caused a lot of controversy about model-based 
vs. model-free learning, and how much of previous results were dependent on such task instructions. I 
think this is an important study which is executed and analysed well, and has important implications 
for studying learning in healthy and clinical populations. The manuscript is clearly written and the 
main claims of the study are supported by the results presented. 
 
 
I mainly have a few clarifying questions about the methods/results, some of the side claims and 
broader implications of the study, and finally some suggestions for additional analyses discussions. 
 
-- I wonder why the authors did not use the original task of Daw et al. I could be wrong but I assume 
because it is almost impossible to perform the original task without explicit/extensive instructions. If 
so, what we have learned from many studies using the previous task? There is an interesting paper by 
Collins and Cockburn (Nat Rev Neuroscience 2020) that is worth discussing. 
 
-- Authors mention that the Changing version of the task was too complex and that is why they 
focused on the Fixed version in most of their analyses (although they provide results based on the 
Changing version as well). 
Considering that blocks would end in Fixed version of the task, could not participants use this signal to 
learn faster? 
For example, did the time to reach criterion become shorter over block of trials? 
 
Also considering this task structure would not make more sense to analyse data across blocks instead 
of arbitrary sessions of 300 trials? 
Authors show one aspect of behaviour over time (in Figure S1) but not the main analyses (e.g. 
probability of stay, RT, etc.). I think including such analyses can be more informative, specially about 
transition from MF to MB. 
 
-- There are a few generally untested ideas about the utility of MB and MF RL, which appears in the 
introduction of this manuscript as well (lines 44-49). 
Is it true that model-based allows behavioural flexibility? If this is the case, MB learning should be 
higher in the changing environment compared to the fixed version case because more flexibility is 
needed in the former; Is there any evidence this true? 
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I addition, authors mention that model-free learning allows rapid action selection but uses information 
less efficiently. Is there any support for this in the current experiment? If anything, in MF learning 
both action values can be updated on each trial whereas in MB learning only value related to the 
observed transition can be updated, making MF faster and more efficiently. 
All these claims can be tested in the current study by comparing learning rates and weight of MB vs, 
MF learning between the Fixed and Changing versions. 
 
-- One of the main points of the current study is that MF learning is more prominent and adopted first. 
Two recent studies using similarly complex task with multidimensional stimuli (and with no explicit 
instructions) have shown that feature-based learning, which resembles model-based is the starting 
learning strategy before transitioning to more accurate object-based learning (Farashahi et al, Nat 
Comm 2017, Cognition 2020). How do authors see the results of these studies reconcile with their 
findings? 
 
-- The main results are quite similar across healthy subjects and individual with OCD and other mood 
disorders (with some minor differences. 
Does this mean that this task (and the original task) are not very useful to study changes in MB vs. MF 
learning in the clinical population, or this dichotomy is not the best way to look at reinforcement 
learning (see Collins and Cockburn, Nat Rev Neuroscience 2020)? 
 
-- Was there any significance difference in the learning rates between fixed version and changing 
version of the task. I ask this because there is an intuition that volatility should increase learning 
rates, and although a study by Behrens et al (Nat Neuroscience 2007) has provided evidence for such 
an intuition Farashahi et al, Nat Hum Behaviour 2019 found no evidence for it. 
 
-- Was there any significance difference in the learning rates between control and clinical groups? 
 
-- In some places, authors rely in 0.05 as the threshold for statistical significance. Considering the 
number of comparisons (e.g., between model parameters) I don't think 0.05 is an appropriate 
threshold. 
 
-- Why there is no comparison between stay probability in different conditions (to prove the 
unbalanced pattern of stay probability as a function of outcome and transition)? 
 
-- It seems to be a general increase in stay probability after debriefing as a side effect. What could be 
a reason for this? 
 
-- Authors focus on participants who did not use MB learning in session 3 (e.g. in Figure 4), but what 
did happen to participants who adopted MB after they received instruction? 
 
 
Minor 
 
-- Figure 4 caption: "in control" 
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-- Figure 5 caption: "in OCD and other mood disorders?" 
 
 
 
Reviewer #3: 
Remarks to the Author: 
In the present manuscript, Castro-Rodrigues and colleagues used a modified version of the ‘two-step 
task’ task to assess contributions of model-based (MB) versus model-free (MF) systems to 
reinforcement learning in humans. Specifically, they tested to what degree humans deploy MB vs MF 
learning, first in the absence of any explicit instruction about the task structure, and then after fully 
explicit debriefing. Both healthy humans and individuals suffering from OCD (and another clinical 
control sample) were tested. The key finding according to the authors is that uninstructed behaviour 
was model-free, with model-based control only emerging over time in a subset of participants. The 
latter was less pronounced in the OCD group. All groups showed stronger model-based behaviour after 
receiving explicit debriefing on underlying task structure. 
 
The manuscript is well written and addresses an important and interesting question, particularly given 
influential earlier reports that increased MF control may be a common feature of compulsive 
behavioural disorders (Voon et al., 2014). However, I am concerned whether the conclusions drawn 
by the authors are justified by the data and the study design. 
 
 
1) One of the main findings is that uninstructed behaviour was dominantly model-free. This is a strong 
statement given the results and the analyses presented. In my view, what can be said with confidence 
is that subjects did not use the *true* model of the task - and this is the only test of 'model-based 
behaviour' the authors are presenting. Subjects could have used a completely different model of the 
task which would not be evident from testing to what degree they used the optimal model. Or indeed 
volunteers could have tried out different models of the task throughout the three sessions. For 
instance, as you present in Fig. S1, quite a proportion of people keep pressing invalid keys for a 
considerable period throughout at least the first session. This implies that it took subjects fairly long to 
understand even the most fundamental task characteristics. The authors write about there being no 
evidence of participants using task structure early on (line 337/338) - but given the above, everything 
else would be highly surprising! 
 
Indeed, da Silva and Hare (which is also cited here) have shown that providing subjects with 
inaccurate models of the task evokes MB behaviour that can appear completely model-free. They also 
describe how behaviour which appears to be a hybrid of model-based and model-free could also be 
explained by a set of different algorithms (see also Collins & Cockburn, 2020). In this context, it would 
be important to see model comparisons that include competing models as well as model simulations 
on the eventual winning model. 
 
 
2) An alternative model employed by participants could be that, rather than assuming a probabilistic, 
but fixed mapping of first-step choices to second-step states, participants might assume this mapping 
to be fully deterministic, but highly volatile. Under such a model, following a rare transition, 
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participants would infer that the underlying latent state has changed and assume that their first-step 
choice would now lead them to the state 2 they just observed. An agent using such a model would 
appear exactly like a completely MF agent. This could also be a potential explanation for the effects 
seen in the OCD group in figure 3 (A and D). It shows that, in OCD, there is an increase in MF control 
(Gmf) from session 1 to session 3 - and likewise an increase in the effect of outcomes. Again, I am not 
convinced that such a pattern is fully indicative of MF behaviour. As discussed above, the increase in 
P(stay) following rewards (irrespective of transition type) could as well be obtained from an inaccurate 
world model. Thus, such a pattern may actually indicate *increased* MB control in OCD! 
 
 
3) I appreciate the motivation to simplify the original two-step task. However, by removing the choice 
alternatives at the second-step state, the task, at least to subjects, may lose its key characteristics as 
a multistep decision problem, but instead be perceived as a one-stage decision problem with 
probabilistic rewards (see my comment above). This might have influenced the perceived importance 
of forming a model and the consideration of the sequential structure of the task. Additionally, as the 
authors also note, the new design greatly reduces working memory load. Relationships between 
working memory capacity and task complexity on one hand and decision strategy on the other have 
been reported previously (Otto et al., 2013; Kim et al., 2019), which may also contribute to the 
apparent absence of MB behaviour. 
 
 
4) Furthermore, it was not clear to me why the authors opted for a fixed spatial-motor mapping 
instead of presenting two distinct visual stimuli with random mapping to top/bottom position on the 
screen. As the authors acknowledge in the discussion, such a fixed mapping of spatial position to 
effector may have further encouraged the use of a habitual/model-free/S-R strategy. 
 
 
5) Modelling: 
a) it would be re-assuring to see whether the fitted parameters can be recovered from simulated data 
generated using the fitted parameters (parameter recovery). 
b) Unlike in Daw 2011, there are separate weights (Gmb, Gmf) for the contributions of the MB and MF 
systems, respectively (rather than Gmf = 1 – Gmb). This seems plausible to me, as there may well be 
participants in which both MB and MF is low (e.g. purely stochastic or perseverative choice), but since 
this is also a - minor - departure from the original analyses, it would be helpful to briefly justify this in 
the text. 
c) In figure 2F, the modelling results do not support the logistic regression - there is no difference in 
Gmf and Gmb between session 1 and 3. 
d) Bias parameter in the model: is my understanding correct that this indicates an action bias for the 
top circle? If so, why is it B = 1 for the high and B = 0 for the low action? Would this not mean that 
the model can have a bias for the upper circle, or no bias at all? Shouldn't B = –1 for the low option to 
also allow for a bias toward the lower option? 
e) Decreases in the eligibility trace parameter lambda correlate, across subjects, with increase in MB 
control - is this naturally arising because as lambda --> 0, there is no more update in the MF system? 
In other words, is it possible, for a given subject, that there are two (probably very similar) local 
optima in the parameter space, at low (high) values for lambda and high (low) values for Gmb? 
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6) In figure 2F, the modelling results indicate no difference between MB and MF contributions to 
behaviour. This is at odds with the logistic regression results presented in 2D (and the p(stay) in 2C) 
which indicates a clear transition X outcome interaction. This again raises the issue to what extent the 
model with the fitted parameters is able to recapitulate the actual pattern in subjects' choice 
behaviour (related to my question above regarding parameter recovery) 
 
 
7) In the analyses investigating the effects of providing the full task structure, it seems that out of the 
57 healthy individuals not showing MB behaviour yet, n = 41 were assigned to the debriefing group 
whereas only n = 16 were not debriefed. Why were they evenly allocated to both groups? Comparing 
the proportion of subjects acquiring MB control appears odd given the highly unbalanced group size? 
 
 
8) Why are people diagnosed with a wide variety of mood and anxiety disorders put together as one 
group? These disorders are characterized by several different symptoms which could also be expected 
to influence MB/MF control of behaviour in different ways. I guess it also does not serve to “investigate 
potential contributions of medication or unspecified mood and anxiety symptoms” for the same 
reasons. Further details on psychotropic medication would be needed to evaluate their comparability 
with respect to medication. 
 
 
9) RT at 2nd stage are faster in common compared to rare transitions, and this effect is present 
already in session 1 (but seems to become larger in session 3). Is this an indication that subjects have 
learnt the state transition probabilities in session 1 already? 
 
 
10) Before debriefing participants, did you question them about what kind of strategy they used? 
While this would probably hard to quantifiy, it might at least give some qualitative hints as to what 
beliefs they had acquired (and what models of state space they applied) during the 900 uninstructed 
trials. 
 
 
11) It is unclear to me why the neutral blocks existed? What was their purpose? 
 
 
Minor: 
1) In the introduction (Line 79 onwards) you write: "However, no studies have explored behaviour on 
multi-step tasks in the absence of information about task structure, in either healthy or clinical 
populations" <-- I can think of one study (Gläscher et al. 2010, Neuron) that used Tolman-style latent 
learning in an abstract multi-step T-maze. I think this is also without explicit instruction and likewise 
looks at the contribution of MF and MB systems over time. 
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2) In the discussion (#341): "When learning from experience, individuals with OCD were impaired in 
their use of model-based control and biased towards a model-free strategy." This makes it sound as if 
this was only true for OCD, but it likewise applies for healthy controls. 
 
 
3) Line 283/285: "Increased use of model-based RL after debriefing was confirmed by model fitting 
(Figure 5d), which showed increased influence of model-based action values on choice" <-- I guess 
this should be Figure 5e? 
 

Author Rebuttal to Initial comments   
 

Reviewer #1 

 

Remarks to the Author: 

The study by Castro-Rodrigues, Akam et al. looks at the contribution of model-based and 
model-free control to action selection in a simplified version of the classic ‘two-step’ 
task. In particular, they examine whether subjects’ behaviour is initially model-based or 
model-free when subjects receive minimal instruction on the structure of the task. This is 
potentially of interest because most previous studies have given explicit instruction 
about the structure of the task, and a recent report from Todd Hare’s lab has found that 
when these instructions are sufficiently clear then humans tend to be exclusively model-
based. 

 

They find that most subjects show behaviour that is initially model-free, not model-
based. This behaviour persists over several days of repeated exposure to the task, even 
though subjects show implicit measures of learning the task structure. When subjects 
are explicitly instructed about the structure of the task, their behaviour becomes 
predominantly model-based. Their two central conclusions from this are: (i) explicit task 
structural knowledge determines human use of model-based RL, and (ii) this is most 
readily acquired from instruction rather than experience. 

 

In addition to this, the authors explore variation of these behaviours between patients 
with OCD and other disorders. While there are some differences in the degree to which 
OCD patients use model-based control, in that uninstructed behaviour is even more 
biased towards model-free behaviour in these patients, the overall pattern of behaviour is 
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similar to healthy controls (in other words, the patients become more model-based with 
instruction). 

 

The paper overall provides an interesting contribution to the study of this task, and in 
some ways complements the recent study by Silva and Hare, by showing what behaviour 
is like in the “naïve” state of not knowing anything about the task structure. Overall, I 
thought that the data were well analysed/modelled and clearly presented. 

We thank the reviewer for the positive assessment of our manuscript. 

 

On the other hand, I was left slightly concerned about whether the two central 
conclusions mentioned above can really be generalised to all learning tasks where the 
structure of the task is unknown, or whether the conclusions are actually far more 
narrow and only apply to the situation studied here. I outline these concerns below. 

 

1. My first concern is that subjects performed this task exceedingly quickly, without 
much deliberation at all (reaction times were typically below 400ms, and subjects 
completed 1200 trials per session). This leads to a concern that participants were 
optimising speed over accuracy in completing the task – in which case, a model-free 
controller might well be the optimal strategy. The task appears to be entirely self-paced 
(although I couldn’t find details on the duration of reward presentation, duration of inter-
trial interval, duration of interval between light 1 being extinguished and light 2 
appearing, etc. in the methods), and subjects may well not be trying to optimise number 
of rewards but instead trying to complete the task reasonably quickly. One possible way 
to address this would actually be to collect a small additional dataset where the number 
of trials is brought down considerably (e.g. 300 trials per session), and the pace of the 
task is slowed right down (e.g. each light presentation event lasts 1 second before the 
subject can respond, and there is a 1 second ITI). In such circumstances, would subjects 
still appear entirely model-free until they were instructed otherwise? My suspicion is that 
they would not. Although I accept that the timings of the task are unchanged in session 4 
(the instructed session), the instructions are essentially telling participants that they 
need to pay attention to these features when performing the task (and indeed, they 
become more deliberative on rare transitions in these circumstances (figure 4d). 

We agree with the reviewer that, in principle, due to the self-paced nature of the original task, 
and overall fast reaction times exhibited by subjects, they might have been optimising speed 
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over accuracy and hence opting for a model-free strategy.  We directly addressed this in the 
revised manuscript by following the reviewer’s suggestion and gathering an additional dataset in 
which we slowed down the pace of the task by introducing a 1 second delay between options 
being highlighted and being active for selection (cued by a colour change from pale to bright 
yellow), at both the first and second step, in addition to a 1 second inter-trial interval.   In this 
dataset, 20 newly recruited healthy volunteers completed a total of 600 trials each, split into 3 
sessions of 150 trials prior to debriefing, and an additional session of 150 trials after debriefing 
(the original task used 4 sessions each of 300 trials).  Despite the slower pace and hence more 
time for deliberation, the new data strikingly recapitulated our original findings, including: 

-  A large influence of trial outcome but no effect of transition-outcome interaction at the first 
session, consistent with a model-free strategy (Figure S4, reproduced below). 

- A small increase in transition-outcome interaction by session 3, consistent with increased use 
of model-based RL with experience (Figure S4b).  As in the original task, this appears to be 
driven by a minority of subjects, as a likelihood ratio test on session 3 data supported a mixed 
model-based + model-free strategy over a model-free only strategy in only 3 among the 20 
subjects. 

- A large increase in the use of model-based RL after receiving explicit information about task 
structure.  As in the original task, this was accompanied by a decrease in the RL model eligibility 
trace parameter, which we think reflects changes to subjects’ representation of the task-state 
space affecting model-free value updates (Figure S5, reproduced below). 

Overall these data confirm our main results that, in unfamiliar domains, subjects initially rely on 
a model-free strategy, that they are surprisingly slow to learn to use a task model from 
experience, but learn much more readily from explicit description.  

These data are detailed in the revised manuscript as: 

Results 193-208:  A possible reason why model-free control might predominate is that subjects 
could perform the task as fast as they wished and, thus, might have been optimising speed over 
accuracy. To address this possibility, we tested an additional group of 20 healthy volunteers 
(mean age = 29.6 years old [SD=9]; gender = 25% males; mean education = 15.3 years [SD = 
2.8]) on a slow-paced version of the task, in which a 1 second delay occurred between circles 
lighting up and being active for selection, cued by a change in colour from pale to bright yellow, 
in addition to a 1 second intertrial interval (ITI). Subjects completed three sessions, each of 150 
trials followed by receiving explicit information about task structure, and a further session of 150 
trials afterwards. As in the self-paced task, initial behaviour was consistent with model-free 
control, with a main effect of trial outcome on stay probability (P < 0.001, permutation test) in 
session 1, but no effect of transition (P=0.23) or transition-outcome interaction (P=0.92) (Figure 
S4a,b). Also similarly to the self-paced task, the effect of transition-outcome interaction on stay 
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probability increased between session 1 and 3 (P=0.008), as assessed by the logistic 
regression (Figure S4b), consistent with increased use of model-based control with experience. 
However, at session 3 the influence of model-free control was still substantially larger than that 
of model-based, as assessed by RL model-fitting (Figure S4d), and a likelihood ratio test on 
session 3 data supported a mixed model-based plus model-free strategy over a simpler model-
free only strategy in only 3 among the 20 subjects. 

Results 258-260: Similar effects of debriefing on the transition-outcome interaction were found 
among the 17 healthy volunteers performing the slow-paced version of the task that were not 
using model-based RL significantly in session 3 (Figure S5a-c). 

  

Supplementary figure S4. Learning effects in slow-paced task. a) Stay probability analysis.  b) 
Logistic regression analysis of stay probabilities.  c) Reaction times after common and rare transitions in 
session 1 and 3.  d) Comparison of mixture model fits between session 1 and session 3. RL model 
parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value learning rate; λ, Eligibility 
trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice perseveration. 

  

Supplementary figure S5. Effects of explicit knowledge in the slow paced task. a) Per-subject 
likelihood ratio test for use of model-based strategy on session 3 (left panel) and session 4 (right panel). 
b) Stay probability analysis.  c) Logistic regression analysis of stay probabilities.  d) Reaction times after 
common and rare transitions in session 1 and 3.  e) Comparison of mixture model fits between session 1 
and session 3. RL model parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value 
learning rate; λ, Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice 
perseveration. 

2. More broadly, it is unclear whether the general conclusion that participants need 
explicit task knowledge in order to use model-based RL is really true – or whether it is 
only true in a task with a very limited state space, like the present task. Model-based 
control seems far more important in tasks with much larger state spaces than the one 
considered here. So while the present study provides interesting insights into this 
particular task, and provides an interesting comparison with the many previous studies 
that have used this task, it is unclear whether it can be used to draw a broader 
conclusion about the use of model-based versus model-free control per se. 

We agree that it is possible that the size of the task state space might affect use of model-based 
RL. It is worth noting that the task did incentivise the use of model-based RL, as shown by the 
positive correlation we observed between measures of model-based choice and total rewards 
obtained, demonstrating that use of model-based RL is important in our task.  We also note that, 
while larger state spaces might increase payoffs for using model-based RL, they also make both 
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model-learning and planning substantially more difficult, so it is not obvious that model-based 
RL would necessarily be utilised more or earlier in larger state spaces. Nonetheless we agree it 
is important to be transparent about this limitation of our study, which we now discuss in the 
revised manuscript file as: 

Discussion, lines 528-532:  though we used several task variants, they were all adaptations of 
the original two-step task, and share with it both a comparatively small state space and 
probabilistic action-state transitions. It therefore remains an open question how broadly our 
findings generalise to other tasks.  Model-based control may be more advantageous in larger 
state spaces, but model-learning and planning are correspondingly harder.  

We have also softened the language in the title and abstract to state that explicit knowledge is 
‘a’ rather than ‘the’ primary determinant of human model-based action. 

 

3. Figure S3 shows that in about 10% of trials, participants make invalid presses at the 
second stage. It would be interesting to know if these invalid presses reflect implicit 
learning of the transition probabilities (i.e. whether they are more common on rare 
transitions than common triansitions), and if so, when this develops across the different 
sessions (and whether it is at all predictive of the degree of model-based control, or the 
strength of the common/rare reaction time effect in figure 2e). The fact that subjects 
appear to be learning the model structure implicitly makes me feel more strongly that if 
participants were forced to become slower in their responses (comment 1, above), they 
would likely become more model-based. 

We thank the reviewer for raising this important question, addressed via a new analysis, added 
to figure S1, comparing the rate of invalid presses at the second-step (left or right actions), 
following common and rare transitions.  In the first session the rate of invalid presses following 
common and rare transitions were not significantly different, but by the third session subjects 
made significantly more errors following rare transitions.  This provides further evidence for 
implicit learning of task structure, in addition to the previously reported reaction time differences 
following common vs rare transitions, which are significant even in the first session.  

