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Full Description of Methods 

 
 
 
Sample: Participant stratification by SCZ-PRS 
 

Participant recruitment was based on the stratification of the ALSPAC birth cohort by polygenic risk 

for schizophrenia. During the 2 ½ years of scanning procedure, we attempted to balance the gender 

between the two groups and to get both low and extreme high groups for polygenic risk score sampled 

from a large cohort available from the BRISTOL ALSPAC team (N=8169).  

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st 

December 1992 were invited to take part in the study. The initial number of pregnancies enrolled is 

14,541. Of these initial pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births 

and 13,988 children who were alive at 1 year of age.  

When the oldest children were approximately 7 years of age, an attempt was made to bolster the 

initial sample with eligible cases who had failed to join the study originally.  Please note that the study 

website contains details of all the data that is available through a fully searchable data dictionary and 

variable search tool" and reference the following webpage: 

http://www.bristol.ac.uk/alspac/researchers/our-data/ 

Approximately, 11000 children have provided samples and have DNA available. Of these, 8365 

individuals were genotyped on Illumina 550 platform and 8169 of them had passed the significant 

threshold (p-value) derived from genome-wide association studies (GWAS) and passed the quality 

control. The two groups were well-balanced according to their gender ratio and age distribution (see 

below). No subject was receiving psychotropic medication. Ethical approval for the study was obtained 

from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. 

We assessed 197 individuals - 99 individuals (52 female, 47 male) with low SCZ-PRS and 98 

individuals (52 female, 46 male) with high SCZ-PRS from either tail of the SCZ-PRS distribution from 

a large, genotyped population of similar age (see S1). We started recruitment at the lowest and highest 

extremes of the SCZ-PRS distribution aiming to recruit two groups of high and low PRS subjects each 

with 100 members with the same gender balance. By design, there were highly significant differences 

between the SCZ-PRS for the two groups (P < 5 ×10-15). The ALSPAC team sent out 1241 invitations 

in total (470 to the low and 771 to the high SCH-PRS group). 

The SCZ-PRS was calculated using summary statistics from PGC-SCZ2 (1) at a threshold of P ≤. 05, 

approximately 5% of all imputed SNPs. This threshold was specifically chosen as it captures the most 
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SCZ liability (most variance explained) in the primary PRS analysis using training data/summary 

statistics derived from the largest SCZ GWAS of 34241 SCZ cases and 45604 controls.  

Both SCZ-PRS groups are more than 1 SD above / below the population mean. z-transformed PRS 

by group is showed in  S1 [1]. The mean group z-PRS is above 1.5 (1.42 for high, 1.71 for low ; see 

Table S1).  

 
Table S1. Mean group z-PRS estimated over the whole population of 8169 individuals showed in S1. 
 

Group N Z-PRS Z- PRS SD 
High 98 1.42 0.58 
Low 99 -1.71 0.46 
Non-Imaging 8168 0.00 0.98 

 

The study was approved by the Central Bristol Research Ethics Committee (13/SW/0170). We 

assessed 197 individuals - 99 (52 female, 47 male) individuals with low SCZ-PRS and 98 individuals 

(52 female, 46 male) with high SCZ-PRS from either tail of the SCZ-PRS distribution from a large, age-

matched, genotyped population (Figure 1). There were highly significant differences between the SCZ-

PRS for the two groups (P < 5 ×10-15). There was however evidence of violation of homoscedasticity 

between the SCZ-PRS groups), where the cluster was more diffuse for the high SCZ-PRS compared to 

the low SCZ-PRS group (Levene’s test: F1,195 = 16.1, P = 0.00083; Fligner-Killeeen; P < .001). For 

further details about this cohort and the multimodal imaging protocol, see [1]. 

Psychotic experiences and WISC-III measures are tabulated in Table S2 in conjunction with the 

statistical analysis. For further details, see [1]. We observed a nominal association between psychotic 

experiences and high SCH-PRS untangling an increased pattern and no nominal association between 

WISC measures with SCH-PRS. 

Table S2. OR and β Coefficients (±95% Confidence Intervals) for Psychotic Experiences and WISC-

III IQ Measures by SCZ-PRS Group (Higher OR/Coefficients Reflect an Association With the High 

SCZ-PRS Group) 

Phenotype Estimate Lower 0.95% Upper 0.95% P 

Psychotic experiences  1.100a  1.00660  1.20283  .039  

WISC-III (verbal)  0.217b  −4.48233  4.91643  .927  

WISC-III (performance)  1.944b  −2.83438  6.72296  .423  

WISC-III (total)  1.606b  −2.77053  5.98341  .470  

aOdds ratio (OR). 
bβ coefficients. 
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Figure S1. Characterisation of the schizophrenia polygenic risk group in the neuroimaging sample 

(calculated by SCZ-PRS - left; defined by rank – right; N=197; Low = 99, High = 98) compared to the 

entire genotyped cohort (N=8169, not including the neuroimaging sample).   

     

 
Experimental Setup and Procedure 
 

Participants were placed in a supine position in the MRI scanner.  Padding was placed under 

the knees in order to maximize comfort and provide an angled surface to position the stimulus 

response box.  Finally, in order to minimize head motion, padded wedges were inserted between the 

participant and head coil of the MRI scanner.   For  all sessions, participants performed  a cued 

sequence production (CSP)  task  (see Figure S1), responding  to visually cued sequences by 

generating responses using their right-hand  on a fiber-optic  response box.  Responses were made 

using four fingers of the left hand (the thumb was excluded).  Visual cues were presented as a series 

of Arabic numbers from 1 to 4.  Each number was mapped to one of the four buttons on the response 

box. We designed an n-back experiments with three load levels (0, 1 and 2) following the same order 

during the 6 runs. The total number of presented numbers for each n-back level per run was 10 which 

means 10 responses for 0-back level, 9 response for 1-back level and 8 response for the 2-back level. 

The sequence of presented numbers was generated via a randomization procedure for each participant. 

Every block started with a label {‘0-back’ ,’1-back’,’2-back’} to notify the participant of the current n-

back level. At the end of the experiment, we showed a message {‘END – PLEASE DON’T MOVE’}. 
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During the task, participants were not informed about their performance. S2 illustrates an example of an 

n-back task setup. 

Each number (trial) was presented for 2 seconds, separated by an inter-trial interval  (ITI)  lasting 

maximum 3s, not  including  any  time  remaining  from the  previous  trial. The duration of each 

block/run was fixed. Responses and reaction times to each stimulus were for subsequent analysis of 

behavioural performance. Participants completed 6 runs of each of three conditions. The total duration 

of the experiment was ~ 10 minutes with 9 minutes the actual block/run time. Each block/run includes 

15 slices with a total duration of 30 sec. 

Participants had performed the same task earlier on the same day as part of a MEG acquisition, and 

so were already familiar and practiced with the task when peforming during the MRI acquisition. 

Stimulus presentation was performed by MATLAB version 7.6 (Mathworks, Natick, MA) using 

the Psychophysics Toolbox version 3. Key-press responses were collected using a fiber-optic button 

box supplied by NATA Technologies (Coquitlam, BC).  

 

 

Figure S2. n-back paradigm (example: for zero, one and two-back target).  

