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A B S T R A C T   

Optical remotely sensed data are typically discontinuous, with missing values due to cloud cover. Consequently, 
gap-filling solutions are needed for accurate crop phenology characterization. The here presented Decomposition 
and Analysis of Time Series software (DATimeS) expands established time series interpolation methods with a 
diversity of advanced machine learning fitting algorithms (e.g., Gaussian Process Regression: GPR) particularly 
effective for the reconstruction of multiple-seasons vegetation temporal patterns. DATimeS is freely available as a 
powerful image time series software that generates cloud-free composite maps and captures seasonal vegetation 
dynamics from regular or irregular satellite time series. This work describes the main features of DATimeS, and 
provides a demonstration case using Sentinel-2 Leaf Area Index time series data over a Spanish site. GPR resulted 
as an optimum fitting algorithm with most accurate gap-filling performance and associated uncertainties. 
DATimeS further quantified LAI fluctuations among multiple crop seasons and provided phenological indicators 
for specific crop types.   

Software availability 

Software name: DATimeS (Decomposition and Analysis of Time Series 
software) 

Developer: Santiago Belda (santiago.belda@uv.es) 
Institution: Image Processing laboratory (IPL), University of Valencia, 

Spain 
Year first official release: 2019 
Hardware requirements: PC 
System requirements: Microsoft Windows 
Program language: Standalone image processing GUI toolbox written in 

MATLAB 
Program size: 1.73 GB 
Availability: http://artmotoolbox.com 
License: Free for non-commercial use 
Documentation and support for users: Manual and tutorial with test data 

1. Introduction 

Quantifying the spatiotemporal variability of the Earth has always 

been an essential requirement for many applications in remote sensing, 
geodesy and geodynamics (Hamblim and Christiansen, 2010). 
Improving its knowledge may help to better comprehend and model the 
global environmental change. The usage of optical remote sensing time 
series has opened the door to global-scale monitoring of seasonal 
changes in vegetated areas through their spectral properties (Reed et al., 
2009; Ramachandran et al., 2011; Gutman and Masek, 2012; Liang, 
2019; Pricope et al., 2019). To achieve that, the generation of contin
uous fields in time and space starting from irregularly distributed data is 
of critical importance. Given the current viability of multiple Earth 
observation missions (e.g., the Sentinels), a growing number of moni
toring agencies and Earth System sciences depend on the influx of 
continuous satellite data, i.e. gap-free data. In reality, however, the need 
for continuous data is often unfulfilled, for multiple causes (Kandasamy 
et al., 2013; Weiss et al., 2014): (1) inadequate climatic conditions 
(clouds, snow, dust and aerosols), (2) instrumentation errors, (3) losses 
of image data during data transmission, or (4) low temporal resolution 
(i.e. long interval needed to revisit and acquire data for the exact same 
location), among others. They degrade the availability/quality of spec
tral/temporal information required to retrieve land surface properties. 
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Therefore, the impact of missing data on quantitative research can be 
serious, leading to biased estimates of parameters, loss of information, 
decreased statistical power, increased standard errors, and weakened of 
findings (Dong and Peng, 2013). For this reason, spatiotemporal 
reconstruction of areas with gaps from satellite imagery is becoming a 
crucial step for monitoring purposes (Schwartz, 2013), and for the 
knowledge of the life cycle of vegetation, i.e. vegetation phenology 
(White et al., 2005; Rezaei et al., 2017). Although a variety of gap-filling 
methods can perform this task (see review in Zeng et al. (2020)), the 
difficulty lies in the choice of the one that best reproduces the actual 
surface to identify the precise date when a phenological event occurs. 

Vegetation phenology quantification over agricultural lands is 
widely used for yield determination, and to improve management and 
timing of field works (planting, fertilizing, irrigating, crop protection or 
harvesting) (Mulla, 2013; Sakamoto et al., 2005). Distinct phenological 
parameters are of interest to the scientific community, private com
panies, and farmers, such as dates of start and end of growing season 
(SOS and EOS, respectively), maximum peak, seasonal amplitude 
defined between the base level and the maximum value for each indi
vidual season, length of the season, etc (J€onsson and Eklundh, 2004). As 
reported by multiple studies (Sobrino and Julien, 2011; Richardson 
et al., 2013; Atzberger, 2013), these parameters are extremely sensitive 
to changes in vegetation cycles due to climate change, and these changes 
can have a profound impact in the agricultural production. 

Time series analysis of vegetation’s phenological trends is a powerful 
and practical tool that comprises a diversity of methods for recon
structing, modeling and analyzing time series data (e.g. vegetation 
indices or biophysical variables) in order to extract meaningful statistics 
and other characteristics from the data such as autocorrelation, trend or 
seasonal variation (Tang et al., 2016). Numerous studies have dealt with 
the retrieval of phenological phases from remotely sensed data (White 
et al., 2009; Julien and Sobrino, 2009; Tan et al., 2011; Broich et al., 
2015; Berra et al., 2019). In the era of the Sentinels, where large 
amounts of data are available, these methods must be accurate, robust 
and fast. Hence, there is a compelling need to identify next-generation 
time series algorithms to be integrated into an operational processing 
chain. Of specific interest is the emergence of machine learning 
regression algorithms (MLRAs). MLRAs tend to behave as highly adap
tive and versatile fitting algorithms (Verrelst et al., 2015, 2019) and can 
thus replace conventional fitting functions, e.g. for enabling more ac
curate estimation of phenology trends, or for identifying multiple sea
sons within a time series. However, their performances need to be 
evaluated against standard time series processing methods, such as those 
available in established software packages. 