We have also added an additional supplementary figure (Figure S3, reproduced below) looking 
at correlations, across subjects, between measures of model-based choice (model-based 
weight from the RL model and transition-outcome interaction from the regression) and 
measures of implicit learning of the transition structure (differences in second-step reaction 
times and rates of invalid responses following common vs rare transitions). Interestingly, choice-
based and implicit measures of task structure learning, reaction-time in particular, were 
significantly correlated at all time-points evaluated (sessions 1,3 and 4). This appears to be 



 
 

 

15 
 

 

 

driven, at least in sessions 1 and 3, when subjects are learning only from experience, by the 
handful of subjects whose choices are more model-based. 

Taken together, we think these data support a partial dissociation between task structure 
learning at the motor and cognitive level, with motor-level learning occurring faster and more 
consistently across the population, as evidenced by the robust reaction time effects at session 1 
when choices are model-free, but with some interaction between the levels evidenced by the 
cross-subject correlations. 

We agree with the reviewer that evidence for implicit task structure learning further motivates 
the control experiment we performed in response to comment 1 above, in which we forced 
subjects to do the task at a slower pace.   As discussed above, choice behaviour in this slow-
paced task was similar to that in our original data.  We think these data are consistent with a 
dissociation between task structure learning at motor and cognitive levels, in that robust implicit 
learning of task structure, as evidenced by motor performance, does not necessarily imply that 
cognitive systems have a usable task model. 

We discuss these data in the revised manuscript as: 

Results lines 143-147: Although state transitions in session 1 did not influence subsequent first-
step choices, key-press reaction times at the second-step were faster following common than 
rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; t66=7.81, P<0.0001, paired t-
test; Figure 2e). This dissociation between choice and implicit measures of task-structure 
learning suggests that motor systems learned to predict and prepare upcoming actions before 
decision making systems were using a predictive model to evaluate choices. 

Results lines 184-192: Key-press reaction times at the second-step became faster overall 
between session 1 and 3 (main effect of session P<0.0001, repeated measures ANOVA), but 
this was more pronounced following common than rare transitions (session-transition interaction 
P=0.008; Figure 2e). Additionally, by session 3 the rate of invalid key presses was significantly 
higher following rare than common transitions (P=0.002, Wilcoxon signed rank test, Figure S1). 
Therefore, both choice-based and implicit measures showed evidence of learning about the 
transition structure between session 1 and 3. Model-based choice was significantly correlated 
across subjects with the rare-common reaction time difference at both session 1 & 3 (P<0.001, 
figure S3), suggesting interaction between learning at motor and cognitive-levels, thought this 
appeared to be driven by the minority of subjects whose choices were more model-based. 

Discussion, lines 482-489: An additional consequence of using fixed stimulus locations is that 
motor-systems can predict upcoming actions. Our observation of robust reaction-time 
differences following common vs rare transitions at session 1, when choices were model-free, 
suggests a dissociation between motor and cognitive systems in task structure learning, with 
motor systems learning to predict upcoming actions earlier and more readily than cognitive 
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systems learn to use a model to guide choices, consistent with other recent reports56.  
Intriguingly, implicit and choice-based measures of task structure learning were correlated 
across subjects, even at session 1, suggesting that this dissociation is only partial, with 
cognitive task models potentially informed by earlier motor-level learning. 

 

Supplementary figure S3. Correlation between choice and implicit measures of task structure 
learning.  Correlation across subjects between different measures of task structure learning in the fixed 
task at sessions 1, 3 and 4. Two choice-based measures were used; the model-based weight parameter 
from the RL model fit and the transition x outcome predictor loading from the logistic regression, and two 
implicit measures; the difference in second-step reaction times following common vs rare transitions, and 
the difference in the rate of invalid second-step responses (e.g. pressing left when the right state was 
active) following common vs rare transitions. Points show individual subjects. Lines show linear fit with 
95% confidence interval on fit indicated by shaded region. In both session 1 and 3, when subjects are 
learning only from experience, both measures of model-based choice are correlated with the rare-
common reaction time difference. 

  

4. In a version with changing probabilities, which was run as a pilot study, the authors 
conclude that subjects were not really able to learn anything at all about the task 
structure. But a comparison of supplementary figure S6a and figure S6f suggests that a 
small subset of subjects could learn the task structure, and the proportion of participants 
didn’t really differ between instructed vs. non-instructed versions. 

The reviewer is correct that some individual subjects on the changing task did show evidence of 
model-based RL in the last session (session 4), as assessed by the likelihood ratio test. The 
reviewer is also correct that informing subjects about the structure of the changing task did not 
significantly increase the use of model-based RL, since the proportion of participants using 
model-based RL on session 4 was the same independent of debriefing (2/12 vs. 4/24). Also, the 
number of participants that started using model-based RL on session 4 (6/36) was similar to 
those using model-based RL on session 3 (6/42). The lack of effects of debriefing presumably 
reflects the fact that participants did not understand the debriefing, or felt the task was too 
complex to make the effort. This was not the case in the fixed task, where debriefing 
dramatically boosted use of model based RL. This was one of the reasons why we choose the 
fixed task for the majority of our experiments. The other reason was that, taking the population 
performing the changing task as a whole, we saw no evidence of a significant increase in the 
use of model-based RL during the uninstructed sessions, i.e. we did not see the increase in 
transition-outcome interaction that we saw in the fixed task. We have clarified this in the revised 
manuscript as: 
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Results, lines 118-121: The Changing version proved too complex for most subjects, particularly 
as shown by the lack of effects of debriefing on the development of model-based RL, although a 
small subset was able to learn the task structure (see Supplementary information for details), so 
we subsequently focused on the Fixed task, which is used for all data and figures in the main 
text.  

Supplementary information, lines 11-12: The proportion of subjects for whom a likelihood ratio 
test indicated model-based RL was being used in session 3 (6/42) was similar to that observed 
in the Fixed task (10/67). 

Supplementary information, lines 25-29: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 

Reviewer #2: 

Remarks to the Author: 

In this manuscript, Castro-Rodrigues and colleagues aim to study the effect of extensive 
task instruction (or the lack of it) on one of the most commonly used experimental 
paradigm related to model-based vs. model-free learning in healthy individuals as well as 
individuals with OCD and other mood and anxiety disorders. 

The authors use a simpler version of the two-step learning task by Daw et al 2011, by 
presenting all choice options with four circles at once and removing the second-step 
choice while keeping the main components of the task in terms of state transitions. 

The main finding is that in the absence of explicit instruction about the structure of the 
task, normal and clinical groups predominately adopt a model-free approach while a 
minority of subjects slowly moved toward model-based approach over time. Moreover, 
they only found a small difference between healthy and clinical groups in terms of the 
learning strategy. 

 

It is refreshing to see that finally there is an investigation into the effect of 
explicit/extensive task instructions in the original version of a task that has caused a lot 
of controversy about model-based vs. model-free learning, and how much of previous 
results were dependent on such task instructions. I think this is an important study 
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which is executed and analysed well, and has important implications for studying 
learning in healthy and clinical populations. The manuscript is clearly written and the 
main claims of the study are supported by the results presented. 

We thank the reviewer for the positive assessment of the manuscript. 

 

I mainly have a few clarifying questions about the methods/results, some of the side 
claims and broader implications of the study, and finally some suggestions for additional 
analyses discussions. 

 

-- I wonder why the authors did not use the original task of Daw et al. I could be wrong 
but I assume because it is almost impossible to perform the original task without 
explicit/extensive instructions. If so, what we have learned from many studies using the 
previous task? There is an interesting paper by Collins and Cockburn (Nat Rev 
Neuroscience 2020) that is worth discussing. 

The reviewer is correct that we did not use the original task because we predicted that it would 
be too complicated for participants to learn uninstructed.  We intended to simplify the task as 
much as possible while preserving the structure necessary to dissociate model-based and 
model-free RL, in order to optimize the chance of observing model-learning.  

While we think our findings provide important insights into when humans do and do not use 
model-based RL, we do not think they invalidate findings with the original task. Rather, they help 
to understand where those finding are likely to apply and where they may not. Specifically, our 
data speaks to situations where subjects must learn from experience to act in an unfamiliar 
domain, and show that behaviour in these circumstances is very different to that in situations 
where subjects are given detailed information about task structure. Both of these situations 
occur in real-life decision making, and are hence important to understand, though we think the 
uninstructed situation is under-represented in laboratory studies. Our study contributes to 
clarifying processes associated with uninstructed learning and the effects of instruction. 

We agree the Collins and Cockburn paper is worth discussing and do so as: 

Discussion, lines 522-528:  We note limitations and directions for future studies. First, though 
analysing behaviour through the lens of model-based and model-free RL has yielded important 
insights, this dichotomy does not capture the full space of possible learning algorithms, and can 
obscure their dependence on common computational primitives such as a representation of the 
task state-space62.  Although standard model-free and model-based algorithms provided a 
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better fit to subjects behaviour than other models tested, our exploration of possible models was 
necessarily not exhaustive, and we did not attempt to model learning the state-space itself, nor 
effects of instruction on this.  

 

-- Authors mention that the Changing version of the task was too complex and that is 
why they focused on the Fixed version in most of their analyses (although they provide 
results based on the Changing version as well).  Considering that blocks would end in 
Fixed version of the task, could not participants use this signal to learn faster? For 
example, did the time to reach criterion become shorter over block of trials? 

Following the reviewer’s suggestion, we quantified block length distributions on the fixed and 
changing version of the task during sessions 1-3, when subjects are learning from experience, 
and found that they were very similar (Fixed task 55.7 ± 32.1 trials, Changing task 55.7 ± 32.2 
trials, mean ± SD).  In these sessions most subjects are using model-free RL, and, in both 
tasks, model fits to these initial sessions indicate that the model-free update of first-step action 
values was primarily driven by the trial outcome (rewarded or not) rather than the value of the 
second-step state (this is indicated by the model’s eligibility trace parameter λ being close to 1).  
For a model-free agent which updates the first step action values only from the trial outcome, 
irrespective of the second step state reached, the fixed and changing tasks are identical. 
Independently of whether the reward probabilities or transition probabilities reverse, the update 
required to the first-step action value is the same.  

Importantly, our assessment that the changing version was too complex was strongly influence 
by the effects of debriefing in both task versions.   Specifically, debriefing significantly increased 
the proportion of individuals developing model-based RL in session 4 for the Fixed task (52.1% 
for the debriefed group and 6.3% for the non-debriefed group), but not for the Changing task 
(16.7% both for debriefed and non-debriefed groups). This has been clarified in the revised 
manuscript at lines 118-121, which read: 

The Changing version proved too complex for most subjects, particularly as shown by the lack 
of effects of debriefing on the development of model-based RL, although a small subset was 
able to learn the task structure (See supplementary information for details), so we subsequently 
focused on the Fixed task, which is used for all data and figures in the main text.  

Regarding the reviewers’ question about whether subjects got faster at adapting to reversals 
with task experience, we looked at this by examining the choice probability trajectories following 
reversals (see figure below) but did not observe significant changes between session 1 and 3 in 
either task (permutation test for difference in exponential fit P>0.17). 
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Also considering this task structure would not make more sense to analyse data across 
blocks instead of arbitrary sessions of 300 trials? Authors show one aspect of behaviour 
over time (in Figure S1) but not the main analyses (e.g. probability of stay, RT, etc.). I 
think including such analyses can be more informative, specially about transition from 
MF to MB. 

We thank the reviewer for this suggestion, which we considered very carefully. On balance we 
think that analysing the data in blocks is probably not straightforward, because we do not see a 
way to look at the time-course of learning across blocks which does not either a) exclude a large 
number of subjects, or b) incur major biases due to including different subjects at different time 
points.  This is because the number of blocks completed by subjects for each of the first 3 
sessions varies over a wide range (shown below for the fixed task). If we divide the data based 
on block number, then either we will have many more subjects in the early data, or we will have 
to exclude a substantial quantity of either trials or subjects to balance the data.  This would be 
further complicated by the fact that the number of completed blocks will be correlated with their 
behavioural strategy.    

We think that grouping the data into early and late learning by session number, and hence trials 
completed, is a reasonable and principled approach to categorising the stage of learning.  The 
choice of 300 trial lengths for sessions was, as the reviewer correctly points out, arbitrary, but 
given that this is what we used for the experiment it is a natural choice to also use for the 
analysis.  It is also worth noting that we obtained qualitatively similar findings in the slow paced 
control experiment in which the length of sessions was 150 trials. 

 

-- There are a few generally untested ideas about the utility of MB and MF RL, which 
appears in the introduction of this manuscript as well (lines 44-49). 

 

Is it true that model-based allows behavioural flexibility? 

Our comments about the utility of model-based and model-free RL were aiming to outline the 
computational properties of these different classes of algorithm, rather than their behavioural 
consequences. We apologize if this was not clear, we have modified the text to ensure we 
correctly cite the relevant literature when we make these statements.  Regarding computational 
properties, we think it is an accurate characterisation to say that model-based RL algorithms 
can adapt to changes in the environment faster than a model-free RL algorithm.  The reason for 
this is that a local change in the environment can change the optimal policy globally – e.g. if the 
rewarded goal location in a maze changes, this may require different decisions at locations far 
removed from the goal.  When a model-based algorithm which has learned a model of the 
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environment observes a local change in either the reward or transition structure, it can calculate 
the consequences of this for policy across the entire environment, albeit at the computational 
cost of planning.  A model-free algorithm by contrast must learn the new correct policy via 
experience. 

  

If this is the case, MB learning should be higher in the changing environment compared 
to the fixed version case because more flexibility is needed in the former; Is there any 
evidence this true? 

In accordance with the above discussion regarding block lengths being similar in the two 
versions of the task, we expect the fixed and changing tasks should require a similar level of 
behavioural flexibility, given that the correct choice changes equally often in both. The only 
difference is that in the fixed task this is always because the reward probabilities have changed, 
whereas in the changing task this can be because the reward probabilities have changed, or 
because the transition probabilities have changed. It results that the adaptation of model-based 
control is spread slightly differently between the two tasks. However, as discussed above, from 
the perspective of a model-free RL algorithm these tasks look very similar, and a majority of 
subjects are model-free pre-debriefing.  

We also note that previous studies have argued for arbitration between model-based and 
model-free control of behaviour on the basis of the uncertainty in each system about the best 
policy (Daw et al. 2005 Nature neuroscience 8 (12), 1704-1711, Lee et al. 2014, Neuron 81 (3), 
687-699).  The non-stationary transition probabilities in the Changing task would be expected to 
increase uncertainty about the transition probabilities used by the model-based system, which 
according to this account would be expected to reduce the influence of model-based control on 
behaviour.  Consistent with this, in the Changing task we did not see the increased loading on 
the transition-outcome interaction predictor with experience that we observed in the Fixed task 
(Figure 2D, S10B), and removing the model-based component of the RL model had less impact 
on the fit quality in the Changing task than in the Fixed task (Figure S2A, S10D).  

This is now discussed in greater detail as: 

Supplementary information, lines 25-29: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 
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I addition, authors mention that model-free learning allows rapid action selection but 
uses information less efficiently. Is there any support for this in the current experiment? 
If anything, in MF learning both action values can be updated on each trial whereas in MB 
learning only value related to the observed transition can be updated, making MF faster 
and more efficiently. All these claims can be tested in the current study by comparing 
learning rates and weight of MB vs, MF learning between the Fixed and Changing 
versions. 

We appreciate the question regarding efficient use of information with MF vs. MB learning. 
Indeed, our data is consistent with model-based RL using information more efficiently, since 
loading on the transition-outcome interaction predictor across sessions 1 to 3 (a measure of 
model-based RL) was positively correlated with the number of rewards obtained by each 
subject, for both tasks.  This is reported in the main manuscript, and has been revised for clarity, 
as: 

Results, lines 155-158: Importantly, loading on the transition–outcome interaction parameter 
across sessions 1 to 3 was positively correlated with the number of rewards obtained by each 
subject (rho=0.67, P<0.001), suggesting that subjects who learned a model of the task used 
information more efficiently and thus obtained rewards at a higher rate. 

This finding is also consistent with current consensus that, in standard model-free RL, only the 
value of the chosen action is updated at each step, which in the two-step task corresponds to 
only one of the first-step actions being updated on each trial.  By contrast, for a model-based 
agent, the change in value of the second-step state due to the trial outcome will update the 
value of both first-step actions according to the subjects’ current estimate of how likely they are 
to transition to that state. 

Regarding comparisons between the two tasks, as discussed above, prior to receiving explicit 
information about task structure, the predominant strategy in both tasks was model-free RL, with 
the fitted parameters further indicating that trial outcomes (rewarded or not) primarily directly 
reinforced the preceding first step choice, irrespective of the particular second-step in which the 
reward was obtained. This is consistent with the observed large main effect of outcome on 
repeating choice, as observed in the logistic regression.  From the perspective of such a ‘direct-
reinforcement’ model-free strategy, which is insensitive to where the rewards are received, the 
fixed and changing tasks are very similar.  Consistent with this we did not see any significant 
differences in the RL model fits between the fixed and changing task in sessions 1 or 3, and the 
proportion of participants developing model-based RL at session 3 was similar across the two 
versions of the task (~14-15%). In any case, as discussed above, the logistic regression and 
model-comparison analyses provide some evidence for some, although limited, use of model-
based RL in the Fixed task, consistent with uncertainty-based arbitration between strategies. 
Equivalent evidence was not found for the Changing task. Similarities and differences between 
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the two tasks in the uninstructed phase are now discussed in greater detail in the 
Supplementary information: 

Supplementary information, lines 11-12: The proportion of subjects for whom a likelihood ratio 
test indicated model-based RL was being used in session 3 (6/42) was similar to that observed 
in the Fixed task (10/67). 

Supplementary information, lines 25-29: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 

 

-- One of the main points of the current study is that MF learning is more prominent and 
adopted first. Two recent studies using similarly complex task with multidimensional 
stimuli (and with no explicit instructions) have shown that feature-based learning, which 
resembles model-based is the starting learning strategy before transitioning to more 
accurate object-based learning (Farashahi et al, Nat Comm 2017, Cognition 2020). How 
do authors see the results of these studies reconcile with their findings? 

Feature- vs object-based learning is interesting, and we appreciate the opportunity to discuss 
our results in the context of the work by Farashahi and colleagues. Our understanding is that 
the distinction between feature-based and object-based learning is, at least in principle, largely 
orthogonal to that between model-based and model-free learning.  The model-based vs model-
free dichotomy concerns what subjects learn to predict about the future. Specifically, whether 
individuals learn to predict future reward directly (model-free), or to learn to predict future states 
and likely contingent outcomes, and hence estimate expected future reward indirectly (model-
based). The feature- vs object-based distinction by contrast, is to do with whether and how 
subjects generalise learning among items based on their sensory features. Indeed, one could 
imagine, for future research, that the task described here could be enriched with stimuli that 
have multiple feature dimensions, only some of which are relevant. Given our observation that 
instructions appear to shape subjects’ internal representation of which states are important or 
distinct, even in a task where states were explicitly signalled, it would be very interesting to 
understand instruction effects in the more ambiguous conditions investigated by Farashahi and 
colleagues, where relevant features must be inferred.   

We discuss this in the revised manuscript as: 
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Discussion, lines 532-534: Given our findings suggesting instruction shaped representation of 
the state-space,  it would be interesting to explore instruction effects in tasks where there is 
ambiguity about the current state, or which state features are relevant for learning63,64. 

 

-- The main results are quite similar across healthy subjects and individual with OCD and 
other mood disorders (with some minor differences. 

Does this mean that this task (and the original task) are not very useful to study changes 
in MB vs. MF learning in the clinical population, or this dichotomy is not the best way to 
look at reinforcement learning (see Collins and Cockburn, Nat Rev Neuroscience 2020)? 

As discussed above response to an earlier question from reviewer 2, we believe that both the 
original Daw two-step task and the uninstructed version presented here provide valuable and 
complementary information about human behaviour.  They examine distinct situations, both of 
which are common in real-life decision making. Specifically, our data speaks to situations where 
subjects must learn from experience to act in an unfamiliar domain, and show that behaviour in 
these circumstances is very different to that in situations where subjects are given detailed 
information about task structure. Also as discussed previously, we agree that the limitations 
pointed out by Collins and Cockburn paper are very much worth discussing and this has been 
added to the discussion section of the revised manuscript as: 

Discussion, lines 522-528:  We note limitations and directions for future studies. First, though 
analysing behaviour through the lens of model-based and model-free RL has yielded important 
insights, this dichotomy does not capture the full space of possible learning algorithms, and can 
obscure their dependence on common computational primitives such as a representation of the 
task state-space62.  Although standard model-free and model-based algorithms provided a 
better fit to subjects behaviour than other models tested, our exploration of possible models was 
necessarily not exhaustive, and we did not attempt to model learning the state-space itself, nor 
effects of instruction on this.  

We don’t think our findings of limited differences between OCD patients and healthy volunteers 
in their use of model-based RL invalidate the previous findings with the Daw task, among other 
reasons because the two tasks are distinct, and we did not compare them directly . Rather, we 
propose that our data suggest that previously unexplored aspects of how tasks are presented 
can affect the extent and nature of clinical differences, and have proposed potential clinical 
implications of such findings in the discussion. 

 



 
 

 

25 
 

 

 

-- Was there any significance difference in the learning rates between fixed version and 
changing version of the task. I ask this because there is an intuition that volatility should 
increase learning rates, and although a study by Behrens et al (Nat Neuroscience 2007) 
has provided evidence for such an intuition Farashahi et al, Nat Hum Behaviour 2019 
found no evidence for it. 