Upper row demonstrates the working memory test for each n-back level , middle row represents the 

response of the participant while the last row demonstrates the correct answer per n-back block.
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Acquisition and Preprocessing of fMRI Data 
 

MRI data were obtained on a GE HDx 3 Tesla scanner. Whole brain, dual-echo, BOLD GE-

echoplanar imaging (EPI) images (repetition time (TR) = 2 s, echo time (TE1) = 13 ms, TE2 = 31 ms, 

voxel-size 3.5 × 3.5 × 3 mm3, 293 slices in total) were collected. 

Gradient echoplanar imaging data was acquired for each subject on the same 3T GT HDx system 

with an eight channel receiver at CUBRIC (Cardiff University Brain Research Imaging Centre), School 

of Psychology, Cardiff University (parameters: 35 slices, slice thickness; 3mm/1mm gap, acquisition 

matrix; 64 x 64; FOV; 220mm, TR 2000ms, TE 35ms, flip angle 90°, acceleration (ASSET) factor; 2, 

256 volumes – approximately 9 minutes). All functional images were first motion scrubbed, where TRs 

with a frame wise displacement > 0.9 were removed, as previously recommended [1]. Image processing 

and statistical analyses were conducted using statistical parametric mapping methods as implemented 

in FMRI Expert Analysis Tool (FEAT, Version 5.98, part of FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl [2]). The following pre-statistics processing was applied; motion correction 

using MCFLIRT  ; slice-timing correction using Fourier-space time-series phase-shifting; non-brain 

removal using BET (Brain Extraction Tool) spatial smoothing using a Gaussian kernel of FWHM 5mm; 

grand-mean intensity normalisation of the entire 4D dataset by a single multiplicative factor; high-pass 

temporal filtering (Gaussian-weighted least-squares straight line fitting, with sigma=50.0s). Registration 

to high resolution structural (single subject GLM (general linear model)) and standard space (group-

level GLM) images was carried out using FLIRT. Time-series analysis was carried out using FMRIB's 

Improved Linear Model (FILM) with local autocorrelation correction. To further correct for any 

potential movement confounds, motion regressors were estimated via MCFLIRT and scrubbed TRs 

were added as covariates of no interest to each individual design matrix. First-level fixed-effects model 

was then computed for each participant. Regressors were designed for each subject, created from the 

time course of the three experimental conditions (0, 1, and 2 back; between jittered fixation periods (4-

8 seconds ISI)) and convolved with a canonical hemodynamic response function. For each subject, 

statistical contrast images of zero, one and two back > implicit baseline (fixation) were obtained. 

To ensure that differences found in fMRI data were not attributed to head motion, we examined 

frame-wise displacement (FD) [3]. Average FDs were small (mean ± SD, pre-task: 0.08 ± 0.04 mm, 

post-task: 0.09 ± 0.06 mm), and a paired t-test revealed no significant difference between the two groups 

(p = 0.12).  
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Partitioning the Brain into Regions of Interest 

 In order to construct a dynamic functional connectivity graph, we have to first divide brain 

volume into anatomical brain areas. Using an anatomical atlas, we grouped voxels oriented within a 

coherent anatomical 3D space and we then averaged voxel-based BOLD time series to get a 

representative time series per ROI (for recent reviews, see [3–5]). Many atlases are available in the 

literature that divide the cortex into a restrict number of brain volumes [6-8]. A famous one is the 

Automated Anatomical Labeling (AAL) which is provided by the SPM toolbox [9]. In our 

study, we estimated the 90 representative mean BOLD time  series by averaging  voxel-based time  

series within brain areas defined by the AAL atlas. 

 
 

Wavelet Decomposition 

Brain function is highly frequency dependent while different cognitive (dys)functions are expressed 

in specific frequency bands. In previous studies, BOLD activity per ROI at both resting-state and task 

conditions has been decomposed via wavelets [10, 11]. Wavelet-based time series were robust to noise 

and sensitive to small changes in the activity [12]. The maximum-overlap discrete wavelet transform 

(MODWT) has been frequently used in explor ing funct ional  connectivity of fMRI [13–18]. 

Accordingly, we adopted MODWT to decompose each regional time series into wavelet scales 

corresponding to specific frequency bands [19].  Wavelet coefficients for the first four wavelet scales 

correspond to the frequency ranges 0.125∼0.25 Hz (Scale 1), 0.06∼0.125 Hz (Scale 2), 0.03∼0.06 Hz 

(Scale 3), and 0.015∼0.03 Hz (Scale 4) [20,21,22,24].   
 
 
 
 
Connectivity Over Temporal Scale 
 
Dynamic Connectivity Estimation   

 

We constructed   a dynamic functional   connectivity graph for each n-back level and for each 

participant. As a connectivity estimator, we used wavelet-based coherence. Here, we have used 

wavelet-based coherence measure compared to the Pearson correlation coefficient for many reasons. 

The wavelet-based coherence is much more robust to many sources of artifacts like movement-related 

artifacts, enhances the signal to ratio of every BOLD time series simultaneously denoising the signal 

while its range of values is bounded over [0 1] and not in [-1 1] with both negative-positive correlations 

as with Pearson correlation coefficient. 
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We first concatenated regional mean time series pe r  ROI  over each n-back level [25]. We then 

constructed, a dynamic functional connectivity graph (DFCG) for each subject, based on the wavelet 

coherence between regional mean time series.  We constructed a separate DFCG for each subject 

for each n-back level [3,25] for a total  of 73 temporal FCG (87 TRs per condition, time-window=15 

TRs, stepping moving criterion = 1TR,  (87 - 15) + 1 = 73 temporal FCG)  per subject. This number of 

slices can give a high temporal resolution of the dynamic functional connectivity strength.   

 
 
Construction of Brain Networks    
 

In many studies, the choice of an appropriate connectivity estimators was wavelet coherence 

[13,15,18,26,27]. In the dynamic brain network approach, we estimated the wavelet coherence between 

every pair of ROIs (a total of 4005 pair-wise associations) for every temporal segment oriented by the 

width of window of 15 slices with 1 slice overlap between consecutive temporal segments [28]. This 

approach yields a dynamic functional brain connectivity graph of size 73 x 90 x90 per frequency scale 

and per subject.  

S3A-B illustrates how a DFCG has been estimated by adopting the sliding-window approach. In S5, 

one can understand how the DFCG has been constructed. We adjusted the selected time-window of 15 

slices on the experimental BOLD activity and we estimated the quasi-static FCG. Then we moved the 

time-window by 1 slice and we re-estimated the FCG. The first time-window encapsulates 1-15 time 

slices, the second 2-16 slices and so on. Finally, we estimated the DFCG with three dimensions, the first 

referring to time windows and the last two to the 2D matrix representation of FCG that tabulates the 

temporal correlation of every pair of ROI BOLD time series. 

Our goal was to construct multi-layer networks where the layers referred to the quasi-static functional 

brain networks estimated per temporal segment, here 73 in total per subject and frequency band. Till 

now, modularity in multi-layer networks has been estimated by assigning values of 1 as the weight of 

inter-slice connections. However, the inter-slice connections could fluctuate across experimental time 

(see S4). For that reason, we assigned the following weight to the link that connects every node i between 

two consecutive temporal segments (network layers): 

𝛾ሾ௧,௧ାଵሿ
 ൌ

∑ 𝑤
௧  𝑤

௧ାଵ


ට𝑠
௧𝑠

௧ାଵ
  ሺ1ሻ 

where 𝑤
௧  are the weights derived from wavelet coherence between every pair {i,j} at time t while 𝑠

௧ is 

the total strength of node i over time snapshot t. 𝛾 takes values between 0 and 1. Higher values of 𝛾 

can be obtained when the functional interactions of node persist across experimental time. 
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 However, the aforementioned approach yields a fully-weighted dynamic functional connectivity 

graph while not all the pair-wise associations indicate the existence of functional associations [13]. Due 

the absence of a neurophysiological baseline of true functional associations, we need to generate 

surrogates that ‘mimic’ specific attributes of the original BOLD time series.  