Several sophisticated time series software packages have been 
developed over time, with capabilities of identifying phenology trends 
or disturbances, e.g. TIMESAT (J€onsson and Eklundh, 2004), BFAST 
(Verbesselt et al., 2010), TIMESTATS (Udelhoven, 2011), SPIRITS 
(Eerens et al., 2014), BeeBox (Arundel et al., 2016), phenor (Hufkens 
et al., 2018), pyPhenology (Taylor, 2018), CroPhenology (Araya et al., 
2018), FORCE (Frantz, 2019), Earth Engine App (Li et al., 2019),EO 
Time Series Viewer (Jakimow et al., 2020). In most cases, these packages 
are freely available to process time series but they also face some limi
tation such as the need to use regular time series with more than one 
phenological cycle, the absence of graphical user interface (GUI) or 
being merely addressed to advanced users. Also, these packages provide 
limited tools for gap-filling and smoothing purpose, and above all, are 
not yet adapted to the emergence of MLRAs. 

In general, modeling phenological evolution represents a challenging 
task mainly because of time series gaps and noisy data (D’Odorico et al., 
2015; Kuenzer et al., 2015), coming from different viewing and illumi
nation geometries, cloud cover, seasonal snow and low temporal reso
lution (Weiss et al., 2014; Mariethoz et al., 2012). For that reason, the 
use of reliable gap-filling fitting functions and smoothing filters is 
frequently required for retrievals at the highest feasible accuracy (Chen 
and Boccelli, 2018; J€onsson et al., 2018). To avoid all these drawbacks, 

time series studies typically use the regular composite Normalized Dif
ference Vegetation Index (NDVI) product from the MODerate resolution 
Imaging Spectroradiometer (MODIS) (e.g. Gong et al., 2015; Zhao et al., 
2009). 

Nevertheless, a critical aspect in time series analysis is that remote 
sensing products are generally spatially and temporally discontinuous. 
This implies that the ability to process irregular time series becomes 
indispensable for studying land surface phenology. Given that most time 
series data are spatiotemporally irregular, some questions arise:  

1. Can we cope with this irregularity and achieve a reasonably accurate 
reconstruction of phenological stages by taking advantage of latest 
MLRAs?  

2. How can we benefit from the new, high spatiotemporal resolution 
remote sensing data (e.g. the Sentinel constellation) to improve un
derstanding of dynamic changes of land surfaces? 

With ambition to tackle these questions and offer solutions to the 
community, in this paper we present a novel and generic scientific time 
series toolbox that serves as an alternative to existing toolboxes. The so- 
called Decomposition and Analysis of Time Series Software (DATimeS) 
is a stand-alone image processing GUI toolbox written in MATLAB. This 
toolbox can model and analyze regular and irregular time series data 
from complete images, specific region of interest or single pixels in 
multiple formats (e.g., geotiff, ENVI). It encompasses a suite of powerful 
mathematical fitting algorithms such as MLRAs (e.g., decision trees, 
kernel-based methods, neural networks) as well conventional fitting 
methods such as harmonic analyses (HA) (i.e. Fourier Transform 
(Roerink et al., 2000; Zhou et al., 2012, 2015)) and non-linear least 
squares regression, i.e. double logistic function (Richardson et al., 
2009). With these smoothing and fitting algorithms, spatiotemporal 
gap-filling can be achieved. DATimeS enables to perform advanced time 
series tasks for: (1) the generation of spatially continuous maps from 
discontinuous data, i.e. gap-filling, and (2) detection of heterogeneous 
spatial patterns of phenological indicators (i.e., crop key growth stages) 
throughout multiple seasons. 

The remainder of the paper is structured as follows. Section 2 pro
vides the general concept of DATimeS, section 3 outlines the modules of 
the toolbox and describes the theoretical framework of the algorithms 
available. Section 4 provides a demonstration case of reconstructing leaf 
area index (LAI) time series from Sentinel-2 acquisitions and estimating 
phenological indicators over crop areas. Discussion is presented in 
Section 5, whereas conclusions and future work lines are finally pre
sented in section 6. 

2. DATimeS: general aspects 

The DATimeS toolbox is developed in MATLAB (version R2011b or 
later is required), which has the advantages of being easy to use and 
source code changes can be applied without much effort. Although 
MATLAB faces some limitations as being a commercial software and not 
as much optimized in speed as opposed to other programming lan
guages, DATimeS can be either operated independently (i.e., without a 
license) through a runtime engine called the Matlab Compiler Runtime, 
or it can be run as part of the ARTMO scientific software package 
(Verrelst et al., 2011, 2012). Matlab is widely used by the science and 
engineering community. Its processing speed should not be considered a 
drawback since today’s computer hardware is fast enough to guarantee 
software efficient performances. 

The core functioning of DATimeS involves multiple time series 
smoothing and fitting algorithms. On the one hand, the toolbox provides 
state-of-the-art MLRAs as well as conventional methods available in 
other distinguished time series toolboxes (e.g., TIMESAT, TimeStats, 
SPIRITS). On the other hand, its environment offers sophisticated new 
modeling techniques for vegetation phenology. Users do not need 
advanced processing knowledge to take full advantage of these 
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capabilities since it has a friendly GUI for non-programmers. 
DATimeS is primarily designed to process time series of vegetation 

indicators derived from satellite spectral measurements. However, other 
types of raster data such as meteorological index, radar data, and eddy 
co-variance carbon flux data or data as acquired by airborne sensors or 
drones can also be processed. Its processing firstly leads to cloud-free 
composite images for any chosen time sampling, e.g. every 10 days. 
Subsequently, phenology variables can be derived such as the start and 
end of a growing season. 