As discussed above, when the subjects are learning from experience, the block lengths in the 
Fixed and Changing task are very similar, so the volatility of the tasks is matched with regards 
to the predominantly model-free strategy the subjects employed.  We therefore don’t think our 
data speak to the question of whether/how environment volatility affects learning rates.  
Consistent with this, as we noted in response to an earlier comment from this reviewer, we did 
not observe significant differences in RL model-fits to the fixed and changing task pre-
debriefing. 

 

-- Was there any significance difference in the learning rates between control and clinical 
groups? 

We do not see any significant differences in the effects of either uninstructed experience or 
debriefing on learning rates between either clinical group and healthy volunteers.  Significant 
effects are reported in the main text and we now report the full set of permutation test results in 
new supplementary tables S1 and S2 (shown below).  

Supplementary table S1 - Differences in learning and debriefing effects between healthy 
volunteers and individuals with OCD 

Model parameters Learning 
effectsa 

Debriefing 
effectsa 

Model-free strength (MF) 0.076 0.96 

Model-based strength (MB) 0.40 0.83 

Value learning rate (αQ) 0.99 0.42 
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Eligibility trace (λ) 0.77 0.83 

Transition learning rate (αT) 0.88 0.80 

Choice bias 0.66 0.20 

Choice perseveration 0.48 0.037 

aPermutation tests (5000 permutations) were used to assess differences in the fitted model parameter 
loadings between healthy volunteers (n=67) and individual with OCD (n=46) in the effect of learning (defined 
as change between session 1 and 3) and debriefing (defined as change between session 3 and 4, taking 
only subjects who are MF at session 3). P-values for interactions between group and the effect of interest 
are shown. 

  

  

  

Supplementary table S2 - Differences in learning and debriefing effects between healthy 
volunteers and individuals with mood and anxiety disorders 

Model parameters Learning 
effectsa 

Debriefing 
effectsa 

Model-free strength (MF) 0.65 0.73 

Model-based strength (MB) 0.93 0.06 

Value learning rate (αQ) 0.49 0.91 
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Eligibility trace (λ) 0.28 0.72 

Transition learning rate (αT) 0.55 0.90 

Choice bias 0.44 0.50 

Choice perseveration 0.11 0.001 

aPermutation tests (5000 permutations) were used to assess differences in the fitted model parameter 
loadings between healthy volunteers (n=67) and individual with mood and anxiety disorders (n=49) in the 
effect of learning (defined as change between session 1 and 3) and debriefing (defined as change between 
session 3 and 4, taking only subjects who are MF at session 3). P-values for interactions between group 
and the effect of interest are shown. 

 

-- In some places, authors rely in 0.05 as the threshold for statistical significance. 
Considering the number of comparisons (e.g., between model parameters) I don't think 
0.05 is an appropriate threshold. 

Our manuscript contains both important positive results and important negative results, i.e. in 
several places it is the absence of a significant effect that is striking given the prior literature.  
We therefore think it is important to balance the risk of false positives against that of false 
negatives, as we do not want readers to come away with the impression that where we did not 
observe differences where they might be expected, this was because we had a high risk of false 
negatives due to multiple comparison correction.  Our approach in the manuscript has therefore 
been to report uncorrected P values in full (as opposed to as P<0.05 etc), such that readers can 
directly evaluate the strength of the statistical evidence.  It is worth noting that most of our 
positive results have very robust P values that would survive multiple comparison correction for 
multiple model-parameters.  We also note that we replicated our key findings concerning 
behaviour of healthy volunteers to a striking extent in the new dataset gathered with a slow 
paced version of the task to address reviewer 1’s comments (figure S4 & S5). Specifically, we 
confirmed that initial behaviour is model-free, that model-based increases in a minority of 
subjects with experience, and that subsequently providing explicit knowledge strongly boosts 
use of model-based but also affects model-free value updates. 
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-- Why there is no comparison between stay probability in different conditions (to prove 
the unbalanced pattern of stay probability as a function of outcome and transition)? 

Given previous work from some of the authors of this paper, we think that reporting statistics 
based on the logistic regression analysis is the most principled way of quantifying the influence 
of trial events on the subsequent choice. Specifically, we have used the logistic regression 
analysis (e.g. Figure 2D) to quantify significant effects of outcome, transition and their 
interaction on stay probability.  This analysis models the same data as shown in the raw stay 
probability plots, but importantly allows us to incorporate other influences on subjects’ choices 
such as choice biases.  Akam et al. (PLOS Comp. Biol. 2015) have previously shown that in 
two-step tasks with a strong contrast between good and bad options (including the one used 
here), correlations across trials can cause even model-free agents to show a significant 
influence of transition-outcome interaction on stay probability, because the difference between 
chosen and non-chosen action values at the start of the trial is correlated with the subsequent 
transition-outcome interaction. In that paper it is shown that this can be corrected for by 
including an additional predictor in the logistic regression analysis of stay probabilities, allowing 
unbiased estimation of the effects of the trial events on the next trials stay probabilities.  We 
have clarified this approach in the methods section of the revised manuscript as: 

Methods, lines 652-655: In addition to plotting raw stay probabilities, we quantified the effect of 
trial events on the subsequent choice using a logistic regression model, allowing other 
influences on choice such as subjects biases and cross trial correlations (see below) to be taken 
into account.  

Methods, lines 660-663: The correct predictor prevents cross-trial correlations from generating 
spurious loading on the transition-outcome interaction predictor, which can occur in two-step 
tasks with high contrast between good and bad options, due to correlation between action 
values at the start of the trial and subsequent trial events42. 

 

-- It seems to be a general increase in stay probability after debriefing as a side effect. 
What could be a reason for this? 

The reviewer is correct that stay probabilities overall increase following debriefing, and this also 
shows up in the perseveration parameter of the RL model, which increases following debriefing.   
We think this occurs because during the debriefing subjects are told that the reward probabilities 
at the two sides reverse only occasionally, and therefore, once they have detected a switch they 
expect the reward probabilities to be stable for an extended period. To examine this explicitly, 
we analysed whether the increase in perseveration as a whole due to debriefing correlated with 
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a reduction in perseveration over the course of each block in the post debriefing data (Figure 
S7, right panels).  The rationale is that if the increase in perseveration due to debriefing is due 
to expecting a period of stable reward probabilities after a block transition, then in subjects who 
show this effect strongly, we should also expect to see that, after debriefing, they are actually 
less perseverative late in blocks compared to early (whilst being more perseverative overall).  
This was indeed the case in healthy volunteers, who showed the debriefing effect on 
perseveration strongly, but not in either clinical group, both of which showed a significantly 
weaker (OCD group) or non-existent (mood and anxiety group) effect of debriefing on 
perseveration.  This analysis is discussed in the manuscript as: 

Results, lines 298-306:  Debriefing also increased how often subjects repeated choices 
independent of subsequent trial events, as reflected by a significant increase in the 
‘perseveration’ parameter of the RL model (P<0.001; session by group interaction P=0.001; Fig. 
4e). This may result from information that reward probabilities on the left and right reversed only 
occasionally and are thus stable for extended periods of time. In this case, one would expect a 
reduction in perseveration across the course of each block, from shortly after a reversal, when 
reward probabilities are stable, to late in the block, when the next reversal is anticipated. 
Consistent with this hypothesis, we found that participants with larger post-debriefing increases 
in overall perseveration also had larger declines in perseveration within post-debriefing non-
neutral blocks, from trials 10-20 (early) to 30-40 (late; r=-0.35, P=0.02; Figure S7). 

 

-- Authors focus on participants who did not use MB learning in session 3 (e.g. in Figure 
4), but what did happen to participants who adopted MB after they received instruction? 

It is an interesting question to understand what happens to behaviour on a task subjects have 
already learned a good model of from experience, when they are subsequently told the 
structure. Unfortunately, our data does not really allow us to speak clearly to this, because in the 
debriefing group on the fixed task, only 3 subjects had adopted model-based at session 3 as 
assessed by the likelihood ratio test.  In these 3 subjects we do not see any obvious changes in 
behaviour as a result of debriefing, but we feel the sample size is so small that it is not worth 
reporting this in the manuscript.  This analysis is shown below for the reviewers’ interest: 

 

  

Debriefing effects in the 3 subjects on the fixed task who were model-based at session 3. 
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Minor 

 

-- Figure 4 caption: "in control" 

 

-- Figure 5 caption: "in OCD and other mood disorders?" 

We have corrected figure captions to clarify the target population for the data in each figure. We 
opted not to include ‘and other mood disorders’ given that this specific population was mostly 
intended as a control for the OCD population, both regarding the presence of 
anxiety/depression symptoms and the effects of medication. 

 

 

Reviewer #3: 

Remarks to the Author: 

In the present manuscript, Castro-Rodrigues and colleagues used a modified version of 
the ‘two-step task’ task to assess contributions of model-based (MB) versus model-free 
(MF) systems to reinforcement learning in humans. Specifically, they tested to what 
degree humans deploy MB vs MF learning, first in the absence of any explicit instruction 
about the task structure, and then after fully explicit debriefing. Both healthy humans and 
individuals suffering from OCD (and another clinical control sample) were tested. The 
key finding according to the authors is that uninstructed behaviour was model-free, with 
model-based control only emerging over time in a subset of participants. The latter was 
less pronounced in the OCD group. All groups showed stronger model-based behaviour 
after receiving explicit debriefing on underlying task structure. 

 

The manuscript is well written and addresses an important and interesting question, 
particularly given influential earlier reports that increased MF control may be a common 
feature of compulsive behavioural disorders (Voon et al., 2014). However, I am concerned 
whether the conclusions drawn by the authors are justified by the data and the study 
design. 
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We thank the reviewer for the recognition of the interest of the questions addressed.  We have 
added several additional analyses to address the reviewers’ concerns, as detailed in response 
to individual comments below. 

 

1) One of the main findings is that uninstructed behaviour was dominantly model-free. 
This is a strong statement given the results and the analyses presented. In my view, what 
can be said with confidence is that subjects did not use the *true* model of the task - and 
this is the only test of 'model-based behaviour' the authors are presenting. Subjects 
could have used a completely different model of the task which would not be evident 
from testing to what degree they used the optimal model. Or indeed volunteers could 
have tried out different models of the task throughout the three sessions. For instance, 
as you present in Fig. S1, quite a proportion of people keep pressing invalid keys for a 
considerable period throughout at least the first session. This implies that it took 
subjects fairly long to understand even the most fundamental task characteristics. The 
authors write about there being no evidence of participants using task structure early on 
(line 337/338) - but given the above, everything else would be highly surprising! 

Indeed, da Silva and Hare (which is also cited here) have shown that providing subjects 
with inaccurate models of the task evokes MB behaviour that can appear completely 
model-free. They also describe how behaviour which appears to be a hybrid of model-
based and model-free could also be explained by a set of different algorithms (see also 
Collins & Cockburn, 2020). In this context, it would be important to see model 
comparisons that include competing models as well as model simulations on the 
eventual winning model. 

This is an important issue, and we thank the reviewer for bringing it up and allowing us to 
address it in more detail. Our understanding of Silva and Hare’s data is that they show that 
agents which are completely model-based, but have an incorrect model, can generate 
behaviour that looks similar to an agent that uses a mixture of model-based and model-free.  As 
far as we can tell, all of their simulations from model-based agents with incorrect models still 
show a substantial transition-outcome interaction (the classical signature of model-based) but 
also show a significant main effect of outcome (normally considered a sign of model-free 
learning).  This pattern is very different from that of our subjects at session 1, where we see a 
large main effect of outcome, but no influence at all of the transition outcome interaction. This is 
precisely the pattern expected for an essentially pure model-free strategy in which outcomes 
directly reinforce the preceding choice, and we are not aware of any incorrect-model-based 
strategies which generate behaviour that looks like this. 

Nonetheless, we agree with the reviewer that, given the Silva and Hare data, it is important to 
explicitly test whether the types of incorrect-model-based strategies they consider might in fact 
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explain our subjects’ data.  We therefore did an additional model-comparison on data from 
session 1 and session 3, in which we included the two incorrect-model agents proposed by 
Silva and Hare (termed ‘unlucky symbol’ and ‘transition-dependent learning rate’), as well as the 
incorrect-model proposed below by the reviewer.  Model-comparison indicated that all 3 of these 
incorrect-model agents fit data from both session 1 and session 3 less well than any of the 
traditional models we had previously considered. According to the reviewer’s suggestion, we 
simulated behavioural performance of an agent using the best fitting model (mixture model) and 
observed it produced stay probability plots which were qualitatively similar to the collected data 
(Figure S6). 

These results are presented in figure S2B and figure S6 (reproduced below), and discussed in 
the revised manuscript as: 

Results, lines 169-174:  As it has been suggested that apparently model-free behaviour could in 
fact reflect a model-based strategy with an incorrect model of the task structure32, we 
considered 3 additional model-based agents with incorrect beliefs, but found these fit the data 
from both session 1 and 3 worse than any of the traditional models (Figure S2b).  We also 
simulated behaviour from the best fitting RL model and verified that it produced stay probability 
plots qualitatively similar to the experimental data (Figure S6). 

  

Supplementary figure S2b)  Model comparisons including additional model-based agents with incorrect 
models of the task structure; one which believed state transitions were deterministic but volatile (IM-DV), 
one with transition dependent learning rates at the second-step (IM-TDLR) and one which believed that 
one first step option was unlucky and reduced reward probability at the second-step (IM-US).  

  

Supplementary figure S6. Stay probabilities for best fitting RL model Stay probability analysis 
showing the probability of repeating the first step choice on the next trial as a function of trial outcome 
(rewarded or not rewarded) and state transition (common or rare). Top panels show experimental data, 
bottom panels show behaviour simulated from the best fitting RL model, which used a mixture of model-
based and model-free. Error bars indicated the cross subject standard error of the mean (SEM). In each 
group data was analysed separately for session 1 (blue graph), session 3 (red graph) and session 4 (gold 
graph). 

  

 

2) An alternative model employed by participants could be that, rather than assuming a 
probabilistic, but fixed mapping of first-step choices to second-step states, participants 
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might assume this mapping to be fully deterministic, but highly volatile. Under such a 
model, following a rare transition, participants would infer that the underlying latent state 
has changed and assume that their first-step choice would now lead them to the state 2 
they just observed. An agent using such a model would appear exactly like a completely 
MF agent. This could also be a potential explanation for the effects seen in the OCD 
group in figure 3 (A and D). It shows that, in OCD, there is an increase in MF control 
(Gmf) from session 1 to session 3 - and likewise an increase in the effect of outcomes. 
Again, I am not convinced that such a pattern is fully indicative of MF behaviour. As 
discussed above, the increase in P(stay) following rewards (irrespective of transition 
type) could as well be obtained from an inaccurate world model. Thus, such a pattern 
may actually indicate *increased* MB control in OCD! 

We thank the reviewer for this suggestion.  If we understand it correctly, the proposed agent is 
actually a special case of our model-based agent, because our model-based agent learns the 
transitions from experience, and if its learning rate for transitions (parameter ) is set to 1, the 
agent believes that the most recently observed transition for a given action occurs with 
probability 1 when that action is selected.  We would not expect this agent to generate a pattern 
of stay probabilities similar to that observed in our session 1 subjects, because model-based 
agents with a high learning rate for transitions generate strong loading on the transition 
predictor, in addition to the outcome predictor (Akam et al. PLOS CB 2015, Figure S5).  
Nonetheless we included it in the new model-comparison discussed above (figure S2B) but 
found that, as with the other incorrect-model agents, it fit the data worse than any of the 
traditional models that were considered. 

  

3) I appreciate the motivation to simplify the original two-step task. However, by 
removing the choice alternatives at the second-step state, the task, at least to subjects, 
may lose its key characteristics as a multistep decision problem, but instead be 
perceived as a one-stage decision problem with probabilistic rewards (see my comment 
above). This might have influenced the perceived importance of forming a model and the 
consideration of the sequential structure of the task. Additionally, as the authors also 
note, the new design greatly reduces working memory load. Relationships between 
working memory capacity and task complexity on one hand and decision strategy on the 
other have been reported previously (Otto et al., 2013; Kim et al., 2019), which may also 
contribute to the apparent absence of MB behaviour. 

Our motivation for removing the choice at the second-step was, as the reviewer points out, to 
simplify the task as much as possible, as we felt that the more complex the task was, the harder 
it would be for subjects to learn and use a model.  Nevertheless, we appreciate the concerns 
raised by the reviewer, and have added to the discussion regarding the possibility that 
behaviour could be different in tasks with larger state-states: 
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Discussion, lines 528-532: though we used several task variants, they were all adaptations of 
the original two-step task, and share with it both a comparatively small state space and 
probabilistic action-state transitions. It therefore remains an open question how broadly our 
findings generalise to other tasks.  Model-based control may be more advantageous in larger 
state spaces, but model-learning and planning are correspondingly harder.  

 

4) Furthermore, it was not clear to me why the authors opted for a fixed spatial-motor 
mapping instead of presenting two distinct visual stimuli with random mapping to 
top/bottom position on the screen. As the authors acknowledge in the discussion, such a 
fixed mapping of spatial position to effector may have further encouraged the use of a 
habitual/model-free/S-R strategy. 

Again, the motivation was to simplify the task as much as possible, as we expected this would 
make it easier for subjects to learn a model of the task. As the reviewer notes we do discuss the 
possibility in the discussion that using fixed spatial-motor contingencies may affect the strategy 
used. We think it is equally possible that using discriminative stimuli whose position is 
randomised could make it harder, rather than easier, to use model-based RL, because action-
outcome predictions and stimulus-outcome predictions, thought to be mediated by at least 
partially separate brain systems (Rudebeck et al. J.Neurosci  28.51 (2008): 13775-13785), 
would no-longer be aligned. 

  

5) Modelling: 

a) it would be re-assuring to see whether the fitted parameters can be recovered from 
simulated data generated using the fitted parameters (parameter recovery). 

We now include a new parameter recovery analysis in which we test how well individual 
parameters can be recovered when we set the other parameters to their fitted values from either 
session 1, 3 or 4, and use the same number of simulated subjects as we have real subjects 
(Supplementary figure S8, reproduced below).  This is discussed in the revised manuscript as: 

Results, lines 307-311: To verify that changes in other model parameters (e.g. MF and MB 
weights) had not artifactually caused these effects by preventing us from accurately estimating 
parameter values, we assessed the accuracy of parameter recovery from simulated data 
(Figure S8). Overall the accuracy of parameter recovery was very good, with a slightly reduced 
accuracy for the transition probability learning rate (parameter αT) in sessions 1 and 3, where 
the influence of model-based RL is small. 
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Supplementary figure S8. RL model parameter recovery. Test of the accuracy with which RL model 
parameters could be recovered from simulated data. Panels show mean and standard deviation of 
recovered parameters across 10 repeated simulation runs when the parameter under investigation was 
fixed at the specified ‘true parameter value’ and the other parameters were drawn randomly for each 
subject from the population level distributions fit to the specified dataset (top row- fixed task session 1, 
middle row – fixed task session 3, bottom row – fixed task debriefing group session 4).  

 

b) Unlike in Daw 2011, there are separate weights (Gmb, Gmf) for the contributions of the 
MB and MF systems, respectively (rather than Gmf = 1 – Gmb). This seems plausible to 
me, as there may well be participants in which both MB and MF is low (e.g. purely 
stochastic or perseverative choice), but since this is also a - minor - departure from the 
original analyses, it would be helpful to briefly justify this in the text. 

We thank the reviewer for this suggestion. We included a justification for the separate weights in 
the methods section of the revised manuscript (lines 732-734). 

Methods, lines 704-706: We used separate weights (G_mf, G_mb) for the influence of the 
model-based and model-free systems30, rather than tying them together as G_mf=1-G_mb and 
using a separate softmax temperature parameter as in Daw et al. 201111.  

c) In figure 2F, the modelling results do not support the logistic regression - there is no 
difference in Gmf and Gmb between session 1 and 3. 

The reviewer is correct that there is a discrepancy between the increase in the influence of the 
transition-outcome interaction on subsequent choice in the logistic regression between session 
1 and 3 and the absence of a significant change in the model-based weight parameter of the RL 
model.  This is discussed in the manuscript (lines 178-183) where we state: 

The discrepancy with increased loading on the ‘transition x outcome’ predictor in the stay-
probability analysis may reflect lower statistical power to detect subtle strategy changes in the 
strongly non-linear and more flexibly parameterised RL model.  It likely also reflects the fact that 
only a minority of subjects learned to use model-based RL; as model comparison for individual 
subjects between the mixture RL model and a simpler model-free RL model, indicated that only 
15% of subjects (10/67) used model-based RL at session 3 (likelihood ratio test, threshold 
P=0.05).   

We note that the maximum-a-posteriori fits for individual subjects (dots in figure 2F) indicate that 
a small number of subjects have approximately double the influence of model-based RL at 
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session 3 compared to session 1, but this does not drive a significant change at the level of the 
population as a great majority of subjects show minimal change. 

We also note that in addition to the model-based weight parameter, the value learning rate  will 
also affect the transition-outcome interaction as it determines how much trial outcomes update 
the value of second-step states, which are used by the model-based system to compute the 
value of first step actions.  This parameter did show a significant increase between session 1 
and 3. 

  

d) Bias parameter in the model: is my understanding correct that this indicates an action 
bias for the top circle? If so, why is it B = 1 for the high and B = 0 for the low action? 
Would this not mean that the model can have a bias for the upper circle, or no bias at all? 
Shouldn't B = –1 for the low option to also allow for a bias toward the lower option? 