However, as pointed  out  in other  network  studies  of fMRI data  [13], not  all elements  ri,j of 

the  full correlation matrix  necessarily  indicate  significant functional  relationships. Many 

approaches have been suggested so far: the random approach,  the  Amplitude-Adjusted Fourier 

Transform (AAFT) surrogate and the iterative Amplitude-Adjusted Fourier Transform (iAAFT) 

surrogate. The random surrogate approach shuffles the samples of a time series reordering them across 

experimental time (see S3.A). However, this approach didn’t preserve the variance, the mean and the 

autocorrelation function of the original time series. The second surrogate approach randomizes the phase 

of the time series in the Fourier space [28] 

FT surrogate null models assumes that linear properties of the time series are defined via the 

squared amplitudes of the discrete Fourier transform (FT) expressed in the following equation 

(2) 

 

where sv defines a sample of the time series with length equals to V.  FT method is constructed by 

multiplying the Fourier transform of the original time series with uniformly randomized phases and then 

back transforming tin the time domain. This procedure is described in the following equation. 

(3) 

where  are chosen independently and uniformly at random [30,[31]. A modification of this 

method is called amplitude-adjusted Fourier transform (AAFT) surrogate which retains the amplitude 

distribution of the original signal [32] (see S3.D). The fourth surrogate null model is called iteratively 

amplitude-adjusted Fourier transform (iAAFT) surrogate. iAAFT is an improved version of AAFT 

which iteratively, it fits the amplitudes and at each step improves the spectral phases and then reorders 

the derived time series at each step until convergence of both spectral density and amplitude distribution 

is reached. The algorithm terminates if complete convergence is succeeded. 

 In figure S3, we showed an example of how the surrogate null networks look like [33,34]. We 

averaged the functional brain networks across all layers from a single subject at each case. It seems that 
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iAAFT yields mean wavelet coherence values closest to the original and it was our choice for the 

surrogate analysis. 

 

 

 

Figure S3. Available surrogate  null models for time series and statistical filtering of functional 

wavelet coherence (WC). 

 (A) Example coherence matrix Al averaged over layers from a brain network. 

 (B) Random surrogates, (C) FT surrogate,  (D) AAFT surrogate null models , (E) iAAFT surrogate null 

models averaged over layers  

(F)  Wavelet Coherence (WC) of each matrix type averaged over subjects, n-back levels, and layers. 

 

 In the present study, we generated 1.000 surrogates per ROI time series leading to 1.000 values 

of coherence per pair of ROIs. Based on the distribution of the surrogate correlation values, we assigned 

a p-value per pair of ROIs and for each temporal segment [13,29]. We then  tested  the p-values pi,j 

for significance using a False Discovery Rate (FDR)  of p < 0.05 to correct for multiple comparisons 

[30,31] independently  for each quasi-static snapshot of the DFCG. All the connections that didn’t pass 

the FDR correction approach were set to 0. 
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 Additionally to the statistical filtering approach, we applied a data-driven topological filtering 

approach to further reveal the true network topology of each quasi-static FCG. Our method is called 

Orthogonal Minimal Spanning Tree (OMST) and was previously used in EEG, MEG and fMRI to 

improve the reliability of network metrics, brain fingerprinting, the discrimination of multiple-groups 

simultaneously and also the development of a novel chronnectomic brain-aged index [36-38]. 

Statistical and topological filtering of the dynamic functional connectivity brain graph is important 

to reveal the temporal communities via the multilayer network modularity. If the multi-layer is fully-

weighted then the algorithm described in the next section will give a unique community and a low Q 

quality function. In many strong publications, the authors didn’t report any statistical and topological 

filtering and it is an issue of how they found temporal modules. 

 

 

Multilayer Network Modularity:  
 
We attempted to characterize how brain areas are spatially and temporally connected across 

experimental time and in the n-back levels. Community detection algorithms is a powerful family  of 

methods belonging to the large scientific research area of network neuroscience [32,33, 34]. A 

community is composed of  a set of brain areas that are more connected between each other compared 

to the rest of the network. A popular approach to reveal communities is the optimization of the famous 

modularity Q function [39,40] expressed as: 

(4) 

To reveal temporal communities that evolved over experimental time and to reveal the evolution 

of communities affiliations across brain systems, we constructed a multi-layer network. Every frame 

of the dynamic functional connectivity brain graph corresponds is a unique layer. The layers were 

linked here using equation 1 that quantifies the (in)stability of functional strength of every node 

between consecutive windows. Previous articles used a stable weight for the inter-slice connections 

equal to 1 [43]. 

A multilayer network was constructed for every subject in every n-back level. Then, we performed 

the famous Louvain greedy algorithm [44] optimizing the temporal extension of the famous 

modularity expressed in the following equation: 
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( 5 )  

where I refers to the layer (temporal segment), Aijl is the functional brain network per layer (temporal 

segment), Pijl are the components of every layer I matrix , γl is the structural resolution parameter of 

layer l, the quantity gil gives the community assignment of node i in layer l, the gjr is the community 

assignment of node j in layer r, the element ωjlr refers to the connection strength from node j in layer r to 

node j in layer l, the total edge weight in the network is: 

 

the strength (i.e., weighted degree) of node j in layer l is:  

 

the intralayer strength of node j in layer l is:  

  

and the interlayer strength of node j in layer l is:  

. 

The whole procedure gives a community affiliation for every brain area at every temporal segment. 

However, the maximization of the temporal modularity quality function is an NP hard problem and the 

Louvain greedy algorithm is heuristic in the way of searching the optimal Q function (eq.5) [42]. We 

repeated 1000 times the Louvain greedy algorithm per pair of values for the two resolution parameters 

(γl ,ωjlr) of the multilayer Q function that must be optimized (see next section). 

Mucha’s multilayer modularity algorithm was applied to the multi-layer DFCG illustrated in S4 [43]. 

We adopted Modularity Probability Method: MPM instead of default Maximum Modularity Method 

(MMM). 
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Figure S4. A multi-layer temporal network with inter-slice connections [43]. 

 

Figure S5 illustrates the steps of creating a DFCG from BOLD time series using wavelet coherence (A-

B), the estimation of dynamic modules (C) and finally the calculation of the diagnostic called flexibility 

index (D). 

 

 

Figure S5. Construction of  a dynamic functional connectivity brain network and the estimation 

of the Flexibility (F) index. 

 (A) An example of a pair Blood oxygen level-dependent (BOLD) signals from two brain regions defined 

in the AAL. (B) For every temporal segment w1,w2,… a functional connectivity graph is constructed 

of size NxN where N denotes the 90 ROIs (C) The maximization of the temporal extension of modularity 

algorithm by Mucha et al. yields spatio-temporal communities linking both space and time dimensions 

[43]. (D) Then, we estimated nodal Flexibility, F, as the number of times its community affiliation 

changes over temporal segments (see S13). 