3. Modules 

DATimeS software is structured in multiple modules. The modular 
architecture, which has been inherited from the ARTMO toolbox, offers 
the following advantages: (1) it guides the user through the processing 
steps, i.e. subsequent processing modules are activated once current 
module has been completed, (2) modules can be easily modified or 
extended without affecting the main architecture, (3) and new modules 
with new functionalities can be easily added to the toolbox. An overview 
of the DATimeS’ modules contained in this first official version (v.1.06) 
is shown in Fig. 1.  

1. The first module, ”Input”, is responsible for reading the data. Time 
series processing for spatiotemporal analysis can take place either on 
a single pixel, or on a stack of images. For single pixels, a.txt file is 
required. Imagery can be entered in TIFF or ENVI format from a 
specific folder. When loaded, the data will appear sorted in the 
DATimeS main window (Fig. 2a). 

2. The second module, ”Time Series Analysis”, is in charge of con
structing composite images with any time step by applying the gap- 
filling (e.g. due to clouds) using a broad variety of advanced inter
polation and smoothing methods. Besides, it enables to calculate all 
kinds of phenological indicators. The GUIs corresponding to this 
module are shown in Fig. 2b and c.  

3. The third module, ”Post-processing”, improves the obtained maps by 
spatial interpolation and provides the possibility to create videos, 
thus enabling animation of temporal trends. 

3.1. Input data 

3.1.1. Single pixels 
The first option that DATimeS offers is the possibility to analyze and 

process single time series. Data must be provided as.txt file accordingly 
to specific format rules: dates need to be provided in YYYYMMDD 
format, YYYY being the four-digit year, MM the two-digit month and DD 
the two-digit day in the month. The text file can encompass multiple 
pixels, sorted as columns, so that any of these columns can be analyzed. 
The DATimeS manual (see http://artmotoolbox.com) provides a com
plete overview and more in-depth explanation of the format rules. 

3.1.2. Supported image formats 
Imagery can be loaded in two formats: ENVI or TIFF files. First, 

complete multiple images are loaded as long as their spatial dimensions 
match. Then, they can be completely processed. A subset within the area 
covered by the loaded images can be also defined. Two possible options 
are provided: (1) to apply an earlier created mask or, (2) to define 
directly a region-of-interest (ROI). In the latter case, the user can draw a 
ROI on a selected image and band (in case the loaded images contain of 
multiple bands), and create a new mask. Subsequent processing will 
then only take place within the selected region. It should be noted that 
the images belonging to a time series must contain their acquisition date. 
In case of ENVI format, it must be included in the header file. In case of 
TIFF, the TIFF ”DATETIME” tag will be looked for. Finally, the loaded 
images will appear into the main window, sorted according to dates (see 
Fig. 2a). The time evolution of the mean and standard deviation of pixels 
within the ROI, along with the map of pixel values for the selected 
image, can be easily obtained by clicking on Plot (see Fig. 3). 

3.1.3. Filtering option: cloud thresholding and masking 
Regardless of the type of input data (i.e., single pixel time series or 

images), the time series data can be inspected on missing values, typi
cally due to cloud cover. The first step is to identify the cloudy pixels and 
to remove by setting their weight to zero. Two ways to define cloud 
values are implemented:  

1. Using a fixed value, e.g., in case clouds have been labeled with a 
fixed value.  

2. With a thresholding filter, where the user must provide a minimum 
and maximum value to filter out pixels that fall outside these 
boundaries. 

Once having the images loaded, an earlier-created mask can also be 
applied to the analysis. The mask can be a.mat, ENVI or TIFF file and 
must match the spatial size of the image stack. Again, the masked region 
can be plotted for the selected image and band by clicking on Plot, same 
as displaying a full image. 

3.2. Time series analysis 

After having inputted pixel or image data, the Time Series Analysis 
module can be activated. This is composed of two parts: (1) the inter
polation and (2) the phenological indicators submodules, and described 
below. 

3.2.1. Interpolation 
The interpolation is the main processing step of DATimeS: it allows 

to perform the time series gap-filling (e.g. in case of a single pixel as 
loaded by the.txt file) and generate composite maps (in case images 
were loaded). In the Interpolation submodule (Fig. 2b), the key option is 
the selection of the interpolation strategy.  

Fig. 1. Hierarchical design of DATimeS.  
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About 30 interpolation algorithms have been brought together and 
categorized according to the following methods: (1) machine learning 
regression algorithms (MLRAs), (2) harmonic regression methods, (3) 
conventional interpolation methods, and (4) others. Their complete list 
is reported below, in Table 1.  

1. Machine learning regression algorithms. A suite of MLRAs have 
been implemented in DATimeS (see Table 1). For a complete over
view and more in-depth discussions of the algorithms we refer to the 
following publications: Smola and Sch€olkopf (2004); Camps-Valls 
et al. (2006); Rasmussen and Williams (2006); Thayananthan et al. 
(2006); L�azaro-Gredilla et al. (2014); Verrelst et al. (2019). Their 

Fig. 2. DATimeS graphical user interface. a) Main window of DATimeS. b) Panel designed for gap-filling. It is divided into three logical areas: interpolation al
gorithms, smoothing methods and time settings. c) Panel for phenological indicators estimation. 
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source code is freely available and can be found at: https://github. 
com/IPL-UV/simpleR. 

Among the multiple MLRA approaches, special attention deserves 
the Gaussian processes regression (GPR) (Rasmussen and Williams, 
2006). GPR carries out a non-parametric modeling developed in a 
Bayesian framework and provides uncertainty intervals along with 
the mean estimates (Verrelst et al., 2013). This distinct feature, 
which is not shared by other machine learning algorithms, can open 
a unique source of information to assess the robustness of the pre
dictions at various temporal scales.  