Apologies, this was not explained clearly enough in the methods. We have modified the relevant 
section to clarity how the bias and perseveration parameters work, it now reads (lines 685-694): 

Model-free and model-based action values were combined with perseveration and bias to give 
net action values, calculated as: 

  

where  and  are parameters controlling, respectively, the strength of influence of model-free and 
model-based action values on choice.  is a parameter controlling the strength and direction of 
choice bias,  is a variable which takes a value of 1 for the up action and 0 for the down action.  
Since it is the difference in   values between up and down actions that determines choice, positive 
values of  therefore generate a bias towards the up action and negative values towards the down 
action.  is a parameter controlling the strength and direction of choice perseveration,  is a variable 
which takes a value of 1 if action  was chosen on the previous trial and 0 if it was not. Positive 
values of  therefore promote repeating the previous choice while negative values promote 
switching. 

  

e) Decreases in the eligibility trace parameter lambda correlate, across subjects, with 
increase in MB control - is this naturally arising because as lambda --> 0, there is no 
more update in the MF system? In other words, is it possible, for a given subject, that 
there are two (probably very similar) local optima in the parameter space, at low (high) 
values for lambda and high (low) values for Gmb? 
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The eligibility trace parameter  does not affect the relative influence of model-based and model-
free values on choices, it just changes the way that model-free values for first-step actions are 
updated.  Specifically, when is 0 the update to first-step action values depends only the value of 
the second-step reached, and when  is 1 the update depends only on the trial outcome, with 
intermediate values of  determining the mixture of these two influences on the update.  We 
therefore would not expect problems in accurately fitting  as long as there is a model-free 
influence on choices (as  only affects updates to the model-free first step action values).  We 
verified this empirically with the new parameter recovery analysis (figure S8, discussed above), 
confirming that we are able to accurately recover the values of both the model-free weight  and  
when the other parameters of the simulated data match those fitted to the real data from either 
session 1,3 or 4. 

 

6) In figure 2F, the modelling results indicate no difference between MB and MF 
contributions to behaviour. This is at odds with the logistic regression results presented 
in 2D (and the p(stay) in 2C) which indicates a clear transition X outcome interaction. 
This again raises the issue to what extent the model with the fitted parameters is able to 
recapitulate the actual pattern in subjects' choice behaviour (related to my question 
above regarding parameter recovery) 

If we understood correctly, we think the reviewer might be reiterating the point here that they 
made in comments 5a and 5c. We now included a parameter recovery analysis and further 
discussed this issues in lines 307-311 and lines 178-183, as well as in our above responses to 
comments 5a and 5c. 

 

7) In the analyses investigating the effects of providing the full task structure, it seems 
that out of the 57 healthy individuals not showing MB behaviour yet, n = 41 were 
assigned to the debriefing group whereas only n = 16 were not debriefed. Why were they 
evenly allocated to both groups? Comparing the proportion of subjects acquiring MB 
control appears odd given the highly unbalanced group size? 

Initial experiments were conducted among healthy volunteers recruited in Lisbon, with two 
variants of the task (Fixed and Changing task). 82 participants were randomized between the 
two versions of the task and, within each task, some participants were debriefed between 
sessions 3 and 4 (17 performing the Fixed version and 16 performing the Changing version of 
the task), while the remaining subjects were not debriefed (23 in the Fixed version and 26 in the 
changing version). From the 23 non-debriefed subjects in the Fixed version, 16 were not 
showing model-based at session 3.. Given the results from this first sample, in healthy 
volunteers subsequently recruited in New York (n=27), as well as all clinical samples in both 
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sites, only the Fixed task was used, and all participants were debriefed. Thus, the n=41 subjects 
who were not model-based at session 3 were 25 of the 27 healthy volunteers recruited in NY 
and 16 of the 17 healthy volunteers who performed the Fixed task with debriefing in Lisbon. As 
a result, the sample is unbalanced towards the participants performing the Fixed task and that 
were debriefed. To address potential problems resulting from the unbalanced nature of the 
debriefed and non-debriefed samples, as mentioned in the results section, analyses were 
repeated including only participants recruited in Lisbon, which did not affect the results. 
Furthermore, we tested differences in learning or debriefing effects between the Lisbon and 
New York debriefing groups, and did not find any significant differences (Table S3). 

This is now clarified in the methods section, lines 633-635, where it now reads: Among healthy 
volunteers recruited in Lisbon and randomized between the two versions of the task, debriefing 
was performed in 17 of the 40 participants performing the Fixed version and in 16 of the 42 
participants performing the Changing version of the task. 

 

8) Why are people diagnosed with a wide variety of mood and anxiety disorders put 
together as one group? These disorders are characterized by several different symptoms 
which could also be expected to influence MB/MF control of behaviour in different ways. I 
guess it also does not serve to “investigate potential contributions of medication or 
unspecified mood and anxiety symptoms” for the same reasons. Further details on 
psychotropic medication would be needed to evaluate their comparability with respect to 
medication. 

We decided to include a group of participants with different mood and anxiety disorders 
because there is a very high comorbidity between OCD and mood disorders (such as 
depression) and anxiety disorders (such as generalized anxiety disorder). In fact, for each 
diagnosis present in any group (depression, bipolar disorder, dysthymia, generalized anxiety 
disorder, panic disorder, agoraphobia, social anxiety disorder, post-traumatic stress disorder, 
anorexia nervosa, trichotillomania and hoarding disorder), we tested if its proportion was 
different between the OCD group and the mood and anxiety group, and we did not find 
significant differences for any diagnosis (P’s>0.3; chi-squared or Fisher exact test), except for 
obsessive-compulsive disorder, which was an exclusion criteria for the mood and anxiety 
disorders group (data not shown). Also, to the best of our knowledge, there is no consistent 
evidence for imbalance in model-based/model-free control in any specific mood or anxiety 
disorder. Nevertheless, the choice of a group of several disorders as a ‘control’, rather than a 
specific disorder, reduces the risk of observing effects dependent on the ‘control’ condition, 
rather than effects dependent on the disorder of interest (OCD). Importantly, scores in 
assessments of anxiety and depression symptom severity were equivalent between the two 
clinical groups, that were only different according to severity of OCD symptoms. This suggests 
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that this group can in fact allow for control of the effects of unspecific mood and anxiety 
disorders, while studying the more specific effects of OCD symptoms. 

Regarding medication, we classified it in classes (SSRI, tricyclic antidepressant, second-
generation antipsychotic, first-generation antipsychotic, mood stabilizers, benzodiazepines, 
other antidepressants and other medications) and we did not find differences between groups in 
the use of any class of medication (P’s>0.2; Chi-squared or Fisher’s exact test) (see Table 
below). It is also important to mention that while the clinical groups recruited in Lisbon were 
medicated, the clinical groups recruited in New York were unmedicated. As reported in the 
original manuscript, we did not find differences between Lisbon and New York groups in any 
behavioural or psychometric measure. 

 

Table r1 – Psychotropic medication in each group. Data was compared between groups using 
Chi-square test or Fisher’s exact test (when samples were very small). OCD = Obsessive-
compulsive disorder; MA = Mood and anxiety disorders group; SSRI = Selective serotonine 
reuptake inhibitor; TCA = Tricyclic antidepressant; SGA = Second-generation antipsychotic; 
FGA = First-generation antipsychotic; BZD = Benzodiazepine). 

We now present this in the manuscript, lines 110-114, where it now reads: For each diagnosis 
present in any group, we tested if its proportion was different between the OCD group and the 
mood and anxiety group, and we did not find significant differences for any diagnosis (P’s>0.3; 
chi-squared or Fisher exact test), except for OCD. Regarding medication, we classified it in 
classes and we did not find differences between groups in the use of any class of medication 
(P’s>0.2; Chi-squared or Fisher’s exact test). 

 

9) RT at 2nd stage are faster in common compared to rare transitions, and this effect is 
present already in session 1 (but seems to become larger in session 3). Is this an 
indication that subjects have learnt the state transition probabilities in session 1 
already? 

The reviewer is correct that reaction times at the second-step are faster following common than 
rare transitions even in the first session where choices are model-free.  We think this likely 
reflects motor systems learning to predict, and hence prepare, upcoming actions before higher-
level decision-making systems have learnt to use state predictions to guide choices.  This is 
discussed in the manuscript as:  

Results lines 143-147: Although state transitions in session 1 did not influence subsequent first-
step choices, key-press reaction times at the second-step were faster following common than 



 
 

 

40 
 

 

 

rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; t66=7.81, P<0.0001, paired t-
test; Figure 2e). This dissociation between choice and implicit measures of task-structure 
learning suggests that motor systems learned to predict and prepare upcoming actions before 
decision making systems were using a predictive model to evaluate choices. 

Results lines 184-192: Key-press reaction times at the second-step became faster overall 
between session 1 and 3 (main effect of session P<0.0001, repeated measures ANOVA), but 
this was more pronounced following common than rare transitions (session-transition interaction 
P=0.008; Figure 2e). Additionally, by session 3 the rate of invalid key presses was significantly 
higher following rare than common transitions (P=0.002, Wilcoxon signed rank test, Figure S1). 
Therefore, both choice-based and implicit measures showed evidence of learning about the 
transition structure between session 1 and 3. Model-based choice was significantly correlated 
across subjects with the rare-common reaction time difference at both session 1 & 3 (P<0.001, 
figure S3), suggesting interaction between learning at motor and cognitive-levels, thought this 
appeared to be driven by the minority of subjects whose choices were more model-based. 

See also our response to reviewer 1’s question about this. 

 

10) Before debriefing participants, did you question them about what kind of strategy 
they used? While this would probably hard to quantify, it might at least give some 
qualitative hints as to what beliefs they had acquired (and what models of state space 
they applied) during the 900 uninstructed trials. 

We thank the reviewer for this question.  Prior to informing subjects about the task structure we 
did indeed assess their beliefs, using a pen-and-paper questionnaire given at the end of session 
3.  We had not included this data in the previous version of the manuscript because we were 
unable to access the documents with the NY groups responses due to COVID-19 restrictions 
preventing access to the building.  We have now been able to analyse this data for all subjects 
and include the results in new Supplementary information (lines 46-99). 

Participants were required to answer four questions. For the first two questions, they were 
asked to provide open-ended answers. Afterwards, the same questions were asked in a multiple 
choice format. 

The questions were asked after showing the participants the following image in a sheet of 
paper: 

Specifically, the first question was: “If you press the upper arrow key when this screen is being 
shown, what is most likely to happen next?”. The second question was: “If you press the lower 
arrow key when this screen is being shown, what is most likely to happen next?” 
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After the participants wrote their answers, the researcher collected the first sheet of paper and 
provided them a second sheet of paper, which also contained the same image at the top and 
the same two questions. However, instead of writing an open answer, participants were asked 
to choose one of four different options for each question: 

a) The left side circle will turn yellow 

b) The right side circle will turn yellow 

c) A coin will appear on the left side 

d) A coin will appear on the right side 

  

To classify the open answers that participants gave as correct or incorrect, we created a set of 
criteria that the answers had to fulfil in order to be considered correct. According to these 
criteria, each answer had to contain at least one of the following elements: a) “the right circle 
would turn yellow / light up / be highlighted”; b) “the yellow circle moves [from the top circle] to 
the right circle”); c) “most of the times, the right circle would turn yellow, although in a minority of 
times the left circle turns yellow”. Two independent raters (PCR & AM) assessed open answers 
independently. Then, when in disagreement, they discussed and reached a consensus if those 
answers should be considered correct or incorrect. The rate of concordance between 
independent raters was 92%. 

Considering all participants together, we found no association between correct or incorrect 
answers and pre-debriefing behavioural measures, either in open answers (-1.7<t’s<0.2; 
P’s>0.09; independent sample t-test’s) or in multiple-choice questions (-1.2<t’s<0.1; P’s>0.2).  
However, we found that subjects who gave correct multiple-choice answers had a higher 
influence of model-based action values on choice after the debriefing (t = -2.66; P=0.009; 
independent sample t-test). 

Concerning open answers that did not fill the criteria for being considered correct, we identified 
a frequent type of wrong belief/model, specifically that the second-step circle is random (~25% 
of open answers). Regarding the remaining incorrect open answers, they consisted of different 
types of answers each occurring with a small frequency (<10%), such as ignorance of the 
second step (“immediately after the first-step choice, a coin may appear or not”) or an incorrect 
transition model (common transitions identified as rare & rare transitions identified as common). 
As the first type of wrong model (random second-step) was particularly frequent, we divided 
subjects in three groups (correct model, random second-step, other wrong models) and tested if 
their pre-debriefing behaviour was different. We did not find significant differences between 
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groups in terms of behavioural strategy, either in logistic regression or model fitting analyses 
(F’s<2.0; P’s>0.14; one-way ANOVA). 

When comparing different clinical groups, we found that while individuals with OCD had a 
smaller proportion of correct open answers (12/39) than healthy volunteers (23/43), this 
difference was not statistically significant (χ2 = 2.1, P=0.1, chi-squared test). We also did not 
observe differences between OCD and healthy volunteers in their proportion of correct multiple-
choice answers (χ2 =0.45, P=0.5). Individuals with mood and anxiety disorders had the same 
proportion of correct/incorrect answers that healthy volunteers, both in open answers (χ2 =0.2, 
P=0.7) and in multiple-choice (χ2 =0.03, P=0.9). 

Our findings complement previous data provided by other groups using an operant conditioning 
outcome devaluation paradigm in which OCD subjects did not differ from healthy volunteers in 
their capacity to provide explicit assessment of the contingencies governing action and 
outcome, although their behaviour did not reflect these (Gillan et al., 2014; Gillan et al., 2015). 
However, in those studies outcomes were aversive and the experimental induction of habits in 
humans using operant conditioning paradigms has been questioned (De Wit et al., 2018; 
Robbins et al., 2019). 

 

11) It is unclear to me why the neutral blocks existed? What was their purpose? 

The original two-step task (Daw et al. Neuron, 2011) used reward probabilities which drift as  
random walks on the range 0.25 - 0.75, so most of the time they are pretty close to neutral.  
This has the advantage of reducing correlations across trials, which can otherwise complicate 
analysing how events on one trial affect subsequent choices (see Akam et al. PLOS Comp. Biol. 
2015 for a detailed discussion).  However, it also means there is very little contrast between 
good and bad options, and means that model-based RL does not yield a significantly higher 
reward rate than model-free (Akam et al. PLOS Comp. Biol. 2015, Kool et al. PLOS Comp. Biol 
2016).  We felt it was important that there was a significant contrast between good and bad 
options to promote task engagement and ensure that model-based RL yielded higher reward 
rates, hence having 80-20 non-neutral blocks which only transitioned once the subject started 
choosing the correct option, but incorporated neutral blocks as well to try and reduce cross trial 
correlations, at least to some extent. 

 

Minor: 

1) In the introduction (Line 79 onwards) you write: "However, no studies have explored 
behaviour on multi-step tasks in the absence of information about task structure, in 
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either healthy or clinical populations" <-- I can think of one study (Gläscher et al. 2010, 
Neuron) that used Tolman-style latent learning in an abstract multi-step T-maze. I think 
this is also without explicit instruction and likewise looks at the contribution of MF and 
MB systems over time. 

We thank the reviewer for pointing out this relevant prior work.  It is true that subjects in 
Gläscher et al. learned the task structure from experience (during the latent learning phase) 
then subsequently used this knowledge in the rewarded phase to guide choices.  We have 
modified the introduction to state that ‘few’ rather than ‘no’ studies have explored this question, 
and now discuss the Gläscher et al study explicitly in the discussion as: 

Lines 534-539: Another question is how information given to subjects about their objectives 
shapes learning and use of task models.  We told subject to ‘gain as many rewards as possible’ 
and it is possible that this focussed their attention on action-reward relationships to the 
detriment of action-state learning.  This might explain why in an earlier study, subject were able 
to successfully learn a task model during exposure to transition statistics in the absence of 
reward, then use it in a subsequent reward guided task14. 

 

2) In the discussion (#341): "When learning from experience, individuals with OCD were 
impaired in their use of model-based control and biased towards a model-free strategy." 
This makes it sound as if this was only true for OCD, but it likewise applies for healthy 
controls. 

We have clarified this in the revised manuscript, lines 379-381, where it now reads: “When 
learning from experience, individuals with OCD were impaired in their use of model-based 
control and were more biased towards a model-free strategy, as compared with healthy 
volunteers.” 

 

3) Line 283/285: "Increased use of model-based RL after debriefing was confirmed by 
model fitting (Figure 5d), which showed increased influence of model-based action 
values on choice" <-- I guess this should be Figure 5e? 

Thanks, fixed in revised manuscript. 

 
 

Decision Letter, first revision: 
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 10th June 2021 
 
Dear Professor Oliveira-Maia, 
 
RE: "Explicit knowledge of task structure is a primary determinant of human model-based action" 
 
Thank you for submitting your revised manuscript and for all your work on the revision. I appreciate in 
particular that you collected additional data to respond to the referees' concerns. 
 
Although your manuscript has been revised in response to reviewer comments, it does not fully 
comply with our editorial policies and formatting requirements. In particular, you must revise the 
presentation and interpretation of statistical tests before we can proceed to peer-review. 
 
In terms of presentation, this includes provision of full statistics (please see the attached document) 
for all parametric tests; provision of equivalent information for non-parametric tests is likewise 
necessary (especially a measure of effect size and a measure of the effect size's confidence/credibility 
interval where possible). 
 
In terms of interpretation, please not that we do not accept absence of evidence for an effect as 
evidence of absence; moreover, we do have very clear guidelines as to how null-effects (effects where 
p > alpha) may be described. To provide a few examples: 
 
'During session 1 there was no difference in the average rate of invalid key presses at the second-step 
following common vs rare transitions (P=0.19, Wilcoxon signed rank test, Figure S1).' 
should read: 
'During session 1 there was no statistically significant evidence for a difference in the average rate of 
invalid key presses at the second-step following common vs rare transitions (P=0.19, Wilcoxon signed 
rank test, Figure S1).' [You must also provide full statistics, not just the p-value for non-significant 
results] 
 
'During session 1, stay probability was strongly influenced by trial outcome (P<0.001, permutation 
test), but not by state transition (P=0.3) nor the transition-outcome interaction (P=0.1; Figure 2 a, 
d).' 
should read: 
'During session 1, stay probability was strongly influenced by trial outcome (P<0.001, permutation 
test). There was no statistically significant evidence for an influence of state transition (P=0.3) or the 
transition-outcome interaction (P=0.1; Figure 2 a, d) on stay probability'. [You must also provide full 
statistics, not just the p-value for significant and non-significant results] 
 
'As in the self-paced task, initial behaviour was consistent with model-free control, with a main effect 
of trial outcome on stay probability (P < 0.001, permutation test) in session 1, but no effect of 
transition (P=0.23) or transition-outcome interaction (P=0.92) (Figure S4a,b)' 
should read: 
'As in the self-paced task, initial behaviour was consistent with model-free control, with a main effect 
of trial outcome on stay probability (P < 0.001, permutation test) in session 1. There was no 
statistically significant evidence for an effect of transition on stay probability (P=0.23) or statistically 
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significant evidence for an interaction between transition and outcome(Figure S4a,b)'. [You must also 
provide full statistics, not just the p-value for significant and non-significant results] 
 
'However, the session by transition interaction did not reach significance (P=0.2), indicating that for 
this group the effect of experience on reaction time did not differentiate between common and rare 
transitions.' 
should read: 
'However, the session by transition interaction did not reach statistical significance (P=0.2)'. [No 
interpretation of null-effects derived from NHST is permitted, hence, they cannot indicate anything in 
our pages]. 
 
'[...]unlike in healthy volunteers, did not correlate with decreases in perseveration from early to late in 
blocks after debriefing (r=-0.09, P=0.5; Figure S7)' 
should read: 
'[...] in patients we found no statistically significant correlation with decreases in perseveration from 
early to late in blocks after debriefing (r=-0.09, P=0.5; Figure S7)'. [Please avoid logically contrasting 
significant effects and the absence of significant effects. Please note also that you must report full 
statistics for correlation analyses, too, including for ns findings.] 
 
These are some examples, but the list is much more comprehensive. 
 
 
In brief, no interpretation or analysis choice (i.e. treating groups as the same) may be based on a 
non-significant result in null-hypothesis significance testing. 
 
Before we can send the manuscript back to our reviewers, we ask that you revise it to ensure that it 
complies fully with our policies and is formatted according to our requirements. I have attached 
another copy of our checklist that exemplifies our formatting and policy requirements. If you are 
uncertain as to how to address any of the points in the checklist, please don't hesitate to contact me. 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
 
Thank you in advance for attending to these requests and I look forward to receiving your revised 
manuscript. 
 
Sincerely, 
 
Marike Schiffer 
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Marike Schiffer, PhD 
Acting Chief Editor 
Nature Human Behaviour 
 
 

Author Rebuttal, first revision: 
 
 Reviewer #1 

 

Remarks to the Author: 

The study by Castro-Rodrigues, Akam et al. looks at the contribution of model-based and 
model-free control to action selection in a simplified version of the classic ‘two-step’ 
task. In particular, they examine whether subjects’ behaviour is initially model-based or 
model-free when subjects receive minimal instruction on the structure of the task. This is 
potentially of interest because most previous studies have given explicit instruction 
about the structure of the task, and a recent report from Todd Hare’s lab has found that 
when these instructions are sufficiently clear then humans tend to be exclusively model-
based. 

 

They find that most subjects show behaviour that is initially model-free, not model-
based. This behaviour persists over several days of repeated exposure to the task, even 
though subjects show implicit measures of learning the task structure. When subjects 
are explicitly instructed about the structure of the task, their behaviour becomes 
predominantly model-based. Their two central conclusions from this are: (i) explicit task 
structural knowledge determines human use of model-based RL, and (ii) this is most 
readily acquired from instruction rather than experience. 