 

Statistical Framework 
 

A first drawback of previous attempts to reveal temporal communities over a multi-layer network 

was their analysis over fully-weighted dynamic brain networks. Mucha’s multilayer modularity 

algorithm has two basic parameters that must be optimized: the γl which is the structural resolution 
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parameter of layer l and  the element ωjlr gives the temporal resolution parameter. In our scenario, we 

adopted proper surrogate null models tailored to temporal networks. Surrogate null models for static 

brain networks have been already proposed and used [27,44]. 

Here, we constructed three independent temporal surrogate null models tailored to temporal brain 

networks: (1) the first one will test the topology of the network, (2) the second will test the network 

structure dependent on nodal identity and (3) the third will test the temporal ordering of the layers in the 

multi-layer formulation. 

Figure S6.A illustrates the quasi-static FCG for a single time window without inter-slice 

connections while S6.B illustrates the dynamic network with inter-slice connections. 

In the connectional null model (1), we shuffled the connections of the network in every layer by 

preserving the degree of every node (S6.C). In the constructing nodal null model  (2),  we changed the 

inter-layer connection of every node with itself in every layer by randomly chosen nodes in layers. We 

followed this type of model in all the layers with the exception of the last layer. The weight inter-slice 

𝛾  is re-estimated after the connectional null model. In the temporal structure model, we randomly 

permuted the order of the layers (temporal segments) (S6.C). 

 

 

Figure S6. Temporal dynamics of modular architecture.  

(A) A toy network example consisted of four nodes and four connections  

(B) A multilayer network framework consisted of four temporal segments/layers linked by inter-slice 

connections in the adjacent time windows over homologue nodes (colored curves).  

(C) Statistical framework of the three null modesl 
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 The connectional null model , the nodal null model, and the temporal null model in which intra-network 

links, inter-network links, and layers or temporal segments, respectively, in the real network are 

randomized, respectively, in the permuted network.  

 

Our main goal of using null models for the multi-layer graphs was to optimize the parameters 

of the Q function and namely the, γl which is the structural resolution parameter of layer l and  the 

element ωjlr gives the temporal resolution parameter. Searching from a range of values 0 – 3 with step 

0.1 in both parameters, we detected the optimal pair of values independently for n-back level and for 

each subject separately. The main goal was to find the optimal pair of parameter values that minimize 

the p-value of the original Q over Qsurr estimated from the surrogate null models. Combining the 

optimization of the pair of parameter that influences the Q quality index and the heuristic Louvain greedy 

algorithm, we run Louvain algorithm 1000 times per pair of values over the searching space.  

It is the very first time that a study attempted to optimize the the, γl which is the structural resolution 

parameter of layer l and  the element ωjlr gives the temporal resolution parameter by adopting surrogate 

network null models. Previous studies used default parameters equal to 1 [41]. 

 
 
Statistical Testing 
 

For every subject, frequency scale and n-back level, we detected the pair of parameters (γl , ωjlr) that 

minimizes the p-value of Q quality function when we compared the mean Q value over 1000 runs over 

the original multi-layer network with the surrogate mean Q values reproduced over 1000 surrogate null 

models using simultaneously the three types of temporal surrogate null models. Specifically, for every 

pair of values for the two parameters (γl , ωjlr), we created 1000 surrogate multi-layer networks and for 

every surrogate temporal null model, we run 1000 times the Louvain greedy algorithm as we did for the 

original multi-layer network. Then, we first averaged the Q values over the 1000 runs of Louvain 

algorithm giving a total number of 1000 surrogate Q values per pair of values of the two parameters. 

Comparing the original Q value with the 1000 surrogate Q values, we assigned a p-value of Q over the 

2d searching space the pair of parameters (γl , ωjlr). Then, we found the minimum p-value to get the 

optimal pair of values for the (γl , ωjlr).  

Flexibility index was estimated per node across the 1000 runs of Louvain algorithm for the optimal 

set of (γl , ωjlr). For every run, we tabulated in a FRi,j matrix as binary elements whether self-node ii 

changes its community affiliation between two consecutive time windows at every transition j. 

Averaging all runs of temporal modularity optimization, we ‘ve got the average flexibility index matrix 
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FR whose elements in the main diagonal FRi,j report the probability that a brain area change community 

affiliation over time. 

Mean Q value and mean number of modules were estimated over 1000 runs of Louvain algorithm 

for the optimal values of the set (γl , ωjlr).  

We found an optimal set of parameters { γl , ωjlr } per frequency scale and group (table S3). Following 

a Wilcoxon Signed Rank-Sum test, no significant group differences were detected for both parameters 

across the four frequency scales (p< 0.05). 

 

Table S3. Mean and Standard deviations of { γl , ωjlr} per frequency scale and group. 

Frequency 

Scales 

1 

{ γl , ωjlr } 

2 

{ γl , ωjlr } 

3 

{ γl , ωjlr } 

4 

{ γl , ωjlr } 

Low SCH-PRS γ=1.07±0.02 

ω=2.53±0.02        

γ=1.07±0.02 

ω=2.52±0.02        

γ=1.06±0.02 

ω=2.51±0.02        

γ=1.05±0.02 

ω=2.51±0.02        

High SCH-PRS γ=1.06±0.02 

ω=2.51±0.05        

γ=1.06±0.02 

ω=2.52±0.02        

γ=1.06±0.02 

ω=2.52±0.02        

γ=1.06±0.02 

ω=2.52±0.02        

 

Temporal Dynamics of Brain Architecture  
 

In the present study, we have attempted to determine whether changes in the dynamic modular 

architecture of functional connectivity is shaped by polygenic risk score for schizophrenia.  Modular 

architecture may vary with cognitive workload and it could be altered due to polygenic risk score for 

schizophrenia. 

The number of module or the modularity index Q encapsulates the changes of modular architecture 

during experimental paradigm. Changes of the composition of modules is quantified by the nodal 

flexibility index Fi which expresses the probability of a node to change community affiliation over time. 

FI can be averaged over nodes constituted well know brain networks such as fronto-parietal network, 

default mode network etc. 

 
Unique Characteristics of our Approach 

Our dynamic functional brain connectivity graph analysis is unique in the literature in multiple ways: 

(1) We statistically and topologically filtering our fully-weighted brain networks across layers (temporal 

segments) 

(2) We estimated inter-slice connection with 𝛾 (eq.1) instead of using a default parameter of 1 as in 

[41,48,49] 
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(3) We optimized the pair of parameters (γl , ωjlr)  instead of using a default parameter of 1 as in [41,48,49] 

via surrogate temporal null models 

(4) We run 1000 times the  Louvain greedy algorithm to get stable findings due to its heuristic nature 

(5) The optimization of the pair of parameters (γl , ωjlr) has been realized independently per subject,n-back 

level and frequency scale over the minimization of the p-value related to the Q quality index of the 

original multilayer network compared to 1000 surrogate null multi-layer models 

(6) The whole analysis has been realized independently per subject, n-back level and frequency scale  

 

 
Statistics and Software 
 

We implemented all computational and simple statistical operations using the software package 

MATLAB (2007a, The MathWorks Inc., Natick,MA). We performed network calculations using a 

combination of in-house software and the open implementation of the multi-layer community detection 

code [43]. fMRI data were preprocessed using the FMRIB Software Library (FSL) analysis package. 