2. Harmonic Regression methods. Four Fourier-based techniques 
have been implemented to reconstruct the seasonal leaf development 
(see Table 1). The first (and simplest) algorithm, named Fourier1, is 
based on the general equation (Roerink et al., 2000; Zhou et al., 
2012): 

yðtÞ¼ a0 þ
XN

n¼1
ðancosðωn ⋅ tÞ þ bnsinðωn ⋅ tÞÞ (1)  

where y is the reconstructed time series, an and bn are the amplitudes 
of the cosine and sine terms, t is the time, ωn ¼ 2π=P is the angular 
frequency, P is the period, and a0 is a constant offset which accu
mulates the low-frequency part of the signal. Applying the method of 
least squares, the amplitude coefficients (an, bn) are estimated. The 
second and third approaches, named Fourier2 and Fourier3 (Equa
tions (2) and (3), respectively), are similar to Equation (1), with the 
difference that linear and quadratic terms have been included into 
the algorithms. 

yðtÞ¼ a0þ b ⋅ t þ
XN

n¼1
ðancosðωn ⋅ tÞþ bnsinðωn ⋅ tÞÞ (2)  

yðtÞ¼ a0þ b ⋅ tþ b ⋅ t2 þ
XN

n¼1
ðancosðωn ⋅ tÞ þ bnsinðωn ⋅ tÞÞ (3)  

In the fourth approach, named Fourier4, the estimates are ob
tained using a sliding window to account for the amplitude and 
phase time variability, i.e. changes in seasonality of vegetation var
iables. Essentially, the longer time series is divided into shorter 
segments of equal length (NL) and then the Fourier coefficients are 
computed separately on each shorter segment using Equation (1). 
Consequently, the tabulated epoch for each fit is the middle date of 
the window. Finally, the amplitude variation is modeled as contin
uous piecewise liner functions, which is defined to have linear var
iations between “nodes” at selected times. The length of the sliding 
window (NL) and the displacement between the subsequent fits (ND) 
are specified by the user and have to be sufficiently large to separate 
the main signal from the noise and high frequency signals (e.g. NL ¼

365 days, ND ¼ 30 days). This technique provides an optimal trade- 
off between quality and computational cost.  

3. Conventional interpolation methods. Apart from the above- 
mentioned algorithms, DATimeS also includes various types of con
ventional interpolation techniques (Akima, 1970, 1974; Olivier and 
Hanqiang, 2012; Lepot et al., 2017) (see Table 1). They are favorable 
when speed is the main concern and not accuracy.   

4. Others: Double logistic curve. Finally, a double logistic curve 
method has been implemented, which is commonly used in 
phenology studies (Beck et al., 2006; Hird and McDermid, 2009; 
Atkinson et al., 2012). This algorithm, also known as Sigmoid, uses a 
double-sigmoidal model (Richardson et al., 2009) by combining two 

Fig. 3. Evolution of mean LAI and its standard deviation (red shadow area) along the temporal range (left), and map of pixels of the chosen image (right). The study 
area is located near the city of Valladolid, north-west Spain, where the landscape is characterized by an intensive dryland agricultural system where arable land 
comprises up to 80% of the available area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Interpolation methods implemented in DATimeS.   

INTERPOLATION METHODS 

MLRA 

Bagging trees (BAGTREE) 
Adaptive Regression Splines (ARES) 
Boosting trees (BOOST) 
k-nearest neighbors regression (KNNR) 
Gaussian Process Regression (GPR) 
Kernel Ridge Regression (KRR) 
Locally-Weighted Polynomials (LWP) 
Support Vector Regression (SVR) 
Neural networks (NNIPL) 
Random forests (RF2) 
Boosting random trees (RF1) 
Structured Kernel Ridge Regression with linear Kernel 
(SKRRlin) 
Relevance Vector Machine (RVM) 
Sparse Spectrum Gaussian Process Regression (SSGPR) 
Structured Kernel Ridge Regression with RBF kernel 
(SKRRrbf) 
Decision trees (TREE) 
Variational Heteroscedastic Gaussian Process Regression 
(VHGPR) 

Harmonic Offset þ Harmonic analysis 
Offset þ Harmonic analysis þ Linear Term 
Offset þ Harmonic analysis þ Linear Term 
Offset þ Harmonic Analysis using Sliding Window 

Conventional 
Methods 

Linear, Polynomial, Nearest, Next, Previous, Pchip, Spline 

Othters Double Logistic curve  
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regular sigmoidal functions to characterize the phenological metrics 
of different vegetation indices, as shown here: 

yðtÞ¼ aþ
b � a

½1þ expðcþ d⋅tÞ� � ½1þ expðeþ f ⋅tÞ�
(4)  

Here, the double-sigmoidal model is uniquely determined by six 
parameters, two midpoints ( c;d) and two slope parameters (d, e), a 
maximum value (b), and a base level (a). The difference between 
parameters b and a gives the seasonal amplitude. These parameters 
are estimated using a non-linear least squares regression. For this 
reason, DATimeS uses an iterative algorithm reducing the error sums 
of squares (SSE) to converge on a single solution. The iterations 
continue until the algorithm converges to the minimum SSE, or 
reaches the maximum number of iterations permitted. To account for 
the seasonal variability and the complex behaviour of time series, 
this function is divided in three overlapping intervals around max
ima and minima: one is aligned to the left minimum, another is 
placed on the central maximum, and the latter is fixed to the right 
minimum. To guarantee the continuity and the convergence of the 
reconstructed time series, the estimate parameters are modeled as 
continuous piecewise linear functions. 