 

In addition to this, the authors explore variation of these behaviours between patients 
with OCD and other disorders. While there are some differences in the degree to which 
OCD patients use model-based control, in that uninstructed behaviour is even more 
biased towards model-free behaviour in these patients, the overall pattern of behaviour is 
similar to healthy controls (in other words, the patients become more model-based with 
instruction). 
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The paper overall provides an interesting contribution to the study of this task, and in 
some ways complements the recent study by Silva and Hare, by showing what behaviour 
is like in the “naïve” state of not knowing anything about the task structure. Overall, I 
thought that the data were well analysed/modelled and clearly presented. 

We thank the reviewer for the positive assessment of our manuscript. 

 

On the other hand, I was left slightly concerned about whether the two central 
conclusions mentioned above can really be generalised to all learning tasks where the 
structure of the task is unknown, or whether the conclusions are actually far more 
narrow and only apply to the situation studied here. I outline these concerns below. 

 

1. My first concern is that subjects performed this task exceedingly quickly, without 
much deliberation at all (reaction times were typically below 400ms, and subjects 
completed 1200 trials per session). This leads to a concern that participants were 
optimising speed over accuracy in completing the task – in which case, a model-free 
controller might well be the optimal strategy. The task appears to be entirely self-paced 
(although I couldn’t find details on the duration of reward presentation, duration of inter-
trial interval, duration of interval between light 1 being extinguished and light 2 
appearing, etc. in the methods), and subjects may well not be trying to optimise number 
of rewards but instead trying to complete the task reasonably quickly. One possible way 
to address this would actually be to collect a small additional dataset where the number 
of trials is brought down considerably (e.g. 300 trials per session), and the pace of the 
task is slowed right down (e.g. each light presentation event lasts 1 second before the 
subject can respond, and there is a 1 second ITI). In such circumstances, would subjects 
still appear entirely model-free until they were instructed otherwise? My suspicion is that 
they would not. Although I accept that the timings of the task are unchanged in session 4 
(the instructed session), the instructions are essentially telling participants that they 
need to pay attention to these features when performing the task (and indeed, they 
become more deliberative on rare transitions in these circumstances (figure 4d). 

We agree with the reviewer that, in principle, due to the self-paced nature of the original task, 
and overall fast reaction times exhibited by subjects, they might have been optimising speed 
over accuracy and hence opting for a model-free strategy.  We directly addressed this in the 
revised manuscript by following the reviewer’s suggestion and gathering an additional dataset in 
which we slowed down the pace of the task by introducing a 1 second delay between options 
being highlighted and being active for selection (cued by a colour change from pale to bright 
yellow), at both the first and second step, in addition to a 1 second inter-trial interval.   In this 
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dataset, 20 newly recruited healthy volunteers completed a total of 600 trials each, split into 3 
sessions of 150 trials prior to debriefing, and an additional session of 150 trials after debriefing 
(the original task used 4 sessions each of 300 trials).  Despite the slower pace and hence more 
time for deliberation, the new data strikingly recapitulated our original findings, including: 

-  A large influence of trial outcome but no statistically significant effect of transition-outcome 
interaction at the first session, consistent with a model-free strategy (Figure S4, reproduced 
below). 

- A small increase in transition-outcome interaction by session 3, consistent with increased use 
of model-based RL with experience (Figure S4b).  As in the original task, this appears to be 
driven by a minority of subjects, as a likelihood ratio test on session 3 data supported a mixed 
model-based + model-free strategy over a model-free only strategy in only 3 among the 20 
subjects. 

- A large increase in the use of model-based RL after receiving explicit information about task 
structure.  As in the original task, this was accompanied by a decrease in the RL model eligibility 
trace parameter, which we think reflects changes to subjects’ representation of the task-state 
space affecting model-free value updates (Figure S5, reproduced below). 

Overall these data confirm our main results that, in unfamiliar domains, subjects initially rely on 
a model-free strategy, that they are surprisingly slow to learn to use a task model from 
experience, but learn much more readily from explicit description.  

These data are detailed in the revised manuscript as: 

Results 206-224:  A possible reason why model-free control might predominate is that subjects 
could perform the task as fast as they wished and, thus, might have been optimising speed over 
accuracy. To address this possibility, we tested an additional group of 20 healthy volunteers 
(mean age = 29.6 years old [SD=9]; gender = 25% males; mean education = 15.3 years [SD = 
2.8]) on a slow-paced version of the task, in which a 1 second delay occurred between circles 
lighting up and being active for selection, cued by a change in colour from pale to bright yellow, 
in addition to a 1 second intertrial interval (ITI). Subjects completed three sessions, each of 150 
trials followed by receiving explicit information about task structure, and a further session of 150 
trials afterwards. As in the self-paced task, initial behaviour was consistent with model-free 
control, with a main effect of trial outcome on stay probability in session 1 (coefficient=0.79, 
95% CI [0.44,1.14], P<0.001, bootstrap test). There was no statistically significant evidence for 
an effect of transition (coefficient=0.16, 95% CI [-0.10,0.41], P=0.2) or the transition-outcome 
interaction (coefficient=-0.01, 95% CI [-0.24,0.25], P=0.9) on stay probability (Figure S4a,b). 
Also, similarly to the self-paced task, the effect of transition-outcome interaction on stay 
probability increased between session 1 and 3 (95% CI of null hypothesis test statistic [-
0.35,0.34], coefficient change=0.45, P=0.005, permutation test), as assessed by the logistic 
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regression (Figure S4b), consistent with increased use of model-based control with experience. 
However, at session 3 the influence of model-free control was still substantially larger than that 
of model-based, as assessed by RL model-fitting (Figure S4d), and a likelihood ratio test on 
session 3 data supported a mixed model-based plus model-free strategy over a simpler model-
free only strategy in only 3 among the 20 subjects. 

Results 294-296: Similar effects of debriefing on the transition-outcome interaction were found 
among the 17 healthy volunteers performing the slow-paced version of the task that were not 
using model-based RL significantly in session 3 (Figure S5a-c). 

  

Supplementary figure S4. Learning effects in slow-paced task. a) Stay probability analysis.  b) 
Logistic regression analysis of stay probabilities.  c) Reaction times after common and rare transitions in 
session 1 and 3.  d) Comparison of mixture model fits between session 1 and session 3. RL model 
parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value learning rate; λ, Eligibility 
trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice perseveration. 

  

Supplementary figure S5. Effects of explicit knowledge in the slow paced task. a) Per-subject 
likelihood ratio test for use of model-based strategy on session 3 (left panel) and session 4 (right panel). 
b) Stay probability analysis.  c) Logistic regression analysis of stay probabilities.  d) Reaction times after 
common and rare transitions in session 1 and 3.  e) Comparison of mixture model fits between session 1 
and session 3. RL model parameters: MF, Model-free strength; MB, Model-based strength; αQ, Value 
learning rate; λ, Eligibility trace; αT, Transition probability learning rate; bias, Choice bias; pers., Choice 
perseveration. 

2. More broadly, it is unclear whether the general conclusion that participants need 
explicit task knowledge in order to use model-based RL is really true – or whether it is 
only true in a task with a very limited state space, like the present task. Model-based 
control seems far more important in tasks with much larger state spaces than the one 
considered here. So while the present study provides interesting insights into this 
particular task, and provides an interesting comparison with the many previous studies 
that have used this task, it is unclear whether it can be used to draw a broader 
conclusion about the use of model-based versus model-free control per se. 

We agree that it is possible that the size of the task state space might affect use of model-based 
RL. It is worth noting that the task did incentivise the use of model-based RL, as shown by the 
positive correlation we observed between measures of model-based choice and total rewards 
obtained, demonstrating that use of model-based RL is important in our task.  We also note that, 
while larger state spaces might increase payoffs for using model-based RL, they also make both 
model-learning and planning substantially more difficult, so it is not obvious that model-based 
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RL would necessarily be utilised more or earlier in larger state spaces. Nonetheless we agree it 
is important to be transparent about this limitation of our study, which we now discuss in the 
revised manuscript file as: 

Discussion, lines 590-594:  though we used several task variants, they were all adaptations of 
the original two-step task, and share with it both a comparatively small state space and 
probabilistic action-state transitions. It therefore remains an open question how broadly our 
findings generalise to other tasks.  Model-based control may be more advantageous in larger 
state spaces, but model-learning and planning are correspondingly harder.  

We have also softened the language in the title and abstract to state that explicit knowledge is 
‘a’ rather than ‘the’ primary determinant of human model-based action. 

 

3. Figure S3 shows that in about 10% of trials, participants make invalid presses at the 
second stage. It would be interesting to know if these invalid presses reflect implicit 
learning of the transition probabilities (i.e. whether they are more common on rare 
transitions than common transitions), and if so, when this develops across the different 
sessions (and whether it is at all predictive of the degree of model-based control, or the 
strength of the common/rare reaction time effect in figure 2e). The fact that subjects 
appear to be learning the model structure implicitly makes me feel more strongly that if 
participants were forced to become slower in their responses (comment 1, above), they 
would likely become more model-based. 

We thank the reviewer for raising this important question, addressed via a new analysis, added 
to figure S1, comparing the rate of invalid presses at the second-step (left or right actions), 
following common and rare transitions.  In the first session the rate of invalid presses following 
common and rare transitions were not significantly different, but by the third session subjects 
made significantly more errors following rare transitions.  This provides further evidence for 
implicit learning of task structure, in addition to the previously reported reaction time differences 
following common vs rare transitions, which are significant even in the first session.  

We have also added an additional supplementary figure (Figure S3, reproduced below) looking 
at correlations, across subjects, between measures of model-based choice (model-based 
weight from the RL model and transition-outcome interaction from the regression) and 
measures of implicit learning of the transition structure (differences in second-step reaction 
times and rates of invalid responses following common vs rare transitions). Interestingly, choice-
based and implicit measures of task structure learning, reaction-time in particular, were 
significantly correlated at all time-points evaluated (sessions 1,3 and 4). This appears to be 
driven, at least in sessions 1 and 3, when subjects are learning only from experience, by the 
handful of subjects whose choices are more model-based. 
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Taken together, we think these data support a partial dissociation between task structure 
learning at the motor and cognitive level, with motor-level learning occurring faster and more 
consistently across the population, as evidenced by the robust reaction time effects at session 1 
when choices are model-free, but with some interaction between the levels evidenced by the 
cross-subject correlations. 

We agree with the reviewer that evidence for implicit task structure learning further motivates 
the control experiment we performed in response to comment 1 above, in which we forced 
subjects to do the task at a slower pace.   As discussed above, choice behaviour in this slow-
paced task was similar to that in our original data.  We think these data are consistent with a 
dissociation between task structure learning at motor and cognitive levels, in that robust implicit 
learning of task structure, as evidenced by motor performance, does not necessarily imply that 
cognitive systems have a usable task model. 

We discuss these data in the revised manuscript as: 

Results lines 148-153: Although we did not find evidence for state transitions influencing 
subsequent first-step choices in session 1, key-press reaction times at the second-step were 
faster following common than rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; 
t66=7.81, P<0.0001, d=0.75, paired t-test; Figure 2e). This dissociation between choice and 
implicit measures of task-structure learning suggests that motor systems learned to predict and 
prepare upcoming actions before decision making systems were using a predictive model to 
evaluate choices. 

Results lines 195-205: Key-press reaction times at the second-step became faster overall 
between session 1 and 3 (main effect of session F1,66=21.1, P<0.0001, ηp

2=0.24), but this was 
more pronounced following common than rare transitions (session-transition interaction 
F1,66=21.1, P=0.008, ηp

2=0.1, repeated measures ANOVA; Figure 2e). Additionally, by session 3 
the rate of invalid key presses was significantly higher following rare (median=0.037/trial) than 
common (median=0.017/trial) transitions (P=0.004, Sign test, Figure S1). Therefore, both 
choice-based and implicit measures showed evidence of learning about the transition structure 
between session 1 and 3. The strength of model-based influence on choice was significantly 
correlated across subjects with the rare-common reaction time difference at both session 1 
(r=0.57; P<0.001; Pearson’s correlation, figure S3) and session 3 (r=0.69; P<0.001), suggesting 
interaction between learning at motor and cognitive-levels, though this appeared to be driven by 
the minority of subjects whose choices were more model-based. 

Discussion, lines 543-550: An additional consequence of using fixed stimulus locations is that 
motor-systems can predict upcoming actions. Our observation of robust reaction-time 
differences following common vs rare transitions at session 1, when choices were model-free, 
suggests a dissociation between motor and cognitive systems in task structure learning, with 
motor systems learning to predict upcoming actions earlier and more readily than cognitive 
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systems learn to use a model to guide choices, consistent with other recent reports56.  
Intriguingly, implicit and choice-based measures of task structure learning were correlated 
across subjects, even at session 1, suggesting that this dissociation is only partial, with 
cognitive task models potentially informed by earlier motor-level learning. 

 

Supplementary figure S3. Correlation between choice and implicit measures of task structure 
learning.  Correlation across subjects between different measures of task structure learning in the fixed 
task at sessions 1, 3 and 4. Two choice-based measures were used; the model-based weight parameter 
from the RL model fit and the transition x outcome predictor loading from the logistic regression, and two 
implicit measures; the difference in second-step reaction times following common vs rare transitions, and 
the difference in the rate of invalid second-step responses (e.g. pressing left when the right state was 
active) following common vs rare transitions. Points show individual subjects. Lines show linear fit with 
95% confidence interval on fit indicated by shaded region. In both session 1 and 3, when subjects are 
learning only from experience, both measures of model-based choice are correlated with the rare-
common reaction time difference. 

  

4. In a version with changing probabilities, which was run as a pilot study, the authors 
conclude that subjects were not really able to learn anything at all about the task 
structure. But a comparison of supplementary figure S6a and figure S6f suggests that a 
small subset of subjects could learn the task structure, and the proportion of participants 
didn’t really differ between instructed vs. non-instructed versions. 

The reviewer is correct that some individual subjects on the changing task did show evidence of 
model-based RL in the last session (session 4), as assessed by the likelihood ratio test. The 
reviewer is also correct that informing subjects about the structure of the changing task did not 
significantly increase the use of model-based RL, since the proportion of participants using 
model-based RL on session 4 was the same independent of debriefing (2/12 vs. 4/24). Also, the 
number of participants that started using model-based RL on session 4 (6/36) was similar to 
those using model-based RL on session 3 (6/42). The lack of effects of debriefing presumably 
reflects the fact that participants did not understand the debriefing, or felt the task was too 
complex to make the effort. This was not the case in the fixed task, where debriefing 
dramatically boosted use of model based RL. This was one of the reasons why we choose the 
fixed task for the majority of our experiments. The other reason was that, taking the population 
performing the changing task as a whole, we saw no evidence of a significant increase in the 
use of model-based RL during the uninstructed sessions, i.e. we did not see the increase in 
transition-outcome interaction that we saw in the fixed task. We have clarified this in the revised 
manuscript as: 
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Results, lines 119-122: The Changing version proved too complex for most subjects, particularly 
as shown by the lack of effects of debriefing on the development of model-based RL, although a 
small subset was able to learn the task structure (see Supplementary information for details), so 
we subsequently focused on the Fixed task, which is used for all data and figures in the main 
text.  

Supplementary information, lines 8-9: The proportion of subjects for whom a likelihood ratio test 
indicated model-based RL was being used in session 3 (6/42) was similar to that observed in 
the Fixed task (10/67). 

Supplementary information, lines 24-28: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty-based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 

  

Reviewer #2: 

Remarks to the Author: 

In this manuscript, Castro-Rodrigues and colleagues aim to study the effect of extensive 
task instruction (or the lack of it) on one of the most commonly used experimental 
paradigm related to model-based vs. model-free learning in healthy individuals as well as 
individuals with OCD and other mood and anxiety disorders. 

The authors use a simpler version of the two-step learning task by Daw et al 2011, by 
presenting all choice options with four circles at once and removing the second-step 
choice while keeping the main components of the task in terms of state transitions. 

The main finding is that in the absence of explicit instruction about the structure of the 
task, normal and clinical groups predominately adopt a model-free approach while a 
minority of subjects slowly moved toward model-based approach over time. Moreover, 
they only found a small difference between healthy and clinical groups in terms of the 
learning strategy. 

 

It is refreshing to see that finally there is an investigation into the effect of 
explicit/extensive task instructions in the original version of a task that has caused a lot 
of controversy about model-based vs. model-free learning, and how much of previous 
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results were dependent on such task instructions. I think this is an important study 
which is executed and analysed well, and has important implications for studying 
learning in healthy and clinical populations. The manuscript is clearly written and the 
main claims of the study are supported by the results presented. 

We thank the reviewer for the positive assessment of the manuscript. 

 

I mainly have a few clarifying questions about the methods/results, some of the side 
claims and broader implications of the study, and finally some suggestions for additional 
analyses discussions. 

 

-- I wonder why the authors did not use the original task of Daw et al. I could be wrong 
but I assume because it is almost impossible to perform the original task without 
explicit/extensive instructions. If so, what we have learned from many studies using the 
previous task? There is an interesting paper by Collins and Cockburn (Nat Rev 
Neuroscience 2020) that is worth discussing. 

The reviewer is correct that we did not use the original task because we predicted that it would 
be too complicated for participants to learn uninstructed.  We intended to simplify the task as 
much as possible while preserving the structure necessary to dissociate model-based and 
model-free RL, in order to optimize the chance of observing model-learning.  

While we think our findings provide important insights into when humans do and do not use 
model-based RL, we do not think they invalidate findings with the original task. Rather, they help 
to understand where those finding are likely to apply and where they may not. Specifically, our 
data speaks to situations where subjects must learn from experience to act in an unfamiliar 
domain, and show that behaviour in these circumstances is very different to that in situations 
where subjects are given detailed information about task structure. Both of these situations 
occur in real-life decision making, and are hence important to understand, though we think the 
uninstructed situation is under-represented in laboratory studies. Our study contributes to 
clarifying processes associated with uninstructed learning and the effects of instruction. 

We agree the Collins and Cockburn paper is worth discussing and do so as: 

Discussion, lines 584-590:  We note limitations and directions for future studies. First, though 
analysing behaviour through the lens of model-based and model-free RL has yielded important 
insights, this dichotomy does not capture the full space of possible learning algorithms, and can 
obscure their dependence on common computational primitives such as a representation of the 



 
 

 

55 
 

 

 

task state-space62.  Although standard model-free and model-based algorithms provided a 
better fit to subjects behaviour than other models tested, our exploration of possible models was 
necessarily not exhaustive, and we did not attempt to model learning the state-space itself, nor 
effects of instruction on this.  

 

-- Authors mention that the Changing version of the task was too complex and that is 
why they focused on the Fixed version in most of their analyses (although they provide 
results based on the Changing version as well).  Considering that blocks would end in 
Fixed version of the task, could not participants use this signal to learn faster? For 
example, did the time to reach criterion become shorter over block of trials? 

Following the reviewer’s suggestion, we quantified block length distributions on the fixed and 
changing version of the task during sessions 1-3, when subjects are learning from experience, 
and found that they were very similar (Fixed task 55.7 ± 32.1 trials, Changing task 55.7 ± 32.2 
trials, mean ± SD).  In these sessions most subjects are using model-free RL, and, in both 
tasks, model fits to these initial sessions indicate that the model-free update of first-step action 
values was primarily driven by the trial outcome (rewarded or not) rather than the value of the 
second-step state (this is indicated by the model’s eligibility trace parameter λ being close to 1).  
For a model-free agent which updates the first step action values only from the trial outcome, 
irrespective of the second step state reached, the fixed and changing tasks are identical. 
Independently of whether the reward probabilities or transition probabilities reverse, the update 
required to the first-step action value is the same.  

Importantly, our assessment that the Changing version was too complex was strongly influence 
by the effects of debriefing in both task versions. Specifically, debriefing significantly increased 
the proportion of individuals developing model-based RL in session 4 for the Fixed task (52.1% 
for the debriefed group and 6.3% for the non-debriefed group), but not for the Changing task 
(16.7% both for debriefed and non-debriefed groups). This has been clarified in the revised 
manuscript at lines 119-122, which read: 

The Changing version proved too complex for most subjects, particularly as shown by the lack 
of effects of debriefing on the development of model-based RL, although a small subset was 
able to learn the task structure (See supplementary information for details), so we subsequently 
focused on the Fixed task, which is used for all data and figures in the main text.  

Regarding the reviewers’ question about whether subjects got faster at adapting to reversals 
with task experience, we looked at this by examining the choice probability trajectories following 
reversals (see figure below) but did not observe significant changes between session 1 and 3 in 
either task (permutation test for difference in exponential fit P>0.17). 
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Also considering this task structure would not make more sense to analyse data across 
blocks instead of arbitrary sessions of 300 trials? Authors show one aspect of behaviour 
over time (in Figure S1) but not the main analyses (e.g. probability of stay, RT, etc.). I 
think including such analyses can be more informative, specially about transition from 
MF to MB. 

We thank the reviewer for this suggestion, which we considered very carefully. On balance we 
think that analysing the data in blocks is probably not straightforward, because we do not see a 
way to look at the time-course of learning across blocks which does not either a) exclude a large 
number of subjects, or b) incur major biases due to including different subjects at different time 
points.  This is because the number of blocks completed by subjects for each of the first 3 
sessions varies over a wide range (shown below for the fixed task). If we divide the data based 
on block number, then either we will have many more subjects in the early data, or we will have 
to exclude a substantial quantity of either trials or subjects to balance the data.  This would be 
further complicated by the fact that the number of completed blocks will be correlated with their 
behavioural strategy.    

We think that grouping the data into early and late learning by session number, and hence trials 
completed, is a reasonable and principled approach to categorising the stage of learning.  The 
choice of 300 trial lengths for sessions was, as the reviewer correctly points out, arbitrary, but 
given that this is what we used for the experiment it is a natural choice to also use for the 
analysis.  It is also worth noting that we obtained qualitatively similar findings in the slow paced 
control experiment in which the length of sessions was 150 trials. 