 

 
Supplementary Results 
 
Task Performance 
 

As expected for an n-back task, we found a main effect of load condition with lower proportion of 

correct responses for higher load conditions (p < 0.001, Wilcoxon Rank Sum Test). We found no 

interaction between load and group (p  > 0.671, Wilcoxon Rank Sum Test) and no significant group 

difference (p > 0.563, Wilcoxon Rank Sum Test). Group means are shown in figure S7.   

 
 

 
Figure S7. Task performance (% correct answers) of both groups across the n-back levels 
(Wilcoxon Rank Sum Test , p > 0.563). 
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Number of Temporal Modules and Modularity Qml 
 

 S8 illustrates the group-averaged number of temporal modules across n-back levels and 

frequency ranges. The group with low SCZ-PRS demonstrates significantly higher Qml and higher 

number of temporal modules across n-back levels and frequency ranges. All the Qml were significant 

compared to the adopted null model (p < 0.001). 

 

 
 

 
 

Figure S8. Group-average of the number of modules NM across n-back levels and frequency scales 

(A-D) 

A.0.125∼0.25 Hz (Scale 1) 

B. 0.06∼0.125 Hz (Scale 2)  

C.0.03∼0.06 Hz (Scale 3), and  

D.0.015∼0.03 Hz (Scale 4) 

(* Wilcoxon Rank Sum Test , p< 0.01) 

 

Topologies of Group-Averaged Flexibility Index across Frequency Sub-bands 

 

S9-S12 illustrate the group-averaged FI per ROI for each n-back level and specifically for frequency 

range 1, 2 and 4 like in Fig. 3 in the main text. S13 demonstrates the FI across frequency bands and 

working memory levels integrated within 5 well-known brain networks. 

 

 



Dimitriadis et al.  Supplement 

19 

 
 
 

Figure S9. Group averaged FI per ROI for each n-back level at frequency scale 1 (0.125∼0.25 
Hz). 
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Figure S10. Group averaged FI per ROI for each n-back level at frequency scale 2 (0.06∼0.125 
Hz). 
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Figure S11. Group averaged FI per ROI for each n-back level at frequency scale 3 (0.03∼0.06 
Hz). 
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Figure S12. Group averaged FI per ROI for each n-back level at frequency scale 4 
(0.015∼0.03Hz). 
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Figure S13. Group-averaged Flexibility Index (FI) across n-back level and frequency scales for 

the five brain networks. 

FI was significantly higher for the group with low SCZ-PRS compared to the group with the high 

SCZ-PRS  across frequency scales and n-back levels 

(* Wilcoxon Rank Sum Test, p < 0.05,  Bonferroni Corrected p’< p/12 where 12 denotes the 3 

working memory levels  multiplied by the 4 frequency scales 

DMN: Default Mode Network, FP: Fronto-Patieral, CO: Cingulo-Opercular, O: Occipital and SM: 

SensoriMotor 

0.125∼0.25 Hz (Scale 1), 0.06∼0.125 Hz (Scale 2), 0.03∼0.06 Hz (Scale 3), and 0.015∼0.03 Hz 

(Scale 4)  ) 

 
 
 

 
 

Effect of the Time Window Length 

In the construction of dynamic functional connectivity graph (dFCG), the selection of time window 

length T could play a pivotal role. The time window length should not be too short and not too long in 

order to capture the alterations of functional interactions during a cognitive task [56].  In the main text, 

we reported results for time windows of 15 data points in length.   This gives 41 time windows in 

each n-back level. Shortening or lengthening the time window T will have a big impact to the variation 

of functional connectivity strength over experimental time [16]. To probe with the effect of the 

appropriate selection of time window length, we varied T from T = 17 to T = 21 with steps equal to 2 

TR (see S14). Group differences over global FI are still preserved for the three additional time windows 

T. 
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Figure S14: Effect of the time window length T on the G l o b a l  FI  in this study:   

 Group-averaged global FI and standard deviations across participants. Global FI findings for: A) 
T=17, B) T=19 and C) T=21 TRs 

Numbers 1-4 refer to the following frequency scales: 

1. 0.125∼0.25 Hz (Scale 1),  

2. 0.06∼0.125 Hz (Scale 2),  

3. 0.03∼0.06 Hz (Scale 3), and  

4. 0.015∼0.03 Hz (Scale 4)   

  

 

Multi-linear Regression Analysis of FI and Behavioural Performance 
 

Employing the 360 nodal FI values (4 frequency scales x 90 ROIs) as independent variables, we 

applied a multi-linear regression analysis to extract the nodal FI that can predict behavioral performance. 

We applied this modelling approach independently for each n-back level and frequency band with the 

main aim of revealing the most informative frequency range and brain network. To diminish the effect 

of multi-collinearity and also take into account the non-linear relationships of the FI predictors, we 

adopted a stepwise regression model as implemented in MATLAB with the stepwiselm function. To 

validate our approach, we adopted a leave-one out approach measuring the mean error across 

individuals.  

For comparison purposes, we followed the same procedure using the BOLD activity (as per the GLM 

approach) to further enhance the dynamic functional brain connectivity to better describe task 

performance.  

In order to link the notion of nodal FI with behavioral performance on the n-back task, we followed 

a multi-linear regression analysis. We decided to use the 360 nodal FI from the 90 ROIs and from the 

four frequency scales in order to reveal the contribution of each frequency scale to the performance. S13 

illustrates the beta coefficients of the 360 nodal FI independently for the two groups and n-back level. 

For a better understanding on the topology of the brain networks involved in this prediction, we 

integrated the 90 ROI into five well-known brain networks: DMN - FP - O - CO – SM for Default 
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Mode Network, Fronto-Parietal, Occipital, Cingulo-Opercular and SensoriMotor. The time series of the 

beta coefficients was derived by averaging the results across the 10-folds.  

We adopted a 10-fold cross-validation strategy in order to avoid overfitting the model and also to 

increase the generalization of the findings. Subsequently, mean squared errors were estimated between 

the original performance and the one predicted across the 10-folds. Also, mean squared errors and R2 

were estimated across the 10-folds. The results are demonstrated in the following Table. 

We performed a multi-linear regression analysis to establish how well behavioral performance at 

every n-back level could be predicted using the nodal FI from each frequency sub-band and the brain 

BOLD activity as an independent set of variables. The whole analysis was repeated independently for 

group, frequency scale, n-back level and GLM/FI in both whole-brain and Fronto-Parietal Network 

(FPN). We followed a 10-fold cross-validation scheme where at every run the multi-linear model trained 

on nine folds, and then tested on the remaining fold. R2 and p-values were averaged across the 10-fold 

cross-validation scheme. 

R2 of the multi-linear model of global FI and behavioral performance across the 10-folds was high 

for every n-back level, reaching 0.77 on average in both groups (minimum 0.66) (Table S4.a).The FI of 

the FP network accounted for almost half of the prediction of behavioral performance (Table S4.b) with 

higher FI corresponding to better performance. The difference between the prediction from whole-brain 

FI and FPN FI was significant (Wilcoxon Rank-Sum test of the R2 obtained for n-back level, frequency 

scale and group: p < 0.034x10-6). 