3.2.2. Interpolation and smoothing processing options 
Before starting the gap-filling procedure, a compulsary step is to 

define the output time settings, i.e. the days to which data is interpo
lated. In this context, three options are possible:  

1. Fixed time step: interpolating to a higher or low frequency (e.g., each 
20 days, see Fig. 4a).  

2. Interpolation time vector: User-defined dates as provided by a text (. 
txt) file.  

3 .Interpolation of only clouded/missing/filtered pixels: With this 
option only those pixels labeled as clouds or fitered out by the 
thresholding criteria will be filled up at the original dates. All other 
pixels keep their original value. An example of this option is provided 
in Fig. 4b. 

A key feature of DATimeS is that multiple interpolation methods can 
be selected at once for running in a sequence fashion, so their perfor
mances can be visually compared. Information about processing time is 
also provided. The interpolation methods can be additionally combined 
with a smoothing method to facilitate the calculation of the gap-filling 
and phenological metrics, but that is not mandatory. If selected, 
smoothing is applied before the interpolation. When data collected over 
time include some noisy behaviour, smoothing techniques can be helpful 
to mitigate the effect of these variations. DATimeS features six different 
smoothing techniques (see description in Table 2). They are based 
mainly on moving average, locally weighted scatter plot and Savitzky- 
Golay algorithms (Press et al., 1993). The number of data points for 
calculating the smoothed value as a combination of nearby values can be 
controlled using the span argument (see middle panel in Fig. 2b). As 
such, the greater the value of span, the smoother the fitted curve. In case 
of Savitzky-Golay, the optimal choice of polynomial order can be 
controlled using the degree argument. In any event, it should never be 
bigger than span. 

3.3. Phenological indicators 

Spatiotemporally-explicit knowledge of vegetation phenology is 
critical to understand the change trend of natural seasonal phenomena 
and serve for agricultural production and global change studies (Yu 
et al., 2017; Tang et al., 2015; Ren et al., 2017). In this regard, this 
module has the capability to estimate multiple phenological indicators 
using primarily satellite remote sensing data, although likewise other 

Fig. 4. Original and reconstructed time series of LAI using several gap-filling techniques. The example applies different time settings. Interpolated values of time 
series at a higher sampling frequency (every 20 days) (top). Interpolated values are computed only for embedded missing values in the input time series (bottom). 
The GPR uncertainties are shown in red shade areas. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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type of time series data could be used. The estimation settings for 
phenological indicators can be inspected in Fig. 2c. In this step the user 
can choose among the following phenological metrics (Fig. 5): (1) 
amplitude (difference between the maximum and the average of the left 
and right minimum values per season), (2) maximum value (largest 
value per cycle), (3) day of maximum value (when the largest value per 
cycle occurs), (4) start of season (SOS), (5) end of season (EOS), (6) 
seasonal integral (area under the curve between SOS and EOS), and (7) 
length of season (difference between SOS and EOS). Moreover, DATimeS 
also provides the user with the freedom of choosing whether or not to 
incorporate smoothing prior to the parameter estimation. To optimize 
the provided gap-filling algorithms, this module is recommended to be 
applied after the interpolation step so that cloud-free composite images 
are created, and trends become evident for easy phenological metrics 
derivation. However, it is also possible to go directly to this step. 

The computational strategy follows multiple steps. When running the 
phenological module for each pixel within an image it: (1) extracts time 
series data, (2) identifies automatically individual growing seasons 
within each year, (3) locate specific points within the growing season (e. 
g. SOS, EOS, peak), (4) calculate data value and day of year for growing 
season points of interest, (5) compute integrals and cumulative integrals, 
and (6) store the estimates in output ENVI or Tiff files. 

The determination of the number of seasons (seasonal decomposi
tion) is analogous to previous approaches (Araya et al., 2018; J€onsson 
and Eklundh, 2004; Hill and Donald, 2003), i.e. making use of local 
maximum and minimum of the curve to identify the change of state. 

When three consecutive local minimum, maximum and minimum points 
are detected, one season is extracted. To be able reducing contributions 
from undesired artifacts at low frequencies, this search needs to be 
optimized with specific constraints. In DATimeS, these spurious esti
mates can be masked using a prominence threshold. The prominence of 
a peak is the minimum vertical distance that the signal must descend on 
either side of the peak before either climbing back to a level higher than 
the peak or reaching an endpoint. Accordingly, peaks not meeting the 
specified prominence value are discarded in advance as noise. Addi
tionally, users can also discard the minimum/maximum peaks that are 
very close to each other. When the separation value is greater than zero, 
DATimeS selects the largest local maximum/minimum and ignores all 
other local maxima/minima within the specified separation in time. 

After the time series decomposition, each individual growing season 
is analyzed to detect specific phenological events (e.g. SOS and EOS) 
based on conventional threshold methods, analogous to J€onsson and 
Eklundh (2004); Lloyd (1990); Delbart et al. (2006); White and Nemani 
(2006); Wu et al. (2010); Huang et al. (2019). Three different methods 
have been implemented in DATimeS: (1) seasonal, (2) relative, and (3) 
absolute amplitude. In the former case, the SOS/EOS are identified 
where the left/right part of the curve reaches a fraction of the seasonal 
amplitude along the rising/decaying part of the curve. An example of 
this method is shown in Fig. 5. The second approach is similar to the 
previous one, but now a mean amplitude is estimated considering the 
minimum/maximum values of all seasons. Consequently, the SOS/EOS 
correspond to dates where the curve reaches a percentage of this relative 
amplitude. In the latter method, the SOS/EOS is determined when each 
growing season reaches an absolute value. 

3.4. Post-processing 

In the post-processing module, the following options are provided: 
(1) spatial interpolation, and (2) time series animation. The spatial 
interpolation module offers the option of applying spatial interpolation 
methods when the earlier-developed phenological indicators maps are 
not completely spatially resolved. In such case, the phenological metrics 
estimation becomes impossible due to noisy data, especially in case no 
temporal gap-filling and smoothing methods have been applied. Then, 
the post-processing step is recommended to generate continuous maps 
over space through standard spatial interpolation techniques (linear, 
cubic, nearest and natural neighbor). 