 

-- There are a few generally untested ideas about the utility of MB and MF RL, which 
appears in the introduction of this manuscript as well (lines 44-49). 

 

Is it true that model-based allows behavioural flexibility? 

Our comments about the utility of model-based and model-free RL were aiming to outline the 
computational properties of these different classes of algorithm, rather than their behavioural 
consequences. We apologize if this was not clear, we have modified the text to ensure we 
correctly cite the relevant literature when we make these statements.  Regarding computational 
properties, we think it is an accurate characterisation to say that model-based RL algorithms 
can adapt to changes in the environment faster than a model-free RL algorithm.  The reason for 
this is that a local change in the environment can change the optimal policy globally – e.g. if the 
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rewarded goal location in a maze changes, this may require different decisions at locations far 
removed from the goal.  When a model-based algorithm which has learned a model of the 
environment observes a local change in either the reward or transition structure, it can calculate 
the consequences of this for policy across the entire environment, albeit at the computational 
cost of planning.  A model-free algorithm by contrast must learn the new correct policy via 
experience. 

  

If this is the case, MB learning should be higher in the changing environment compared 
to the fixed version case because more flexibility is needed in the former; Is there any 
evidence this true? 

In accordance with the above discussion regarding block lengths being similar in the two 
versions of the task, we expect the fixed and changing tasks should require a similar level of 
behavioural flexibility, given that the correct choice changes equally often in both. The only 
difference is that in the fixed task this is always because the reward probabilities have changed, 
whereas in the changing task this can be because the reward probabilities have changed, or 
because the transition probabilities have changed. It results that the adaptation of model-based 
control is spread slightly differently between the two tasks. However, as discussed above, from 
the perspective of a model-free RL algorithm these tasks look very similar, and a majority of 
subjects are model-free pre-debriefing.  

We also note that previous studies have argued for arbitration between model-based and 
model-free control of behaviour on the basis of the uncertainty in each system about the best 
policy (Daw et al. 2005 Nature neuroscience 8 (12), 1704-1711, Lee et al. 2014, Neuron 81 (3), 
687-699).  The non-stationary transition probabilities in the Changing task would be expected to 
increase uncertainty about the transition probabilities used by the model-based system, which 
according to this account would be expected to reduce the influence of model-based control on 
behaviour.  Consistent with this, in the Changing task we did not see the increased loading on 
the transition-outcome interaction predictor with experience that we observed in the Fixed task 
(Figure 2D, S10B), and removing the model-based component of the RL model had less impact 
on the fit quality in the Changing task than in the Fixed task (Figure S2A, S10D).  

This is now discussed in greater detail as: 

Supplementary information, lines 24-28: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty-based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 
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I addition, authors mention that model-free learning allows rapid action selection but 
uses information less efficiently. Is there any support for this in the current experiment? 
If anything, in MF learning both action values can be updated on each trial whereas in MB 
learning only value related to the observed transition can be updated, making MF faster 
and more efficiently. All these claims can be tested in the current study by comparing 
learning rates and weight of MB vs, MF learning between the Fixed and Changing 
versions. 

We appreciate the question regarding efficient use of information with MF vs. MB learning. 
Indeed, our data is consistent with model-based RL using information more efficiently, since 
loading on the transition-outcome interaction predictor across sessions 1 to 3 (a measure of 
model-based RL) was positively correlated with the number of rewards obtained by each 
subject, for both tasks.  This is reported in the main manuscript, and has been revised for clarity, 
as: 

Results, lines 163-167: Importantly, loading on the transition–outcome interaction parameter 
across sessions 1 to 3 was positively correlated with the number of rewards obtained by each 
subject (r=0.41, P<0.001, Pearson’s correlation), suggesting that subjects who learned a model 
of the task used information more efficiently and thus obtained rewards at a higher rate. 

This finding is also consistent with current consensus that, in standard model-free RL, only the 
value of the chosen action is updated at each step, which in the two-step task corresponds to 
only one of the first-step actions being updated on each trial.  By contrast, for a model-based 
agent, the change in value of the second-step state due to the trial outcome will update the 
value of both first-step actions according to the subjects’ current estimate of how likely they are 
to transition to that state. 

Regarding comparisons between the two tasks, as discussed above, prior to receiving explicit 
information about task structure, the predominant strategy in both tasks was model-free RL, with 
the fitted parameters further indicating that trial outcomes (rewarded or not) primarily directly 
reinforced the preceding first step choice, irrespective of the particular second-step in which the 
reward was obtained. This is consistent with the observed large main effect of outcome on 
repeating choice, as observed in the logistic regression.  From the perspective of such a ‘direct-
reinforcement’ model-free strategy, which is insensitive to where the rewards are received, the 
fixed and changing tasks are very similar.  Consistent with this we did not see any significant 
differences in the RL model fits between the fixed and changing task in sessions 1 or 3, and the 
proportion of participants developing model-based RL at session 3 was similar across the two 
versions of the task (~14-15%). In any case, as discussed above, the logistic regression and 
model-comparison analyses provide some evidence for some, although limited, use of model-
based RL in the Fixed task, consistent with uncertainty-based arbitration between strategies. 
Equivalent evidence was not found for the Changing task. Similarities and differences between 
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the two tasks in the uninstructed phase are now discussed in greater detail in the 
Supplementary information: 

Supplementary information, lines 8-9: The proportion of subjects for whom a likelihood ratio test 
indicated model-based RL was being used in session 3 (6/42) was similar to that observed in 
the Fixed task (10/67). 

Supplementary information, lines 24-28: These data suggest that, while model-free RL was 
dominant for the non-instructed sessions of both tasks, the dynamically changing action-state 
transition probabilities in the Changing task further reduced the ability to learn a model-based 
strategy. This is consistent with uncertainty-based arbitration between model-based and model-
free control33,4, as the changing transition probabilities would be expected to increase 
uncertainty in the model-based system. 

 

-- One of the main points of the current study is that MF learning is more prominent and 
adopted first. Two recent studies using similarly complex task with multidimensional 
stimuli (and with no explicit instructions) have shown that feature-based learning, which 
resembles model-based is the starting learning strategy before transitioning to more 
accurate object-based learning (Farashahi et al, Nat Comm 2017, Cognition 2020). How 
do authors see the results of these studies reconcile with their findings? 

Feature- vs object-based learning is interesting, and we appreciate the opportunity to discuss 
our results in the context of the work by Farashahi and colleagues. Our understanding is that 
the distinction between feature-based and object-based learning is, at least in principle, largely 
orthogonal to that between model-based and model-free learning.  The model-based vs model-
free dichotomy concerns what subjects learn to predict about the future. Specifically, whether 
individuals learn to predict future reward directly (model-free), or to learn to predict future states 
and likely contingent outcomes, and hence estimate expected future reward indirectly (model-
based). The feature- vs object-based distinction by contrast, is to do with whether and how 
subjects generalise learning among items based on their sensory features. Indeed, one could 
imagine, for future research, that the task described here could be enriched with stimuli that 
have multiple feature dimensions, only some of which are relevant. Given our observation that 
instructions appear to shape subjects’ internal representation of which states are important or 
distinct, even in a task where states were explicitly signalled, it would be very interesting to 
understand instruction effects in the more ambiguous conditions investigated by Farashahi and 
colleagues, where relevant features must be inferred.   

We discuss this in the revised manuscript as: 
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Discussion, lines 594-597: Given our findings suggesting instruction shaped representation of 
the state-space, it would be interesting to explore instruction effects in tasks where there is 
ambiguity about the current state, or which state features are relevant for learning63,64. 

 

-- The main results are quite similar across healthy subjects and individual with OCD and 
other mood disorders (with some minor differences. 

Does this mean that this task (and the original task) are not very useful to study changes 
in MB vs. MF learning in the clinical population, or this dichotomy is not the best way to 
look at reinforcement learning (see Collins and Cockburn, Nat Rev Neuroscience 2020)? 

As discussed above response to an earlier question from reviewer 2, we believe that both the 
original Daw two-step task and the uninstructed version presented here provide valuable and 
complementary information about human behaviour.  They examine distinct situations, both of 
which are common in real-life decision making. Specifically, our data speaks to situations where 
subjects must learn from experience to act in an unfamiliar domain, and show that behaviour in 
these circumstances is very different to that in situations where subjects are given detailed 
information about task structure. Also as discussed previously, we agree that the limitations 
pointed out by Collins and Cockburn paper are very much worth discussing and this has been 
added to the discussion section of the revised manuscript as: 

Discussion, lines 584-590:  We note limitations and directions for future studies. First, though 
analysing behaviour through the lens of model-based and model-free RL has yielded important 
insights, this dichotomy does not capture the full space of possible learning algorithms12,33,63, 
and can obscure their dependence on common computational primitives such as a 
representation of the task state-space64.  Although standard model-free and model-based 
algorithms provided a better fit to subjects behaviour than other models tested, our exploration 
of possible models was necessarily not exhaustive, and we did not attempt to model learning 
the state-space itself, nor effects of instruction on this.  

We don’t think our findings of limited differences between OCD patients and healthy volunteers 
in their use of model-based RL invalidate the previous findings with the Daw task, among other 
reasons because the two tasks are distinct, and we did not compare them directly. Rather, we 
propose that our data suggest that previously unexplored aspects of how tasks are presented 
can affect the extent and nature of clinical differences, and have proposed potential clinical 
implications of such findings in the discussion. 
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-- Was there any significance difference in the learning rates between fixed version and 
changing version of the task. I ask this because there is an intuition that volatility should 
increase learning rates, and although a study by Behrens et al (Nat Neuroscience 2007) 
has provided evidence for such an intuition Farashahi et al, Nat Hum Behaviour 2019 
found no evidence for it. 

As discussed above, when the subjects are learning from experience, the block lengths in the 
Fixed and Changing task are very similar, so the volatility of the tasks is matched with regards 
to the predominantly model-free strategy the subjects employed.  We therefore don’t think our 
data speak to the question of whether/how environment volatility affects learning rates.  
Consistent with this, as we noted in response to an earlier comment from this reviewer, we did 
not observe significant differences in RL model-fits to the fixed and changing task pre-
debriefing. 

 

-- Was there any significance difference in the learning rates between control and clinical 
groups? 

We do not see any significant differences in the effects of either uninstructed experience or 
debriefing on learning rates between either clinical group and healthy volunteers.  Significant 
effects are reported in the main text and we now report the full set of permutation test results in 
new supplementary tables S1 and S2 (shown below).  

  

Supplementary table S1 – Permutation test results for differences in learning and 
debriefing effects between healthy volunteers and individuals with OCD. 

Parameter Learning effect Debriefing effect 

  Group diff. 
in 
parameter 
change 

95% CI of 
null 
hypothesis 
test statistic 

P 
value 

Group diff. 
in 
parameter 
change 

95% CI of 
null 
hypothesis 
test statistic 

P 
value 

Logistic 
regression 
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Outcome 0.28 -0.464, 
0.477 

0.25 -0.36 -0.528, 
0.537 

0.18 

Transition -0.07 -0.299, 
0.295 

0.65 -0.20 -0.489, 
0.485 

0.44 

Trans.  
outcome 

-0.43 -0.350, 
0.359 

0.02 -0.20 -0.584, 
0.597 

0.54 

RL model             

Model-free 
strength (MF) 

1.52 -1.681, 
1.684 

0.07 -0.04 -1.615, 
1.568 

0.94 

Model-based 
strength (MB) 

-0.27 -0.579, 
0.574 

0.37 0.04 -0.831, 
0.834 

0.94 

Value learning 
rate (αQ) 

0.01 -0.282, 
0.265 

0.91 -0.08 -0.253, 
0.262 

0.54 

Eligibility trace 
(λ) 

0.05 -0.204, 
0.229 

0.67 -0.01 -0.198, 
0.203 

0.93 

Transition 
learning rate 
(αT) 

0.05 -0.411, 
0.374 

0.75 0.02  0.315, 
0.308 

0.91 

Choice bias -0.08 -0.299, 
0.299 

0.62 0.24 -0.355, 
0.354 

0.18 
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Choice 
perseveration 

0.22 -0.577, 
0.572 

0.48 -0.86 -0.842, 
0.800 

0.04 

Permutation tests (5000 permutations) were used to assess differences in the fitted model 
parameter loadings between healthy volunteers (n=67) and individual with OCD (n=46) in the 
effect of learning (defined as change between session 1 and 3) and debriefing (defined as 
change between session 3 and 4, taking only subjects who are MF at session 3). 

  

  

  

  

  

Supplementary table S2 – Permutation test results for differences in learning and 
debriefing effects between healthy volunteers and individuals with mood and anxiety 
disorders 

Parameter Learning effect Debriefing effect 

  Group diff. 
in 
parameter 
change 

95% CI of 
null 
hypothesis 
test statistic 

P 
value 

Group diff. 
in 
parameter 
change 

95% CI of 
null 
hypothesis 
test statistic 

P value 

Logistic 
regression 

            

Outcome 0.32 -0.441, 
0.437 
  

0.16 -0.15 -0.487, 
0.507 

0.57 
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Transition 0.06 -0.291, 
0.291   

0.68 -0.10 -0.507, 
0.518 

0.68 

Trans.  
outcome 

-0.19 -0.378, 
0.387 

0.35 0.13 -0.594, 
0.617
  

0.68 

RL model             

Model-free 
strength (MF) 

0.27 -1.342, 
1.262 

0.67 0.22 -1.229, 
1.241 

0.75 

Model-based 
strength (MB) 

0.06 -0.550, 
0.550 

0.87 0.49 -0.750, 
0.732 

0.20 

Value learning 
rate (αQ) 

0.08 -0.261, 
0.253
  

0.53 -0.08 -0.254, 
0.250 

0.53 

Eligibility trace 
(λ) 

-0.08 -0.170, 
0.198   

0.37 0.08 -0.200, 
0.191
  

0.43 

Transition 
learning rate 
(αT) 

-0.16 -0.556, 
0.516 

0.65 -0.12 -0.439, 
0.443 

0.60 

Choice bias 0.11 -0.273, 
0.271  

0.42 0.11 -0.336, 
0.328 

0.51 
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Choice 
perseveration 

0.50 -0.598, 
0.609 

0.11 -1.40 -0.821, 
0.840
  

0.0012 

Permutation tests (5000 permutations) were used to assess differences in the fitted model 
parameter loadings between healthy volunteers (n=67) and individual with mood and anxiety 
disorders (n=49) in the effect of learning (defined as change between session 1 and 3) and 
debriefing (defined as change between session 3 and 4, taking only subjects who are MF at 
session 3). 

 

-- In some places, authors rely in 0.05 as the threshold for statistical significance. 
Considering the number of comparisons (e.g., between model parameters) I don't think 
0.05 is an appropriate threshold. 

Our manuscript contains both important positive results and important negative results, i.e. in 
several places it is the absence of a significant effect that is striking given the prior literature.  
We therefore think it is important to balance the risk of false positives against that of false 
negatives, as we do not want readers to come away with the impression that where we did not 
observe differences where they might be expected, this was because we had a high risk of false 
negatives due to multiple comparison correction.  Our approach in the manuscript has therefore 
been to report uncorrected P values in full (as opposed to as P<0.05 etc), such that readers can 
directly evaluate the strength of the statistical evidence.  It is worth noting that most of our 
positive results have very robust P values that would survive multiple comparison correction for 
multiple model-parameters.  We also note that we replicated our key findings concerning 
behaviour of healthy volunteers to a striking extent in the new dataset gathered with a slow 
paced version of the task to address reviewer 1’s comments (figure S4 & S5). Specifically, we 
confirmed that initial behaviour is model-free, that model-based increases in a minority of 
subjects with experience, and that subsequently providing explicit knowledge strongly boosts 
use of model-based but also affects model-free value updates. 

 

-- Why there is no comparison between stay probability in different conditions (to prove 
the unbalanced pattern of stay probability as a function of outcome and transition)? 

Given previous work from some of the authors of this paper, we think that reporting statistics 
based on the logistic regression analysis is the most principled way of quantifying the influence 
of trial events on the subsequent choice. Specifically, we have used the logistic regression 
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analysis (e.g. Figure 2D) to quantify significant effects of outcome, transition and their 
interaction on stay probability.  This analysis models the same data as shown in the raw stay 
probability plots, but importantly allows us to incorporate other influences on subjects’ choices 
such as choice biases.  Akam et al. (PLOS Comp. Biol. 2015) have previously shown that in 
two-step tasks with a strong contrast between good and bad options (including the one used 
here), correlations across trials can cause even model-free agents to show a significant 
influence of transition-outcome interaction on stay probability, because the difference between 
chosen and non-chosen action values at the start of the trial is correlated with the subsequent 
transition-outcome interaction. In that paper it is shown that this can be corrected for by 
including an additional predictor in the logistic regression analysis of stay probabilities, allowing 
unbiased estimation of the effects of the trial events on the next trials stay probabilities.  We 
have clarified this approach in the methods section of the revised manuscript as: 

Methods, lines 721-724: In addition to plotting raw stay probabilities, we quantified the effect of 
trial events on the subsequent choice using a logistic regression model, allowing other 
influences on choice such as subjects biases and cross trial correlations (see below) to be taken 
into account.  

Methods, lines 729-732: The correct predictor prevents cross-trial correlations from generating 
spurious loading on the transition-outcome interaction predictor, which can occur in two-step 
tasks with high contrast between good and bad options, due to correlation between action 
values at the start of the trial and subsequent trial events43. 

-- It seems to be a general increase in stay probability after debriefing as a side effect. 
What could be a reason for this? 

The reviewer is correct that stay probabilities overall increase following debriefing, and this also 
shows up in the perseveration parameter of the RL model, which increases following debriefing.   
We think this occurs because during the debriefing subjects are told that the reward probabilities 
at the two sides reverse only occasionally, and therefore, once they have detected a switch they 
expect the reward probabilities to be stable for an extended period. To examine this explicitly, 
we analysed whether the increase in perseveration as a whole due to debriefing correlated with 
a reduction in perseveration over the course of each block in the post debriefing data (Figure 
S7, right panels).  The rationale is that if the increase in perseveration due to debriefing is due 
to expecting a period of stable reward probabilities after a block transition, then in subjects who 
show this effect strongly, we should also expect to see that, after debriefing, they are actually 
less perseverative late in blocks compared to early (whilst being more perseverative overall).  
This was indeed the case in healthy volunteers, who showed the debriefing effect on 
perseveration strongly, but not in either clinical group, both of which showed a significantly 
weaker (OCD group) or non-statistically significant (mood and anxiety group) effect of debriefing 
on perseveration.  This analysis is discussed in the manuscript as: 
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Results, lines 341-351:  Debriefing also increased how often subjects repeated choices 
independent of subsequent trial events, as reflected by a significant increase in the 
‘perseveration’ parameter of the RL model (95% CI of null hypothesis test statistic [-0.75,0.76], 
parameter change=1.63, P<0.001; 95% CI of null hypothesis test statistic [-1.25,1.07], group 
difference in parameter change=1.76, P<0.001; permutation tests; Fig. 4e). This may result from 
information that reward probabilities on the left and right reversed only occasionally and are thus 
stable for extended periods of time. In this case, one would expect a reduction in perseveration 
across the course of each block, from shortly after a reversal, when reward probabilities are 
stable, to late in the block, when the next reversal is anticipated. Consistent with this hypothesis, 
we found that participants with larger post-debriefing increases in overall perseveration also had 
larger declines in perseveration within post-debriefing non-neutral blocks, from trials 10-20 
(early) to 30-40 (late; r=-0.35, P=0.02; Pearson’s correlation; Figure S7). 

  

 

-- Authors focus on participants who did not use MB learning in session 3 (e.g. in Figure 
4), but what did happen to participants who adopted MB after they received instruction? 

It is an interesting question to understand what happens to behaviour on a task subjects have 
already learned a good model of from experience, when they are subsequently told the 
structure. Unfortunately, our data does not really allow us to speak clearly to this, because in the 
debriefing group on the fixed task, only 3 subjects had adopted model-based at session 3 as 
assessed by the likelihood ratio test.  In these 3 subjects we do not see any obvious changes in 
behaviour as a result of debriefing, but we feel the sample size is so small that it is not worth 
reporting this in the manuscript.  This analysis is shown below for the reviewers’ interest: 

  

Debriefing effects in the 3 subjects on the fixed task who were model-based at session 3. 

 

 

Minor 

 

-- Figure 4 caption: "in control" 
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-- Figure 5 caption: "in OCD and other mood disorders?" 

We have corrected figure captions to clarify the target population for the data in each figure. We 
opted not to include ‘and other mood disorders’ given that this specific population was mostly 
intended as a control for the OCD population, both regarding the presence of 
anxiety/depression symptoms and the effects of medication. 

  

  

 

Reviewer #3: 

Remarks to the Author: 

In the present manuscript, Castro-Rodrigues and colleagues used a modified version of 
the ‘two-step task’ task to assess contributions of model-based (MB) versus model-free 
(MF) systems to reinforcement learning in humans. Specifically, they tested to what 
degree humans deploy MB vs MF learning, first in the absence of any explicit instruction 
about the task structure, and then after fully explicit debriefing. Both healthy humans and 
individuals suffering from OCD (and another clinical control sample) were tested. The 
key finding according to the authors is that uninstructed behaviour was model-free, with 
model-based control only emerging over time in a subset of participants. The latter was 
less pronounced in the OCD group. All groups showed stronger model-based behaviour 
after receiving explicit debriefing on underlying task structure. 