The average R2 of the multi-linear model of the whole brain BOLD activity and behavioral 

performance across the 10-folds reached 0.35 on average in both groups and were thus in the similar 

range as the predictions from the FI of the FPN (Table S4.c). R2 related to BOLD activity of the FPN 

was slightly lower than the prediction from whole brain BOLD activity (Table S4.d). This difference 

was also significant (Wilcoxon Rank-Sum test of the R2 obtained for n-back level, frequency scale and 

group: p < 0.051x10-4). 

Finally, R2 in n-back levels, in frequency scales and in both groups were significantly higher for FI 

compared to GLM-derived BOLD activity estimates (p < 0.067x10-5). This analysis demonstrates that 

the FI of dynamic functional brain activity explained behavioral performance better than the task-based 

BOLD activity in both groups and across n-back levels and frequency scales.  
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Table S4. Group-averaged R2 derived from multi-linear modelling of FP FI (Table S4.a) , whole-

brain FI (Table S4.b), whole-brain BOLD activity (Table S4.c) and FP BOLD activity (Table S4.d) with 

behavioural performance.  We followed a multi-linear modelling independently for each subject, n-back 

level and FrSc. The results were averaged across subjects within each group (rows) and n-back levels 

including the four FrSc (columns). P-values refer to the statistical level of the modelling which further 

support their interpretation. (FrSc:Frequency Scale) 

(Frequency ranges 0.125∼0.25 Hz (Scale 1), 0.06∼0.125 Hz (Scale 2), 0.03∼0.06 Hz (Scale 3), and 

0.015∼0.03 Hz (Scale 4)) 

 

 

Table S4.a Multi-linear modelling of whole brain FI (nodal FI) and behavioural performance 

averaged across the 10-folds for the three n-back levels and independently for the groups. R2/p-values 

estimates have been averaged across the 10-folds. 

 

 n-back 0: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 1: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 2: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

Low 
SCH-
PRS 

𝟎.𝟔𝟗 േ0.06 
pval=0.00051േ𝟎.𝟎𝟎𝟎𝟒𝟏 
/ 
𝟎.𝟕𝟑 േ0.05 
pval=0.00243 േ 
0.00034/ 
𝟎.𝟕𝟒 േ0.06 
pval=0.00415 േ0.00122/ 
𝟎.𝟕𝟕 േ0.05 
pval=0.00066േ0.000033 

𝟎.𝟔𝟖 േ0.05 
 pval=0.000109 
േ𝟎.𝟎𝟎𝟎𝟎𝟖𝟒/  
𝟎.𝟕𝟒 േ0.06 
 pval=0.000282 
േ𝟎.𝟎𝟎𝟎𝟎𝟖𝟐/  
𝟎.𝟕𝟓 േ0.07 
 pval=0.000344 
േ𝟎.𝟎𝟎𝟎𝟏𝟎𝟏/ 
𝟎.𝟕𝟔 േ0.07 
 pval=0.000543 
േ𝟎.𝟎𝟎𝟎𝟏𝟏𝟐 

𝟎.𝟔𝟕 േ0.06 
pval=0.000641 
േ𝟎.𝟎𝟎𝟎𝟎𝟏𝟑/  
𝟎.𝟕𝟏 േ0.08 
pval=0.000433 
േ𝟎.𝟎𝟎𝟎𝟏𝟐𝟖/ 
𝟎.𝟕𝟒 േ0.06 
pval=0.000566േ0.000148/ 
𝟎.𝟕𝟓 േ0.08 
pval=0.000864േ0.000213 
 

High 
SCH-
PRS 

𝟎.𝟔𝟖 േ0.07 
pval=0.00514േ𝟎.𝟎𝟎𝟎𝟐𝟏 
/  
𝟎.𝟕𝟐 േ0.08 
pval=0.00377 
േ𝟎.𝟎𝟎𝟏𝟒𝟓/ 
𝟎.𝟕𝟒 േ0.08 
pval=0.00511 േ0.00205/ 
𝟎.𝟕𝟔 േ0.07 
pval=0.00436േ0.00172 

𝟎.𝟔𝟕 േ0.08 
pval=0.00431േ𝟎.𝟎𝟎𝟏𝟗𝟕 
/  
𝟎.𝟕𝟐 േ0.07 
pval=0.00502േ0.00122 /  
𝟎.𝟕𝟑 േ0.08 
pval=0.00429േ 0.00101/  
𝟎.𝟕𝟒 േ0.06 
pval=0.00521േ0.00231 

𝟎.𝟔𝟔 േ0.05 
pval=0.00432േ𝟎.𝟎𝟎𝟏𝟐𝟖/  
𝟎.𝟕𝟎 േ0.05 
pval=0.000421േ0.000315 
/  
𝟎.𝟕𝟐 േ0.07 
pval=0.000341േ 
0.000255/  
𝟎.𝟕𝟑 േ0.08 
pval=0.000161േ𝟎.𝟎𝟎𝟔 
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Table S4.b. Multi-linear modelling of nodal FI from the FP network and behavioural performance 

averaged across the 10-folds for the three n-back levels and independently for the groups. R2/p-values 

estimates have been averaged across the 10-folds. 

 

 n-back 0: 
FrSc1/ FrSc2/ FrSc3/ FrSc4 

n-back 1: 
FrSc1/ FrSc2/ FrSc3/ FrSc4 

n-back 2: 
FrSc1/ FrSc2/ FrSc3/ FrSc4 

Low  
SCH-
PRS 

𝟎.𝟑𝟏 േ0.07 
pval=0.00𝟒𝟑 േ0.0001 / 
𝟎.𝟑𝟓 േ0.06 
pval=0.00𝟓𝟏 േ 𝟎.𝟎𝟎𝟐𝟏 / 
𝟎.𝟑𝟒 േ0.07 
pval=0.00𝟓𝟔 േ 𝟎.𝟎𝟎𝟏𝟖 / 
𝟎.𝟑𝟓 േ0.07 
pval=0.00𝟕𝟖 േ 𝟎.𝟎𝟎𝟐𝟑 

𝟎.𝟑𝟎 േ0.06 
pval=0.00𝟒𝟒 േ0.0021 / 
𝟎.𝟑𝟒 േ0.06 
pval=0.00𝟔𝟗 േ 𝟎.𝟎𝟎𝟐𝟏 / 
𝟎.𝟑𝟓 േ0.07 
pval=0.00𝟒𝟏 േ0.0012 / 
𝟎.𝟑𝟔 േ0.05 
pval=0.00𝟓𝟑 േ0.0027 

𝟎.𝟑𝟏 േ0.05 
pval=0.00𝟓𝟕 േ0.0031 /  
𝟎.𝟑𝟐 േ0.05 
pval=0.00𝟓𝟔 േ 𝟎.𝟎𝟎𝟐𝟏 / 
𝟎.𝟑𝟑 േ0.06 
pval=0.00𝟓𝟕 േ 𝟎.𝟎𝟎𝟏𝟑 / 
𝟎.𝟑𝟒 േ0.07 
pval=0.00𝟓𝟕 േ 𝟎.𝟎𝟎𝟐𝟏 