In the animation option, satellite images taken over time are inte
grated and stitched together as a video, which enables users to visually 
detect changes, map trends, and quantify differences on the selected 
area or region. For this purpose, the use of cloud-free composite images, 

Table 2 
Description of different smoothing methods (Press et al., 1993) included on 
DATimeS. Source: MathWorks.  

Filter Description 

Moving A low pass filter with filter coefficients equal to the reciprocal of the 
span. 

LOWESS Local regression using weighted linear least squares and a 1st degree 
polynomial model. 

LOESS Local regression using weighted linear least squares and a 2nd 
degree polynomial model. 

Savitzky- 
Golay 

A generalized moving average with filter coefficients determined by 
an unweighted linear least-squares regression and a polynomial 
model of specified degree. The method can accept nonuniform 
predictor data. 

RLOWESS A robust version of ‘lowess’ that assigns lower weight to outliers in 
the regression. The method assigns zero weight to data outside six 
mean absolute deviations. 

RLOESS A robust version of ‘loess’ that assigns lower weight to outliers in the 
regression. The method assigns zero weight to data outside six mean 
absolute deviations.  

Fig. 5. Automatic identification of some seasonal 
patterns computed in DATimeS by using the recon
structed LAI curve (red line) with GPR. Red shade 
area shows the associated GPR uncertainties (stan
dard deviation). Purple and green colors indicate the 
areas under the curve between SOS/EOS (red tri
angles) and the left/right minimum values, respec
tively. Blue lines show approximately the length of 
seasons (LOS). Maximum value (MaxV), day of 
maximum value (DOM) and amplitude (Amp) are 
represented with orange dashed lines. (For interpre
tation of the references to color in this figure legend, 
the reader is referred to the Web version of this 
article.)   
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which were previously estimated in the Interpolation module, are 
preferable since it produces a smooth time lapse of cloud-free land 
surface phenology. 

4. Demonstration cases 

4.1. Study area and data 

Having described the functioning of DATimeS, in this section we 
present two experiments making use of the different DATimeS modules. 
The ROI selected for the study is a crop region in Castile and Leon, in 
North-West of Spain. The area shown in Fig. 6 was selected as part of a 
wider validation region of Sensagri H2020 Project (Amin et al., 2018), 
for which a highly detailed land-cover map is yearly retrieved by using a 
random forest classifier on satellite imagery time series. The classifier 
distinguishes between 50 specific crop types, being 35 of them arable 
crops, 7 are irrigated crops and 8 for permanent crops (G�omez et al., 
2018). The scene selected for the demonstration cases is mainly char
acterized by an intensive dryland agricultural system where the arable 
land comprises up to 80% of the available area. 

For the experiments, we used green leaf area index (LAI) generated 
from atmospherically corrected S2 imagery using the GPR model 
developed in the framework of SENSAGRI project (Amin et al., 2018). 
The time series consists of 127 unevenly spaced and largely cloud-free 
acquisitions between November 2015 to September 2019. 

4.2. Testing interpolation fitting algorithms 

First, we evaluate the performance of multiple fitting algorithms 
(parametric and non-parametric regressions) in terms of reconstruction 
effectiveness and processing time. For this experiment we used a region 
composed essentially of wheat, barley, green peas, forage, potato, sun
flower and oats (blue polygon in Fig. 6). The pursued approach is 
sketched in Fig. 7. First, we kept out one map from the LAI time series to 
be used as reference for assessment purposes, being the date 01-06- 

2017. Next, a selection of the most powerful and hence promising 
interpolation algorithms were run to reconstruct the LAI information on 
the date of the reference image. Finally, we calculated the goodness-of- 
fit statistics of reference map vs reconstructed map and also the global 
and per-pixel processing time performances. 

It is important to point out that parametric and non-parametric al
gorithms have different modeling assumptions. By definition, para
metric regression algorithms assume an explicit relationship between 
response (dependent) and explanatory (independent) variables using a 
finite number of parameters. On the contrary, for non-parametric re
gressions the information is derived from the training data without any 
assumption about their statistical distribution or variable interrelations, 
making the number of parameters (theoretically) infinite. Parametric 
models such as linear regression, logistic regression, and harmonic al
gorithms are typical examples of “learners” with a fixed size of param
eters. Conversely, algorithms such as K-nearest neighbor, decision trees, 
or GPR are considered non-parametric since the number of parameters 
grows with the size of the training set. Therefore, the statistical assess
ment measures used in this study are: coefficient of variation R2, root 
mean square error RMSE and relative RMSE (RRMSE [%]). An overview 
of validation results and processing time is provided in Table 3. 

The map reconstruction results suggest the following:  

1. The error estimates (RMSE, RRMSE) provide a description of the 
algorithms’ image reconstruction capability. The most accurate 
reconstruction was obtained with GPR with a relative error of 5.9% 
and a R2 of 0.913. The second best reconstruction was obtained with 
the spline interpolation. The following top-performing methods are 
KRR and then sigmoid; the rest of methods perform substantially 
poorer. A remark hereby is that a perfect reconstruction is virtually 
impossible to achieve, not only due to the sources of noisiness in 
original data, but also because of the smoothing effect that the fitting 
methods have on the original series (Atkinson et al., 2012).  

2. The recorded processing time indicates that the Fourier and the 
conventional interpolation methods are extremely fast; processing 

Fig. 6. RGB image of the crop ROIs in Castile and Leon region, Northwest Iberian peninsula, from Sentinel 2 capture of 2016, June 26th. Pixels inside the blue region 
are used for the interpolation experiment. Pixels inside red area are used for the phenological indicators analysis between different crops and seasons. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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the subset took about half a minute. Conversely, the accurate sig
moid took significantly longer, being about one thousand times 
slower.  