 

The manuscript is well written and addresses an important and interesting question, 
particularly given influential earlier reports that increased MF control may be a common 
feature of compulsive behavioural disorders (Voon et al., 2014). However, I am concerned 
whether the conclusions drawn by the authors are justified by the data and the study 
design. 

We thank the reviewer for the recognition of the interest of the questions addressed.  We have 
added several additional analyses to address the reviewers’ concerns, as detailed in response 
to individual comments below. 
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1) One of the main findings is that uninstructed behaviour was dominantly model-free. 
This is a strong statement given the results and the analyses presented. In my view, what 
can be said with confidence is that subjects did not use the *true* model of the task - and 
this is the only test of 'model-based behaviour' the authors are presenting. Subjects 
could have used a completely different model of the task which would not be evident 
from testing to what degree they used the optimal model. Or indeed volunteers could 
have tried out different models of the task throughout the three sessions. For instance, 
as you present in Fig. S1, quite a proportion of people keep pressing invalid keys for a 
considerable period throughout at least the first session. This implies that it took 
subjects fairly long to understand even the most fundamental task characteristics. The 
authors write about there being no evidence of participants using task structure early on 
(line 337/338) - but given the above, everything else would be highly surprising! 

Indeed, da Silva and Hare (which is also cited here) have shown that providing subjects 
with inaccurate models of the task evokes MB behaviour that can appear completely 
model-free. They also describe how behaviour which appears to be a hybrid of model-
based and model-free could also be explained by a set of different algorithms (see also 
Collins & Cockburn, 2020). In this context, it would be important to see model 
comparisons that include competing models as well as model simulations on the 
eventual winning model. 

This is an important issue, and we thank the reviewer for bringing it up and allowing us to 
address it in more detail. Our understanding of Silva and Hare’s data is that they show that 
agents which are completely model-based, but have an incorrect model, can generate 
behaviour that looks similar to an agent that uses a mixture of model-based and model-free.  As 
far as we can tell, all of their simulations from model-based agents with incorrect models still 
show a substantial transition-outcome interaction (the classical signature of model-based) but 
also show a significant main effect of outcome (normally considered a sign of model-free 
learning).  This pattern is very different from that of our subjects at session 1, where we see a 
large main effect of outcome, but no influence at all of the transition outcome interaction. This is 
precisely the pattern expected for an essentially pure model-free strategy in which outcomes 
directly reinforce the preceding choice, and we are not aware of any incorrect-model-based 
strategies which generate behaviour that looks like this. 

Nonetheless, we agree with the reviewer that, given the Silva and Hare data, it is important to 
explicitly test whether the types of incorrect-model-based strategies they consider might in fact 
explain our subjects’ data.  We therefore did an additional model-comparison on data from 
session 1 and session 3, in which we included the two incorrect-model agents proposed by 
Silva and Hare (termed ‘unlucky symbol’ and ‘transition-dependent learning rate’), as well as the 
incorrect-model proposed below by the reviewer.  Model-comparison indicated that all 3 of these 
incorrect-model agents fit data from both session 1 and session 3 less well than any of the 
traditional models we had previously considered. According to the reviewer’s suggestion, we 



 
 

 

70 
 

 

 

simulated behavioural performance of an agent using the best fitting model (mixture model) and 
observed it produced stay probability plots which were qualitatively similar to the collected data 
(Figure S6). 

These results are presented in figure S2B and figure S6 (reproduced below), and discussed in 
the revised manuscript as: 

Results, lines 178-183:  As it has been suggested that apparently model-free behaviour could in 
fact reflect a model-based strategy with an incorrect model of the task structure32, we 
considered 3 additional model-based agents with incorrect beliefs, but found these fit the data 
from both session 1 and 3 worse than any of the traditional models (Figure S2b).  We also 
simulated behaviour from the best fitting RL model and verified that it produced stay probability 
plots qualitatively similar to the experimental data (Figure S6). 

  

Supplementary figure S2b) Model comparisons including additional model-based agents with incorrect 
models of the task structure; one which believed state transitions were deterministic but volatile (IM-DV), 
one with transition dependent learning rates at the second-step (IM-TDLR) and one which believed that 
one first step option was unlucky and reduced reward probability at the second-step (IM-US).  

  

Supplementary figure S6. Stay probabilities for best fitting RL model Stay probability analysis 
showing the probability of repeating the first step choice on the next trial as a function of trial outcome 
(rewarded or not rewarded) and state transition (common or rare). Top panels show experimental data, 
bottom panels show behaviour simulated from the best fitting RL model, which used a mixture of model-
based and model-free. Error bars indicated the cross subject standard error of the mean (SEM). In each 
group data was analysed separately for session 1 (blue graph), session 3 (red graph) and session 4 (gold 
graph). 

  

 

2) An alternative model employed by participants could be that, rather than assuming a 
probabilistic, but fixed mapping of first-step choices to second-step states, participants 
might assume this mapping to be fully deterministic, but highly volatile. Under such a 
model, following a rare transition, participants would infer that the underlying latent state 
has changed and assume that their first-step choice would now lead them to the state 2 
they just observed. An agent using such a model would appear exactly like a completely 
MF agent. This could also be a potential explanation for the effects seen in the OCD 
group in figure 3 (A and D). It shows that, in OCD, there is an increase in MF control 
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(Gmf) from session 1 to session 3 - and likewise an increase in the effect of outcomes. 
Again, I am not convinced that such a pattern is fully indicative of MF behaviour. As 
discussed above, the increase in P(stay) following rewards (irrespective of transition 
type) could as well be obtained from an inaccurate world model. Thus, such a pattern 
may actually indicate *increased* MB control in OCD! 

We thank the reviewer for this suggestion.  If we understand it correctly, the proposed agent is 
actually a special case of our model-based agent, because our model-based agent learns the 
transitions from experience, and if its learning rate for transitions (parameter ) is set to 1, the 
agent believes that the most recently observed transition for a given action occurs with 
probability 1 when that action is selected.  We would not expect this agent to generate a pattern 
of stay probabilities similar to that observed in our session 1 subjects, because model-based 
agents with a high learning rate for transitions generate strong loading on the transition 
predictor, in addition to the outcome predictor (Akam et al. PLOS CB 2015, Figure S5).  
Nonetheless we included it in the new model-comparison discussed above (figure S2B) but 
found that, as with the other incorrect-model agents, it fit the data worse than any of the 
traditional models that were considered. 

  

3) I appreciate the motivation to simplify the original two-step task. However, by 
removing the choice alternatives at the second-step state, the task, at least to subjects, 
may lose its key characteristics as a multistep decision problem, but instead be 
perceived as a one-stage decision problem with probabilistic rewards (see my comment 
above). This might have influenced the perceived importance of forming a model and the 
consideration of the sequential structure of the task. Additionally, as the authors also 
note, the new design greatly reduces working memory load. Relationships between 
working memory capacity and task complexity on one hand and decision strategy on the 
other have been reported previously (Otto et al., 2013; Kim et al., 2019), which may also 
contribute to the apparent absence of MB behaviour. 

Our motivation for removing the choice at the second-step was, as the reviewer points out, to 
simplify the task as much as possible, as we felt that the more complex the task was, the harder 
it would be for subjects to learn and use a model.  Nevertheless, we appreciate the concerns 
raised by the reviewer, and have added to the discussion regarding the possibility that 
behaviour could be different in tasks with larger state-spaces: 

Discussion, lines 590-594: Second, though we used several task variants, they were all 
adaptations of the original two-step task, and share with it both a comparatively small state 
space and probabilistic action-state transitions. It therefore remains an open question how 
broadly our findings generalise to other tasks.  Model-based control may be more advantageous 
in larger state spaces, but model-learning and planning are correspondingly harder.  
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4) Furthermore, it was not clear to me why the authors opted for a fixed spatial-motor 
mapping instead of presenting two distinct visual stimuli with random mapping to 
top/bottom position on the screen. As the authors acknowledge in the discussion, such a 
fixed mapping of spatial position to effector may have further encouraged the use of a 
habitual/model-free/S-R strategy. 

Again, the motivation was to simplify the task as much as possible, as we expected this would 
make it easier for subjects to learn a model of the task. As the reviewer notes we do discuss the 
possibility in the discussion that using fixed spatial-motor contingencies may affect the strategy 
used. We think it is equally possible that using discriminative stimuli whose position is 
randomised could make it harder, rather than easier, to use model-based RL, because action-
outcome predictions and stimulus-outcome predictions, thought to be mediated by at least 
partially separate brain systems (Rudebeck et al. J.Neurosci  28.51 (2008): 13775-13785), 
would no-longer be aligned. 

  

5) Modelling: 

a) it would be re-assuring to see whether the fitted parameters can be recovered from 
simulated data generated using the fitted parameters (parameter recovery). 

We now include a new parameter recovery analysis in which we test how well individual 
parameters can be recovered when we set the other parameters to their fitted values from either 
session 1, 3 or 4, and use the same number of simulated subjects as we have real subjects 
(Supplementary figure S8, reproduced below).  This is discussed in the revised manuscript as: 

Results, lines 352-356: To verify that changes in other model parameters (e.g. MF and MB 
weights) had not artifactually caused these effects by preventing us from accurately estimating 
parameter values, we assessed the accuracy of parameter recovery from simulated data 
(Figure S8). Overall, the accuracy of parameter recovery was very good, with a slightly reduced 
accuracy for the transition probability learning rate (parameter αT) in sessions 1 and 3, where 
the influence of model-based RL is small. 

  

Supplementary figure S8. RL model parameter recovery. Test of the accuracy with which RL model 
parameters could be recovered from simulated data. Panels show mean and standard deviation of 
recovered parameters across 10 repeated simulation runs when the parameter under investigation was 
fixed at the specified ‘true parameter value’ and the other parameters were drawn randomly for each 
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subject from the population level distributions fit to the specified dataset (top row- fixed task session 1, 
middle row – fixed task session 3, bottom row – fixed task debriefing group session 4).  

 

b) Unlike in Daw 2011, there are separate weights (Gmb, Gmf) for the contributions of the 
MB and MF systems, respectively (rather than Gmf = 1 – Gmb). This seems plausible to 
me, as there may well be participants in which both MB and MF is low (e.g. purely 
stochastic or perseverative choice), but since this is also a - minor - departure from the 
original analyses, it would be helpful to briefly justify this in the text. 

We thank the reviewer for this suggestion. We included a justification for the separate weights in 
the methods section of the revised manuscript (lines 769-771). 

Methods, lines 783-785: We used separate weights (G_mf, G_mb) for the influence of the 
model-based and model-free systems30, rather than tying them together as G_mf=1-G_mb and 
using a separate softmax temperature parameter as in Daw et al. 201111.  

c) In figure 2F, the modelling results do not support the logistic regression - there is no 
difference in Gmf and Gmb between session 1 and 3. 

The reviewer is correct that there is a discrepancy between the increase in the influence of the 
transition-outcome interaction on subsequent choice in the logistic regression between session 
1 and 3 and the absence of a significant change in the model-based weight parameter of the RL 
model.  This is discussed in the manuscript (lines 189-194) where we state: 

The discrepancy with increased loading on the ‘transition x outcome’ predictor in the stay-
probability analysis may reflect lower statistical power to detect subtle strategy changes in the 
strongly non-linear and more flexibly parameterised RL model.  It likely also reflects the fact that 
only a minority of subjects learned to use model-based RL; as model comparison for individual 
subjects between the mixture RL model and a simpler model-free RL model, indicated that only 
15% of subjects (10/67) used model-based RL at session 3 (likelihood ratio test, threshold 
P=0.05).   

We note that the maximum-a-posteriori fits for individual subjects (dots in figure 2F) indicate that 
a small number of subjects have approximately double the influence of model-based RL at 
session 3 compared to session 1, but this does not drive a significant change at the level of the 
population as a great majority of subjects show minimal change. 

We also note that in addition to the model-based weight parameter, the value learning rate  will 
also affect the transition-outcome interaction as it determines how much trial outcomes update 
the value of second-step states, which are used by the model-based system to compute the 
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value of first step actions.  This parameter did show a significant increase between session 1 
and 3. 

  

d) Bias parameter in the model: is my understanding correct that this indicates an action 
bias for the top circle? If so, why is it B = 1 for the high and B = 0 for the low action? 
Would this not mean that the model can have a bias for the upper circle, or no bias at all? 
Shouldn't B = –1 for the low option to also allow for a bias toward the lower option? 

Apologies, this was not explained clearly enough in the methods. We have modified the relevant 
section to clarity how the bias and perseveration parameters work, it now reads (lines 764-773): 

Model-free and model-based action values were combined with perseveration and bias to give 
net action values, calculated as: 

  

where  and  are parameters controlling, respectively, the strength of influence of model-free and 
model-based action values on choice.  is a parameter controlling the strength and direction of 
choice bias,  is a variable which takes a value of 1 for the up action and 0 for the down action.  
Since it is the difference in   values between up and down actions that determines choice, positive 
values of  therefore generate a bias towards the up action and negative values towards the down 
action.  is a parameter controlling the strength and direction of choice perseveration,  is a variable 
which takes a value of 1 if action  was chosen on the previous trial and 0 if it was not. Positive 
values of  therefore promote repeating the previous choice while negative values promote 
switching. 

  

e) Decreases in the eligibility trace parameter lambda correlate, across subjects, with 
increase in MB control - is this naturally arising because as lambda --> 0, there is no 
more update in the MF system? In other words, is it possible, for a given subject, that 
there are two (probably very similar) local optima in the parameter space, at low (high) 
values for lambda and high (low) values for Gmb? 

The eligibility trace parameter  does not affect the relative influence of model-based and model-
free values on choices, it just changes the way that model-free values for first-step actions are 
updated.  Specifically, when is 0 the update to first-step action values depends only the value of 
the second-step reached, and when  is 1 the update depends only on the trial outcome, with 
intermediate values of  determining the mixture of these two influences on the update.  We 
therefore would not expect problems in accurately fitting  as long as there is a model-free 
influence on choices (as  only affects updates to the model-free first step action values).  We 
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verified this empirically with the new parameter recovery analysis (figure S8, discussed above), 
confirming that we are able to accurately recover the values of both the model-free weight  and  
when the other parameters of the simulated data match those fitted to the real data from either 
session 1,3 or 4. 

 

6) In figure 2F, the modelling results indicate no difference between MB and MF 
contributions to behaviour. This is at odds with the logistic regression results presented 
in 2D (and the p(stay) in 2C) which indicates a clear transition X outcome interaction. 
This again raises the issue to what extent the model with the fitted parameters is able to 
recapitulate the actual pattern in subjects' choice behaviour (related to my question 
above regarding parameter recovery) 

If we understood correctly, we think the reviewer might be reiterating the point here that they 
made in comments 5a and 5c. We now included a parameter recovery analysis and further 
discussed these issues in lines 346-350 and lines 186-191, as well as in our above responses 
to comments 5a and 5c. 

 

7) In the analyses investigating the effects of providing the full task structure, it seems 
that out of the 57 healthy individuals not showing MB behaviour yet, n = 41 were 
assigned to the debriefing group whereas only n = 16 were not debriefed. Why were they 
evenly allocated to both groups? Comparing the proportion of subjects acquiring MB 
control appears odd given the highly unbalanced group size? 

Initial experiments were conducted among healthy volunteers recruited in Lisbon, with two 
variants of the task (Fixed and Changing task). 82 participants were randomized between the 
two versions of the task and, within each task, some participants were debriefed between 
sessions 3 and 4 (17 performing the Fixed version and 16 performing the Changing version of 
the task), while the remaining subjects were not debriefed (23 in the Fixed version and 26 in the 
changing version). From the 23 non-debriefed subjects in the Fixed version, 16 were not 
showing model-based at session 3. Given the results from this first sample, in healthy 
volunteers subsequently recruited in New York (n=27), as well as all clinical samples in both 
sites, only the Fixed task was used, and all participants were debriefed. Thus, the n=41 subjects 
who were not model-based at session 3 were 25 of the 27 healthy volunteers recruited in NY 
and 16 of the 17 healthy volunteers who performed the Fixed task with debriefing in Lisbon. As 
a result, the sample is unbalanced towards the participants performing the Fixed task and that 
were debriefed. To address potential problems resulting from the unbalanced nature of the 
debriefed and non-debriefed samples, as mentioned in the results section, analyses were 
repeated including only participants recruited in Lisbon, which did not affect the results. 
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Furthermore, we tested differences in learning or debriefing effects between the Lisbon and 
New York debriefing groups, and did not find any significant differences (Table S3). 

This is now clarified in the methods section, lines 698-701, where it now reads: Among healthy 
volunteers recruited in Lisbon and randomized between the two versions of the task, debriefing 
was performed in 17 of the 40 participants performing the Fixed version and in 16 of the 42 
participants performing the Changing version of the task. 

 

8) Why are people diagnosed with a wide variety of mood and anxiety disorders put 
together as one group? These disorders are characterized by several different symptoms 
which could also be expected to influence MB/MF control of behaviour in different ways. I 
guess it also does not serve to “investigate potential contributions of medication or 
unspecified mood and anxiety symptoms” for the same reasons. Further details on 
psychotropic medication would be needed to evaluate their comparability with respect to 
medication. 

We decided to include a group of participants with different mood and anxiety disorders 
because there is a very high comorbidity between OCD and mood disorders (such as 
depression) and anxiety disorders (such as generalized anxiety disorder). Also, to the best of 
our knowledge, there is no consistent evidence for imbalance in model-based/model-free control 
in any specific mood or anxiety disorder. Nevertheless, the choice of a group of several 
disorders as a ‘control’, rather than a specific disorder, reduces the risk of observing effects 
dependent on the ‘control’ condition, rather than effects dependent on the disorder of interest 
(OCD). Importantly, scores in assessments of anxiety and depression symptom severity were 
equivalent between the two clinical groups, that were only different according to severity of OCD 
symptoms. This suggests that this group can in fact allow for control of the effects of unspecific 
mood and anxiety disorders, while studying the more specific effects of OCD symptoms. 

Regarding medication, we classified it in classes (SSRI, tricyclic antidepressant, second-
generation antipsychotic, first-generation antipsychotic, mood stabilizers, benzodiazepines, 
other antidepressants and other medications) and we did not find differences between groups in 
the use of any class of medication (P’s>0.2; Chi-squared or Fisher’s exact test) (see Table 
below). It is also important to mention that while the clinical groups recruited in Lisbon were 
medicated, the clinical groups recruited in New York were unmedicated. As reported in the 
original manuscript, we did not find differences between Lisbon and New York groups in any 
behavioural or psychometric measure. 
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Table r1 – Psychotropic medication in each group. Data was compared between groups using 
Chi-square test or Fisher’s exact test (when samples were very small). OCD = Obsessive-
compulsive disorder; MA = Mood and anxiety disorders group; SSRI = Selective serotonine 
reuptake inhibitor; TCA = Tricyclic antidepressant; SGA = Second-generation antipsychotic; 
FGA = First-generation antipsychotic; BZD = Benzodiazepine). 

We now present this in the manuscript, lines 113-115, where it now reads: Regarding 
medication, we classified it in classes and we did not find statistically significant differences 
between groups in the use of any class of medication (χ2<1.6; P’s>0.2; across all Chi-squared 
tests). 

 

9) RT at 2nd stage are faster in common compared to rare transitions, and this effect is 
present already in session 1 (but seems to become larger in session 3). Is this an 
indication that subjects have learnt the state transition probabilities in session 1 
already? 

The reviewer is correct that reaction times at the second-step are faster following common than 
rare transitions even in the first session where choices are model-free.  We think this likely 
reflects motor systems learning to predict, and hence prepare, upcoming actions before higher-
level decision-making systems have learnt to use state predictions to guide choices.  This is 
discussed in the manuscript as:  

Results lines 148-153: Although we did not find evidence for state transitions influencing 
subsequent first-step choices in session 1, key-press reaction times at the second-step were 
faster following common than rare transitions (399.1 ± 16.9ms and 514.4 ± 20.5ms respectively; 
t66=7.81, P<0.0001, d=0.75, paired t-test; Figure 2e). This dissociation between choice and 
implicit measures of task-structure learning suggests that motor systems learned to predict and 
prepare upcoming actions before decision making systems were using a predictive model to 
evaluate choices. 

  

Results lines 195-205: Key-press reaction times at the second-step became faster overall 
between session 1 and 3 (main effect of session F1,66=21.1, P<0.0001, ηp

2=0.24), but this was 
more pronounced following common than rare transitions (session-transition interaction 
F1,66=21.1, P=0.008, ηp

2=0.1, repeated measures ANOVA; Figure 2e). Additionally, by session 3 
the rate of invalid key presses was significantly higher following rare (median=0.037/trial) than 
common (median=0.017/trial) transitions (P=0.004, Sign test, Figure S1). Therefore, both 
choice-based and implicit measures showed evidence of learning about the transition structure 
between session 1 and 3. The strength of model-based influence on choice was significantly 
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correlated across subjects with the rare-common reaction time difference at both session 1 
(r=0.57; P<0.001; Pearson’s correlation, figure S3) and session 3 (r=0.69; P<0.001), suggesting 
interaction between learning at motor and cognitive-levels, though this appeared to be driven by 
the minority of subjects whose choices were more model-based. 

  

See also our response to reviewer 1’s question about this. 

 

10) Before debriefing participants, did you question them about what kind of strategy 
they used? While this would probably hard to quantify, it might at least give some 
qualitative hints as to what beliefs they had acquired (and what models of state space 
they applied) during the 900 uninstructed trials. 

We thank the reviewer for this question.  Prior to informing subjects about the task structure we 
did indeed assess their beliefs, using a pen-and-paper questionnaire given at the end of session 
3.  We had not included this data in the previous version of the manuscript because we were 
unable to access the documents with the NY groups responses due to COVID-19 restrictions 
preventing access to the building.  We have now been able to analyse this data for all subjects 
and include the results in new Supplementary information (lines 50-102). 