High  
SCH-
PRS 

𝟎.𝟑𝟎 േ0.06 
pval=0.00𝟔𝟐 േ 𝟎.𝟎𝟎𝟐𝟐 /  
𝟎.𝟑𝟑 േ0.05 
pval=0.00𝟕𝟏 േ 𝟎.𝟎𝟎𝟐𝟏 / 
𝟎.𝟑𝟐 േ0.06 
pval=0.00𝟑𝟑 േ 𝟎.𝟎𝟎𝟏𝟗 / 
𝟎.𝟑𝟑 േ0.05 
pval=0.00𝟕𝟖 േ 𝟎.𝟎𝟎𝟐𝟑 

𝟎.𝟑𝟏 േ0.08 
pval=0.00𝟓𝟔 േ0.0031 /  
𝟎.𝟑𝟑 േ0.07 
pval=0.00𝟔𝟏 േ 𝟎.𝟎𝟎𝟐𝟑 /  
𝟎.𝟑𝟒 േ0.07 
pval=0.00𝟓𝟔 േ 𝟎.𝟎𝟎𝟐𝟏 / 
𝟎.𝟑𝟓 േ0.08 
pval=0.00𝟒𝟖 േ 𝟎.𝟎𝟎𝟏𝟐 

𝟎.𝟑𝟏 േ0.06 
pval=0.00𝟔𝟏 േ 𝟎.𝟎𝟎𝟐𝟑 /  
𝟎.𝟑𝟐 േ0.07 
pval=0.00𝟔𝟏 േ 𝟎.𝟎𝟎𝟐𝟔 / 
𝟎.𝟑𝟑 േ0.08 
pval=0.00𝟔𝟑 േ 𝟎.𝟎𝟎𝟑𝟏 / 
𝟎.𝟑𝟒 േ0.07 
pval=0.00𝟕𝟏 േ 𝟎.𝟎𝟎𝟑𝟒 

 
 
 
Table S4.c Multi-linear modelling of ΒΟLD activation levels from the whole brain and behavioural 

performance averaged across subjects for the three n-back levels and independently for the groups. 

R2/p-values estimates have been averaged across the 10-folds. 

 

 n-back 0: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 1: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 2: 
FrSc1/ FrSc2/ FrSc3/ FrSc4 

Low 
 
SCH-
PRS 

𝟎.𝟐𝟖 േ0.05 
pval=0.0047േ𝟎.𝟎𝟎𝟏𝟐/ 
𝟎.𝟑𝟏 േ0.06 
pval=0.0052േ𝟎.𝟎𝟎𝟐𝟏/ 
𝟎.𝟑𝟑 േ0.04 
pval=0.0056േ𝟎.𝟎𝟎𝟐𝟔/ 
𝟎.𝟑𝟓 േ0.06 
pval=0.0062േ𝟎.𝟎𝟎𝟐𝟐 

𝟎.𝟐𝟕 േ0.06 
pval=0.00𝟓𝟐 േ0.0024 /  
𝟎.𝟑𝟏 േ0.07 
pval=0.0056േ𝟎.𝟎𝟎𝟑𝟏/ 
𝟎.𝟑𝟑 േ0.06 
pval=0.0048േ𝟎.𝟎𝟎𝟐𝟏/ 
𝟎.𝟑𝟓 േ0.07 
pval=0.0058േ𝟎.𝟎𝟎𝟐𝟑 

𝟎.𝟐𝟖 േ0.07 
pval=0.0𝟎𝟔𝟖 േ 𝟎.𝟎𝟑𝟏 / 
𝟎.𝟑𝟎 േ0.06 
pval=0.0047േ𝟎.𝟎𝟎𝟑𝟒 / 
𝟎.𝟑𝟐 േ0.05 
pval=0.0064േ𝟎.𝟎𝟎𝟒𝟐 / 
𝟎.𝟑𝟓 േ0.06 
pval=0.0041േ𝟎.𝟎𝟏𝟔 
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High  
SCH-
PRS 

𝟎.𝟐𝟕 േ0.06 
pval=0.00𝟔𝟑 േ0.0031 / 
𝟎.𝟑𝟎 േ0.07 
pval=0.0062േ𝟎.𝟎𝟎𝟐𝟑/ 
𝟎.𝟑𝟐 േ0.07 
pval=0.0063േ𝟎.𝟎𝟎𝟐𝟐/ 
𝟎.𝟑𝟒 േ0.08 
pval=0.0046േ𝟎.𝟎𝟎𝟏𝟕 

𝟎.𝟐𝟔 േ0.06 
pval=0.00𝟕𝟏𝟎.𝟎𝟎𝟐𝟑 / 
𝟎.𝟐𝟗 േ0.05 
pval=0.0056േ𝟎.𝟎𝟎𝟑𝟏/ 
𝟎.𝟑𝟐 േ0.07 
pval=0.0043േ𝟎.𝟎𝟎𝟐𝟑/ 
𝟎.𝟑𝟒 േ0.05 
pval=0.0065േ𝟎.𝟎𝟎𝟐𝟏 

𝟎.𝟐𝟔 േ0.06 
pval=0.0052േ𝟎.𝟎𝟑𝟏/ 
𝟎.𝟐𝟖 േ0.07 
pval=0.0031േ𝟎.𝟎𝟎𝟎𝟖/ 
𝟎.𝟑𝟎 േ0.06 
pval=0.0044േ𝟎.𝟎𝟎𝟏𝟐/ 
𝟎.𝟑𝟐 േ0.05 
pval=0.0051േ𝟎.𝟎𝟎𝟐𝟐 

 

 
Table S4.d. Multi-linear modelling of BOLD activation levels from the FP network and behavioural 

performance averaged across the 10-folds for the three n-back levels and independently for the groups. 

R2/p-values estimates have been averaged across the 10-folds. 

 n-back 0: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 1: 
FrSc1/ FrSc2/ FrSc3/ 
FrSc4 

n-back 2: 
FrSc1/ FrSc2/ FrSc3/ FrSc4 

Low  
SCH-
PRS 

𝟎.𝟐𝟎 േ0.06 
pval=0.0𝟎𝟒𝟑 േ 𝟎.𝟎𝟎𝟑𝟏 / 
𝟎.𝟐𝟐 േ0.05 
pval=0.0054േ 0.0022/ 
𝟎.𝟐𝟑 േ0.04 
pval=0.0061േ0.0012/ 
𝟎.𝟐𝟒 േ0.04 
pval=0.0047േ𝟎.𝟎𝟎𝟏𝟐 

𝟎.𝟐𝟏 േ0.05 
pval=0.0036േ𝟎.𝟎𝟎𝟏𝟐/ 
𝟎.𝟐𝟐 േ0.03 
pval=0.00034േ𝟎.𝟎𝟎𝟐𝟖/ 
𝟎.𝟐𝟒 േ0.06 
pval=0.00063േ𝟎.𝟎𝟎𝟔𝟐/ 
𝟎.𝟐𝟓 േ0.04 
pval=0.0036േ𝟎.𝟎𝟎𝟎𝟕/ 
 
 

𝟎.𝟐𝟐 േ0.05 
pval=0.00𝟎𝟑𝟐 േ 𝟎.𝟎𝟎𝟒𝟏/ 
𝟎.𝟐𝟑 േ0.06 
pval=0.0026േ𝟎.𝟎𝟎𝟐/ 
𝟎.𝟐𝟐 േ0.04 
pval=0.0036േ𝟎.𝟎𝟎𝟑/ 
𝟎.𝟐𝟒 േ0.03 
pval=0.00031േ𝟎.𝟎𝟎𝟒𝟓/ 