3. Taking both accuracy and processing speed into account, GPR and 
spline interpolations turn out to be the most efficient interpolators, 
with GPR more accurate but spline faster by a factor of 70. 

Based on the above results, GPR resulted as the preferred method for 
gap-filling purposes. Besides, it is the only method that also provides 
associated uncertainties. We therefore used this method for subsequent 
calculation of the phenological indicators to fill up some remaining 
missing values. 

The DATimeS maps of the phenological indicators for the year 2017 
are shown in Fig. 8. The field-scale consistency of the result can be easily 
appreciated by visually inspecting the results. In the SOS map it can be 
clearly viewed that some crops started their growing season later. The 
EOS map is consistent as well, leading to homogeneous parcels in terms 
of length of season. Also, the day corresponding to the maximum value 
well resembles the pattern of the start of season. Probably of more in
terest are the indicators amplitude, maximum value and area. These 
indicators are usually related to crop’s productivity (Zhang and Zhang, 
2016). Also within-field variations can be observed in these maps, which 
is extremely useful for smart farming applications (Das et al., 2019), e.g. 
for precision fertilizing. 

4.3. Phenological metrics between different crops and seasons 

Keeping the most accurate interpolation method obtained in Section 
4.2 in mind, in this second case study we use GPR to achieve a spatio
temporal reconstruction LAI maps and compare the phenological in
dicators of specific crop types throughout multiple seasons. The region 
chosen for the study corresponds to a dryland farming area containing 
crops of barley, beet, potato, rape and wheat (red polygons in Fig. 6). 

The main steps of the experiment have been the following: (1) 
training an independent GPR model for each pixel of the ROI using its 
corresponding LAI time series, (2) providing interpolated LAI values 
with its associated uncertainty estimates for each input time t (every 10 
days) and pixel, subsequently (3) estimating the mean LAI time series 
and their variance using the interpolated values of pixels belonging to 
the same crop type, and finally (4) extracting the phenological indicators 
for each crop and season. The results obtained for the five aforemen
tioned crop types are shown graphically in Fig. 9 and reported numer
ically in Table 4. 

Although at first glance the temporal evolution of mean LAI profiles 
seems to indicate that each crop presents almost identical patterns 
throughout the multiple seasons, a more careful analysis of phenological 
indicators reveals that meaningful changes took place. For wheat, 
similar to barley, the dates of SOS/EOS determined from season 1 occurs 
roughly one month before those of season 2. They further show a 
reduction in LOS of about 15 and 35 days, respectively. Consequently, 
the areas derived from the profiles of season 2 are approximately 15% 
lower than those of season 1. As for potato, mean LAI shows good 
agreement in SOS over the different seasons. Conversely, season 3 pre
sents a slight decrease in LOS of around 24 days. Also noteworthy is that 
season 2 stands out for being the year with the highest values of area 
(277.9 [m2/m2d]), LAI (5.6 [m2/m2])) and amplitude (3.9 [m2/m2])). 
For rape, the phenological metrics derived from the LAI time series 
changed significantly across the 3 seasons, specially in SOS with values 
ranging from 264 to 348 DOY. This crop also exhibits the shortest 
growing season (217 days) and the largest area (339.3) at season 2. 
Finally, the temporal course of beet shows good agreement in SOS/EOS, 
with differences less than 13%. Contrarily, a substantial mismatch exists 
in DOM where the fluctuation of measured value lies between 192 and 
258 DOY. 

The explanation of the seasonal variability of crop temporal patterns 
is not straightforward as they are deeply related to the weather evolu
tion during each crop season in terms of temperature fluctuations and 
precipitation events. Effects from climate change are leading to a gen
eral increase of temperature and a reduction of the number of rain 
events, with extreme precipitations always more frequent and severe. 
Because of the sensitivity of agriculture to the variations of weather and 
climate conditions, they are likely to have substantial direct and indirect 
effects on crop production and yield. Therefore, easy monitoring of 

Fig. 7. Schematic diagram representing the processing steps undertaken in the interpolation experiment.  

Table 3 
Goodness-of-fit statistics and processing time for the reference vs. LAI- 
reconstructed map as produced by the gap-filling methods for 17,218 pixels.  

Methods RMSE RRMSE [%] R2 Time 

Total (min) Per pixel (sec) 

ARES 0.500 19.387 0.041 25.533 0.089 
BAGTREE 0.482 18.661 0.572 263.050 0.917 
GPR 0.153 5.940 0.913 23.100 0.081 
KNRR 0.522 20.216 0.137 6.883 0.024 
KRR 0.187 7.230 0.826 5.450 0.019 
NN 0.248 9.628 0.696 771.824 2.689 
RF1 0.341 13.199 0.836 34.049 0.119 
RF2 0.539 20.872 0.684 58.397 0.204 
Sigmoid 0.187 7.250 0.925 313.117 1.091 
Fourier1 0.360 13.961 0.338 0.383 0.001 
Fourier2 0.351 13.597 0.380 0.413 0.001 
Fourier3 0.350 13.549 0.389 0.226 0.001 
Next 0.539 20.872 0.684 0.317 0.001 
Polyfit 0.492 19.056 0.002 0.467 0.002 
Previous 0.472 18.283 0.849 0.333 0.001 
Spline 0.158 6.121 0.896 0.333 0.001  
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changes in vegetation phenology becomes critical to assess alteration of 
land ecosystem productivity and seasonal variations. 