Participants were required to answer four questions. For the first two questions, they were 
asked to provide open-ended answers. Afterwards, the same questions were asked in a 
multiple-choice format. 

The questions were asked after showing the participants the following image in a sheet of 
paper: 

Specifically, the first question was: “If you press the upper arrow key when this screen is being 
shown, what is most likely to happen next?”. The second question was: “If you press the lower 
arrow key when this screen is being shown, what is most likely to happen next?” 

After the participants wrote their answers, the researcher collected the first sheet of paper and 
provided them a second sheet of paper, which also contained the same image at the top and 
the same two questions. However, instead of writing an open answer, participants were asked 
to choose one of four different options for each question: 

a) The left side circle will turn yellow 

b) The right side circle will turn yellow 
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c) A coin will appear on the left side 

d) A coin will appear on the right side 

  

To classify the open answers that participants gave as correct or incorrect, we created a set of 
criteria that the answers had to fulfil in order to be considered correct. According to these 
criteria, each answer had to contain at least one of the following elements: a) “the right circle 
would turn yellow / light up / be highlighted”; b) “the yellow circle moves [from the top circle] to 
the right circle”); c) “most of the times, the right circle would turn yellow, although in a minority of 
times the left circle turns yellow”. Two independent raters (PCR & AM) assessed open answers 
independently. Then, when in disagreement, they discussed and reached a consensus if those 
answers should be considered correct or incorrect. The rate of concordance between 
independent raters was 92%. 

Considering all participants together, we found no statistically significant association between 
correct or incorrect answers and pre-debriefing behavioural measures, either in open answers (-
1.7<t’s<0.2; P’s>0.09; independent sample t-test’s) or in multiple-choice questions (-1.2<t’s<0.1; 
P’s>0.2).  However, we found that subjects who gave correct multiple-choice answers had a 
higher influence of model-based action values on choice after the debriefing (t = -2.66; P=0.009; 
independent sample t-test). 

Concerning open answers that did not fill the criteria for being considered correct, we identified 
a frequent type of wrong belief/model, specifically that the second-step circle is random (~25% 
of open answers). Regarding the remaining incorrect open answers, they consisted of different 
types of answers each occurring with a small frequency (<10%), such as ignorance of the 
second step (“immediately after the first-step choice, a coin may appear or not”) or an incorrect 
transition model (common transitions identified as rare & rare transitions identified as common). 
As the first type of wrong model (random second-step) was particularly frequent, we divided 
subjects in three groups (correct model, random second-step, other wrong models) and tested if 
their pre-debriefing behaviour was different. We did not find statistically significant differences 
between groups in terms of behavioural strategy, either in logistic regression or model fitting 
analyses (F’s<2.0; P’s>0.14; one-way ANOVA). 

When comparing different clinical groups, we found that while individuals with OCD had a 
smaller proportion of correct open answers (12/39) than healthy volunteers (23/43), this 
difference was not statistically significant (χ2 = 2.1, P=0.1, chi-squared test). We also did not 
observe differences between OCD and healthy volunteers in their proportion of correct multiple-
choice answers (χ2 =0.45, P=0.5). Individuals with mood and anxiety disorders had the same 
proportion of correct/incorrect answers that healthy volunteers, both in open answers (χ2 =0.2, 
P=0.7) and in multiple-choice (χ2 =0.03, P=0.9). 
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Our findings complement previous data provided by other groups using an operant conditioning 
outcome devaluation paradigm in which OCD subjects did not differ from healthy volunteers in 
their capacity to provide explicit assessment of the contingencies governing action and 
outcome, although their behaviour did not reflect these (Gillan et al., 2014; Gillan et al., 2015). 
However, in those studies outcomes were aversive and the experimental induction of habits in 
humans using operant conditioning paradigms has been questioned (De Wit et al., 2018; 
Robbins et al., 2019). 

 

11) It is unclear to me why the neutral blocks existed? What was their purpose? 

The original two-step task (Daw et al. Neuron, 2011) used reward probabilities which drift as  
random walks on the range 0.25 - 0.75, so most of the time they are pretty close to neutral.  
This has the advantage of reducing correlations across trials, which can otherwise complicate 
analysing how events on one trial affect subsequent choices (see Akam et al. PLOS Comp. Biol. 
2015 for a detailed discussion).  However, it also means there is very little contrast between 
good and bad options, and means that model-based RL does not yield a significantly higher 
reward rate than model-free (Akam et al. PLOS Comp. Biol. 2015, Kool et al. PLOS Comp. Biol 
2016).  We felt it was important that there was a significant contrast between good and bad 
options to promote task engagement and ensure that model-based RL yielded higher reward 
rates, hence having 80-20 non-neutral blocks which only transitioned once the subject started 
choosing the correct option, but incorporated neutral blocks as well to try and reduce cross trial 
correlations, at least to some extent. 

 

Minor: 

1) In the introduction (Line 79 onwards) you write: "However, no studies have explored 
behaviour on multi-step tasks in the absence of information about task structure, in 
either healthy or clinical populations" <-- I can think of one study (Gläscher et al. 2010, 
Neuron) that used Tolman-style latent learning in an abstract multi-step T-maze. I think 
this is also without explicit instruction and likewise looks at the contribution of MF and 
MB systems over time. 

We thank the reviewer for pointing out this relevant prior work.  It is true that subjects in 
Gläscher et al. learned the task structure from experience (during the latent learning phase) 
then subsequently used this knowledge in the rewarded phase to guide choices.  We have 
modified the introduction to state that ‘few’ rather than ‘no’ studies have explored this question, 
and now discuss the Gläscher et al study explicitly in the discussion as: 
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Lines 597-602: Another question is how information given to subjects about their objectives 
shapes learning and use of task models.  We told subject to ‘gain as many rewards as possible’ 
and it is possible that this focussed their attention on action-reward relationships to the 
detriment of action-state learning.  This might explain why in an earlier study, subject were able 
to successfully learn a task model during exposure to transition statistics in the absence of 
reward, then use it in a subsequent reward guided task15.  

 

2) In the discussion (#341): "When learning from experience, individuals with OCD were 
impaired in their use of model-based control and biased towards a model-free strategy." 
This makes it sound as if this was only true for OCD, but it likewise applies for healthy 
controls. 

We have clarified this in the revised manuscript, lines 441-443, where it now reads: “When 
learning from experience, individuals with OCD were impaired in their use of model-based 
control and were more biased towards a model-free strategy, as compared with healthy 
volunteers.” 

 

3) Line 283/285: "Increased use of model-based RL after debriefing was confirmed by 
model fitting (Figure 5d), which showed increased influence of model-based action 
values on choice" <-- I guess this should be Figure 5e? 

Thanks, fixed in revised manuscript. 

 
Decision Letter, second revision:   

 
 22nd October 2021 
 
 
Dear Professor Oliveira-Maia, 
 
Thank you once again for your manuscript, entitled "Explicit knowledge of task structure is a primary 
determinant of human model-based action," and for your patience during the peer review process. 
 
Your manuscript has now been evaluated by the same 3 reviewers as previously, whose comments are 
included at the end of this letter. Although the reviewers find your work to be improved, they also 
raise some important outstanding concerns. We remain interested in the possibility of publishing your 
study in Nature Human Behaviour, but would like to consider your response to these concerns in the 
form of a revised manuscript before we make a decision on publication. 
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In your revision, we ask you to address the issues raised by Reviewer #3, and highlight in particular 
the need for a satisfying response to their concern #1. Moreover, as you revise your manuscript, we 
ask you to review a number of aspects of the analysis. In particular, we emphasize that the difference 
between a significant effect and a non-significant effect is not in itself a significant difference - such a 
difference needs to be demonstrated, for example through an interaction contrast. It's therefore 
inappropriate to logically contrast significant and non-significant effects. Where you compare 
differences in behaviour between the groups, you must support these with appropriate analyses in all 
instances. Please also report full statistics in Figures 2 and 3, and add CIs and dfs to all reported 
correlations. 
 
Finally, your revised manuscript must comply fully with our editorial policies and formatting 
requirements. Failure to do so will result in your manuscript being returned to you, which will delay its 
consideration. To assist you in this process, I have attached a checklist that lists all of our 
requirements. If you have any questions about any of our policies or formatting, please don't hesitate 
to contact me. 
 
In sum, we invite you to revise your manuscript taking into account all reviewer and editor comments. 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
We hope to receive your revised manuscript within four to eight weeks. We understand that the 
COVID-19 pandemic is causing significant disruption for many of our authors and reviewers. If you 
cannot send your revised manuscript within this time, please let us know - we will be happy to extend 
the submission date to enable you to complete your work on the revision. 
 
With your revision, please: 
 
• Include a “Response to the editors and reviewers” document detailing, point-by-point, how you 
addressed each editor and referee comment. If no action was taken to address a point, you must 
provide a compelling argument. This response will be used by the editors to evaluate your revision 
and sent back to the reviewers along with the revised manuscript. 
 
• Highlight all changes made to your manuscript or provide us with a version that tracks changes. 
 
Please use the link below to submit your revised manuscript and related files: 
 
[REDACTED] 
 
<strong>Note:</strong> This URL links to your confidential home page and associated information 
about manuscripts you may have submitted, or that you are reviewing for us. If you wish to forward 
this email to co-authors, please delete the link to your homepage. 
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We look forward to seeing the revised manuscript and thank you for the opportunity to review your 
work. Please do not hesitate to contact me if you have any questions or would like to discuss these 
revisions further. 
 
Sincerely, 
 
Marike 
 
Marike Schiffer, PhD 
Senior Editor 
Nature Human Behaviour 
 
 
 
REVIEWER COMMENTS: 
 
Reviewer #1: 
Remarks to the Author: 
The authors have done an excellent job addressing all my previous comments - in particular, they 
have gone to the length of collecting an additional 20 subjects to address my most substantial 
concern, which is that the pacing of the task was favouring a model-free strategy. It turned out that 
the results from this additional data collection supported the authors' original conclusions. I am happy 
to recommend publication. 
 
 
 
Reviewer #2: 
Remarks to the Author: 
The authors have responded to all my concerns and comments. Indeed, the response was refreshingly 
clear and straightforward, and I appreciate the amount of work they put into the revision. I have no 
further concerns and would like to congratulate authors for executing such an interesting study. 
 
 
 
Reviewer #3: 
Remarks to the Author: 
The authors have performed an exhaustive revision (and even included additional data from a new 
experiment). Most of my previous points have been fully addressed. I do have two remaining points 
though: 
 
1) The authors have explained their aim to simplify the task, and I understand the importance of 
having 'good' and 'bad' options and the need to reduce correlations across trials. To me, it appears 
that the task can be perfectly solved by an MF agent that completely ignores the 2nd state and only 
tracks the rewards following their actions. Such an agent corresponds to the MF algorithm the authors 
have used, in the case where the eligibility parameter lambda is set to 1. Indeed, fitted values for 
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lambda are close to 1 (as the authors also acknowledge), which would speak to that. My 
understanding is that this coupling breaks in the neutral condition - thus MB contributions should be 
more readily revealed there. My suggestion would be to present the data from the neutral condition 
separately - I think it has the potential to change the interpretation of the data: if there is already 
hints of MB contributions to choice in the neutral condition (consistent with what implicitly seems to 
drive RT already in session 1), then providing subjects with explicit instructions would be amplifying 
the use of - an already existing - MB strategy. If, on the contrary, even in the neutral condition, no MB 
contribution was evident, then I would describe the effect of instruction more as breaking an acquired 
S-R habit. 
 
 
2) Thank you for including the parameter recovery. I have a question on how the recovery was done. 
It is stated that ‘the parameter under investigation is fixed at the specified true parameter value but 
the other parameters are drawn randomly for each subject from the population level distributions’. 
Why are data not generated with the full combination of fitted parameters (e.g. all parameters fixed at 
their fitted value per participant and all parameters recovered from those artificial data)? In my 
understanding, this approach would allow an interpretation of the individual model parameters. 
 
PS1 (Q5d) - I had confused b and Bi! The modified description makes things even more clear, thank 
you. 
 
PS2 (Q6) - apologies, this was indeed just the same as the above comment, as you correctly pointed 
out! 
 

Author Rebuttal, second revision: 
 

REVIEWER COMMENTS: 

Reviewer #1: 

Remarks to the Author: 

The authors have done an excellent job addressing all my previous comments - in particular, they have 
gone to the length of collecting an additional 20 subjects to address my most substantial concern, which 
is that the pacing of the task was favouring a model-free strategy. It turned out that the results from this 
additional data collection supported the authors' original conclusions. I am happy to recommend 
publication. 

We thank the reviewer for their positive assessment of the revised manuscript and for supporting 
publication. 
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Reviewer #2: 

Remarks to the Author: 

The authors have responded to all my concerns and comments. Indeed, the response was refreshingly 
clear and straightforward, and I appreciate the amount of work they put into the revision. I have no further 
concerns and would like to congratulate authors for executing such an interesting study. 

We thank the reviewer for their positive assessment of the revised manuscript and recognition of the 
work done to address reviewer comments. 

Reviewer #3: 

Remarks to the Author: 

The authors have performed an exhaustive revision (and even included additional data from a new 
experiment). Most of my previous points have been fully addressed. I do have two remaining points 
though: 

We thank the reviewer for their positive assessment of the previous revisions. 

1) The authors have explained their aim to simplify the task, and I understand the importance of having 
'good' and 'bad' options and the need to reduce correlations across trials. To me, it appears that the task 
can be perfectly solved by an MF agent that completely ignores the 2nd state and only tracks the rewards 
following their actions. Such an agent corresponds to the MF algorithm the authors have used, in the case 
where the eligibility parameter lambda is set to 1. Indeed, fitted values for lambda are close to 1 (as the 
authors also acknowledge), which would speak to that. My understanding is that this coupling breaks in 
the neutral condition - thus MB contributions should be more readily revealed there. My suggestion would 
be to present the data from the neutral condition separately - I think it has the potential to change the 
interpretation of the data: if there is already hints of MB contributions to choice in the neutral condition 
(consistent with what implicitly seems to drive RT already in session 1), then providing subjects with 
explicit instructions would be amplifying the use of - an already existing - MB strategy. If, on the contrary, 
even in the neutral condition, no MB contribution was evident, then I would describe the effect of 
instruction more as breaking an acquired S-R habit. 

The reviewer suggests that the task used in our study can be ‘perfectly solved’ by a type of model-free 
strategy usually termed ‘direct reinforcement’, in which rewards at the end of the trial reinforce the first-
step choice taken at the start, irrespective of the second-step state reached.  A direct reinforcement 
strategy (with λ=1) can ‘solve’ the task in the sense of approximately tracking which first step action has 
higher reward probability.  However, it will not produce the same granular pattern of choices as a model-
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based strategy, and critically these two strategies are well differentiated by the analyses we employ for 
this purpose – the logistic regression analysis of stay probabilities and RL model fitting. 

The reason why model-based and direct reinforcement strategies generate different patterns of choices 
is identical in both the original (Daw et al 2011) two-step task and the simplified version used in the current 
study.  The strategies are differentiated with respect to how the trial outcome (rewarded or not), and 
state transition following first-step choice (common or rare), jointly influence future choices.  For a direct 
reinforcement strategy, reward at the end of the trial reinforces the first-step choice, irrespective of 
whether the subsequent state transition is common or rare.  This therefore produces a main effect of trial 
outcome on stay probability but no effect of transition or interaction between transition and outcome.  
By contrast, for a model-based strategy, reward increases the value of the second-step state where it was 
obtained, which in turn modifies the value of the first-step actions in proportion to their probability of 
transitioning to that state.  Reward following a rare transition increases the value of the state commonly 
reached from the not-chosen first-step action, and hence promotes switching on the next trial – the 
opposite effect to that under a direct reinforcement strategy.  A model-based strategy therefore causes 
the interaction of state transition and outcome to influence stay probability. 

We have previously used simulations to characterise in detail how logistic regression analysis of stay 
probability can be used to differentiate behavioural strategies in simplified two-step tasks very similar to 
that used in the current study (Akam et al. PLOS CB 2015).  To further verify that this analysis can 
differentiate these strategies in the current study, we simulated data from both strategies using the exact 
task used, and analysed the data exactly as in the manuscript (see figure below).  As expected, the direct 
reinforcement strategy generated a strong influence of trial outcome on stay probability and no influence 
of the transition-outcome interaction, while the model-based strategy produced the opposite pattern.   

The second analysis used in the manuscript to differentiate between these strategies was reinforcement 
learning model fitting.  Our parameter recovery analysis (Figure S8) demonstrates that we can accurately 
quantify the influence of both model-based and model-free strategies on choices in data simulated from 
the task used in the study.  To further confirm that this is the case when the model-free component is 
direct reinforcement of the first-step choices by trial outcomes, we repeated the parameter recovery 
analysis for the model-based and model-free weights with the eligibility parameter (λ) set to 1 (see above 
figure). 
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Logistic regression and RL model fitting accurately discriminate strategies in simulated data. Top) Logistic 
regression analysis of stay probabilities for data simulated on the Fixed version of the task using either a direct 
reinforcement model-free strategy (left panel) or a model-based strategy (right panel).  As expected from prior 
literature (Daw et al. Neuron 2011, Akam et al. PLOS CB 2015), a direct reinforcement strategy produced strong 
loading on the outcome predictor and no loading on the transition-outcome interaction predictor, while a 
model-based strategy produced the opposite pattern.  Bottom) RL model parameter recovery test quantifying 
how accurately the model-free (left) and model-based (right) weight parameters (i.e. the strength with which 
each strategy influenced choices) can be recovered from simulated data using model-fitting when the eligibility 
trace parameter (λ) is set to 1.  



 
 

 

88 
 

 

 

Together these data demonstrate that we can effectively differentiate these two strategies using 
the analyses employed in the paper, when applied to all trials.  We therefore do not think that there 
is a motivation in principle to analyse the neutral blocks separately.   Additionally, there are strong 
practical reasons why we think it is unlikely to give insight.  Neutral blocks comprise only about 10% 
of the total trials, and these are unevenly distributed across subjects (see histogram below); due to 
both the different number of blocks completed and the stochasticity of the block transitions.   We 
therefore do not think it would be appropriate to analyse the neutral blocks independently. 

 

Number of neutral and non-neutral block trials across subjects in session 1 of the fixed task 

2) Thank you for including the parameter recovery. I have a question on how the recovery was done. It is 
stated that ‘the parameter under investigation is fixed at the specified true parameter value but the other 
parameters are drawn randomly for each subject from the population level distributions’. Why are data 
not generated with the full combination of fitted parameters (e.g. all parameters fixed at their fitted value 
per participant and all parameters recovered from those artificial data)? In my understanding, this 
approach would allow an interpretation of the individual model parameters. 

Our aim with the parameter recovery analysis was to establish as robustly as possible how accurately we 
could recover the population mean value of each parameter, as these were the primary measure used for 
drawing conclusions about learning and debriefing effects within groups, and differences between groups.  
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Our RL model was hierarchical, with individual subject parameters assumed to be drawn from 
distributions at the population level.  The model-fitting procedure estimated the mean and standard 
deviation of these population-level distributions for each parameter, and the maximum a posteriori (MAP) 
parameter estimates for each subject conditioned on these.  In our parameter recovery analysis, we felt 
it was important to evaluate the accuracy of parameter recovery over the plausible range of values each 
parameter might take, not just at the specific values fit to subjects’ behaviour.  Therefore, for each 
parameter we performed simulations where we systematically varied that parameter’s value, while 
drawing the other parameters from the fitted distributions for a given dataset.  We drew the other 
parameters from the fitted distributions rather than using the MAP values for each subject because we 
needed to repeat each simulation multiple times to estimate the uncertainty in the recovered value, and 
we were convinced that using values that were not identical on each run, but still matched the distribution 
of subject’s fitted values, was going to give a more conservative estimate.  In total the parameter recovery 
analysis used 1890 separate simulated datasets; 10 repeats for each of 9 systematically varied values for 
each of 7 parameters, with the remaining parameters for each simulation drawn from distributions fitted 
to 3 separate experimental datasets.  We think this represents a principled and rigorous approach to 
evaluating the accuracy of parameter recovery. 

  

Decision Letter, third revision:   
 

Our ref: NATHUMBEHAV-200912504C 

5th January 2022 

Dear Dr. Oliveira-Maia, 

Thank you for submitting your revised manuscript "Explicit knowledge of task structure is a primary 
determinant of human model-based action" (NATHUMBEHAV-200912504C). It has now been seen by 
the referee who previously had some remaining concerns and their comments are below. As you can 
see, the reviewer raises no further issues. We will therefore be happy in principle to publish your 
manuscript in Nature Human Behaviour, pending minor revisions to comply with our editorial and 
formatting guidelines. 

We are now performing detailed checks on your paper and will send you a checklist detailing our editorial 
and formatting requirements within two weeks. Please do not upload the final materials and make any 
revisions until you receive this additional information from us. 

Please do not hesitate to contact me if you have any questions. 
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Sincerely, 

Marike 

 

Marike Schiffer, PhD 

Senior Editor 

Nature Human Behaviour 

 

Reviewer #3 (Remarks to the Author): 

I thank the authors for patiently explaining the two remaining points that I had admittedly not fully 
understood. Congratulations on this detailed and thoughtful work. 

 
Author Rebuttal, third revision: 

 

REVIEWER COMMENTS: 

Reviewer #3: 

Remarks to the Author: 

I thank the authors for patiently explaining the two remaining points that I had admittedly 
not fully understood. Congratulations on this detailed and thoughtful work. 

  

We thank the reviewer for the positive assessment of our response and recognition for the work 
done. 
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