5. Discussion 

Having outlined the key modules of DATimeS, some general re
flections are worth mentioning. A first aspect is the streamlined, 

modular processing of the toolbox. The required steps are essentially 
loading the time series, drawing a subset, selecting the interpolation to 
run and choosing the date to reconstruct an image. The data filling does 
not have to be restricted to LAI or another vegetation property. 
Phenological studies are typically carried out with spectral indicators 
such as NDVI, but in a broader context, any kind of continuous data can 
be processed, including proximal sensing time series (Guo et al., 2019; 

Fig. 8. Maps of phenological indicators estimated by using reconstructed Sentinel-2 LAI images with GPR. Spatial interpolation was only applied for pixels with no 
strong seasonal signal. 
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Marino and Alvino, 2014) coming from flux towers (Gamon, 2015)), 
land surface temperature (Li et al., 2013) or microwave acquisitions 
(Marzahn et al., 2012). 

Besides, the inclusion of machine learning fitting methods provides a 
benchmark as opposed to conventional gap-filling methods. Not only 
may it lead to more accurate reconstructions (Table 3), it is also adaptive 
towards unevenly spaced data over multiple seasons. Particularly GPR is 

of interest, as its associated uncertainty estimates provides per-pixel 
information of the gap-filling confidence. Typically, the longer the gap 
between two consecutive input samples, the higher the uncertainty. 
However, the provided gap-filling techniques offer different perfor
mances. Each method has its own advantages and drawbacks, which 
depend strongly on the characteristics of the input time series (Atzberger 
and Eilers, 2011; Zeng et al., 2020), i.e. a method that fits well with some 

Fig. 9. Modeling LAI time series of different crop types by using GPR method. The green and blue colors represent the area under the curve between SOS and EOS. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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data can be unsuited for a different set of data points. This implies that 
GPR is not necessary top performing in all situations, and in other sit
uations alternative gap-filling methods could achieve more efficient 
performances. For that reason, it is recommended to analyze first the 
behaviour of the fitting methods on single pixels (e.g., as detailed in 
section 4.2). For instance, conventional harmonic analysis is only suit
able for stationary data, and without aperiodic extreme behaviors. 
Contrarily, MLRA algorithms are effective to account for the amplitude 
and phase time variability. 

Concerning the appropriate length of time series, even if there is no 
limit of amount of data, the accuracy of the time series reconstruction 
increases with the data size. The main limitation of the interpolation 
module is the high time consuming and computational cost of specific 
algorithms; especially NN but also the double logistic curve. 

The toolbox is expected to be practical for a wide range of users 
interested in detecting vegetation phenology. Specifically, a compre
hensive familiarity of crop dynamics is essential in agricultural appli
cations whereby the phenological indicators can be related to essential 
sources of information including start of senescing, harvest day, pro
ductivity estimates, irrigation management, nutrient management, 
health management, yield prediction and crop type mapping (Alam 
et al., 2012; Jayawardhana and Chathurange, 2016). An example of such 
variability has been provided in section 4.3 (Table 4 and Fig. 9), where 
fluctuations of a specific crop are evident along consecutive seasons. 
They are likely generated by changes in precipitation, insect pests, plant 
diseases, or even by a changing climate. Nonetheless, these are complex 
dynamics that need to be studied further. 

Finally, despite that DATimeS is written in MATLAB, additional 
methodologies as multi-sensor fusion (Pipia et al., 2019) based on 
open-source Python package (GPy, 2012) (Warmerdam, 2008) will be 
added to the Matlab-based GUI in the future release. For that, a basic 
Python distribution will be also included in the installing package. 

6. Conclusions and future work 

The presented DATimeS is a stand-alone toolbox for time series 
analysis that brings together versatile MLRA algorithms and conven
tional interpolation techniques (e.g., harmonic analyses, double logistic 
curve, among others). DATimeS aims to be a generic and innovative time 
series toolbox that provides sufficient flexibility to capture the principal 
vegetation features without imposing too heavy computational or 
inferential burdens, for gap-filling and subsequent phenological anal
ysis. In comparison to other GUI times series toolboxes, DATimeS is state 
of the art, through the: (1) ability to process unevenly spaced satellite 
image time series, (2) possibility to select over twelve different machine 
learning fitting methods for time series prediction (some methods 
include associated uncertainties, e.g. GPR), and (3) provision and 
analysis of phenological indicators over multiple growing seasons. The 
preliminary assessment of the multiple interpolation methods using 
Sentinel-2 LAI time series demonstrated the potential of GPR as 

optimum algorithm to successfully reconstruct vegetation indices and 
retrieve reliable phenological indicators. 

At the same time, DATimeS keeps being improved and extended in 
various ways. The following upgrades are in the pipeline: new supported 
image formats (e.g. NetCDF and the native format of Sentinel imagery 
JPEG2000), more phenological indicators (e.g. growth rate between 
SOS and maximum value for each individual season), aggregated pro
cessing on a per-field scale when a land cover map is loaded, and latest 
tools related to harvest trends and automatic disturbances detection. We 
also foresee that more conventional and latest gap-filling methods will 
be implemented, such as Whittaker smoother (Eilers, 2003) and 
Multi-Output Gaussian Process regression (MOGP) (�Alvarez et al., 2012) 
The latter is a cutting-edge machine learning tool which is able to stress 
the dependencies among any kind of multiple but related data collec
tions. It could be beneficial to establish the synergy between vegetation 
descriptors from multiple sensors, e.g. fusing Sentinel-1 with Sentinel-2 
data (Pipia et al., 2019). We also aim to provide DATimeS in batch 
processing mode as alternative to the Matlab-based GUI. First steps to
wards reaching these goals are already underway. Finally, DATimeS is 
made freely available to registered users for scientific purposes. It can be 
freely downloaded from the ARTMO web page: http://artmotoolbox.co 
m. 
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