High  
SCH-
PRS 

𝟎.𝟐𝟎 േ0.06 
pval=0.0021േ𝟎.𝟎𝟎𝟎𝟑/ 
𝟎.𝟐𝟑 േ0.06 
pval=0.0041േ𝟎.𝟎𝟎𝟏𝟕/ 
 𝟎.𝟐𝟏 േ0.06 
pval=0.0056േ𝟎.𝟎𝟎𝟐𝟑/ 
𝟎.𝟐𝟒 േ0.06 
pval=0.0042േ𝟎.𝟎𝟎𝟐𝟏 

𝟎.𝟐𝟐 േ0.04 
pval=0.001𝟐 േ 𝟎.𝟎𝟎𝟎𝟓/ 
𝟎.𝟐𝟒 േ0.05 
pval=0.0038േ0.006/ 
𝟎.𝟐𝟓 േ0.06 
pval=0.0018േ0.0003/ 
𝟎.𝟐𝟑 േ0.03 
pval=0.00045േ𝟎.𝟎𝟎𝟒𝟑 

𝟎.𝟐𝟐 േ0.04 
pval=0.00𝟎𝟓𝟐 േ 𝟎.𝟎𝟎𝟒𝟑/ 
𝟎.𝟐𝟑 േ0.05 
pval=0.00047േ0.0056/ 
𝟎.𝟐𝟓 േ0.06 
pval=0.00051േ𝟎.𝟎𝟎𝟕𝟏/ 
𝟎.𝟐𝟒 േ0.05 
pval=0.00039േ𝟎.𝟎𝟎𝟓𝟒 

 
 

A Note on Computational Time 
 

The  investigations that  we report in  the  present  work  involved  about  10, 000 CPU-

days,  and  our study  was therefore  made  possible  by the  use of two computing  clusters  available  

at  the  CUBRIC Neuroimaging Center. Cluster  1 was composed of 42 Dell SC1425s (dual single-

core  Xeon  2.8GHz,  4GB  memory),  5 Dell PE1950s  (dual  quad-core  Xeon  E5335  2.0GHz,  

8GB memory) and 128 worker licenses (cluster has 124 compute cores). 



Dimitriadis et al.  Supplement 

29 

Supplemental References 
 

1. Lancaster TM,Dimitriadis SI, et al.,Structural and Functional Neuroimaging of Polygenic Risk for 
Schizophrenia: A Recall-by-Genotype-Based Approach. Schizophr Bull. 2018 Mar 28. doi: 
10.1093/schbul/sby037. [Epub ahead of print] 

2. Smith SM,  M. Jenkinson, M. W. Woolrich,  C. F. Beckmann,  T. E. J. Behrens,  H. Johansen-Berg, P. 
R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. Niazy, J. Saunders,  J. Vickers, Y. Zhang, N. 
De Stefano, J. M. Brady,  and P. M. Matthews, “Advances  in functional  and structural MR image 
analysis  and implementation as FSL,” Neuroimage,  vol. 23, no. S1, pp. 208–219, 2004. 

3.  D. S. Bassett and E. T. Bullmore, “Small-world brain networks,”  Neuroscientist, vol. 12, pp. 512–
523,2006. 

4. D. S. Bassett and E. T. Bullmore, “Human  brain networks in health  and disease,” Curr  Opin Neurol, 
vol. 22, no. 4, pp. 340–347, 2009. 

5.  E. Bullmore  and O. Sporns,  “Complex  brain  networks:  Graph  theoretical analysis  of structural and 
functional  systems,”  Nat Rev Neurosci,  vol. 10, no. 3, pp. 186–198, 2009. 

6. J. Wang, L. Wang, Y. Zang, H. Yang, H. Tang,  Q. Gong, Z. Chen, C. Zhu, and Y. He, “Parcellation- 
dependent small-world  brain  functional  networks:   A resting-state fMRI study,” Hum Brain  Mapp, 
vol. 30, no. 5, pp. 1511–1523, 2009. 

7.  A. Zalesky, A. Fornito, I. H. Harding,  L. Cocchi, M. Yucel, C. Pantelis, and E. T. Bullmore, “Whole- 
brain  anatomical networks:  Does the choice of nodes matter?,” Neuroimage,  vol. 50, no. 3, pp. 970–
983, 2010. 

8. D. S. Bassett, J. A. Brown, V. Deshpande, J. M. Carlson,  and S. T. Grafton, “Conserved  and variable 
architecture of human  white matter connectivity,” Neuroimage,  vol. 54, no. 2, pp. 1262–79, 2011. 

9. N. Tzourio-Mazoyer; B. Landeau; D. Papathanassiou; F. Crivello; O. Etard; N. Delcroix; Bernard 
Mazoyer & M. Joliot (January 2002). "Automated Anatomical Labeling of activations in SPM using a 
Macroscopic Anatomical Parcellation of the MNI MRI single-subject brain". NeuroImage. 15 (1): 273–
289.  

10. E. Bullmore,  J.  Fadili,  M. Breakspear, R. Salvador,  J.  Suckling,  and  M. Brammer, “Wavelets and 
statistical analysis of functional  magnetic  resonance  images of the human  brain,” Stat  Methods Med 
Res, vol. 12, no. 5, pp. 375–399, 2003 

11. E. Bullmore,  J. Fadili,  V. Maxim, L. Sendur,  B. Whitcher, J. Suckling, M. Brammer, and M. Break- 
spear,  “Wavelets and  functional  magnetic  resonance  imaging  of the  human  brain,”   Neuroimage, 
vol. 23, no. 1, pp. S234–S249, 2004. 

12. M. J. Brammer, “Multidimensional wavelet analysis of functional  magnetic  resonance images,” Hum 
Brain  Mapp, vol. 6, no. 5-6, pp. 378–382, 1998. 

13. S. Achard,   R.  Salvador,  B.  Whitcher, J.  Suckling,  and  E.  Bullmore,  “A  resilient, low-frequency, 
small-world  human  brain  functional  network  with  highly  connected  association  cortical  hubs,”  J 
Neurosci,  vol. 26, no. 1, pp. 63–72, 2006. 

14. S. Achard,  D. S. Bassett, A. Meyer-Lindenberg, and  E.  Bullmore,  “Fractal  connectivity of long- 
memory networks,”  Phys Rev E, vol. 77, no. 3, p. 036104, 2008 

15. D. S. Bassett, A. Meyer-Lindenberg, S. Achard,  T.  Duke,  and  E.  Bullmore,  “Adaptive  
reconfigu- ration  of fractal  small-world  human  brain  functional  networks,”  Proc  Natl Acad Sci 
USA, vol. 103, pp. 19518–19523, 2006. 



Dimitriadis et al.  Supplement 

30 

16. S. Achard  and  E.  Bullmore,  “Efficiency and  cost  of economical  brain  functional  networks,”  
PLoS Comput  Biol, vol. 3, p. e17, 2007. 

17. D.  S.  Bassett, A.  Meyer-Lindenberg,  D.  R.  Weinberger,  R.  Coppola,  and  E.  Bullmore,  
“Cogni- tive  fitness of cost-efficient  brain  functional  networks,”  Proc  Natl  Acad  Sci USA, vol. 106, 
no. 28, pp. 11747–11752, 2009. 

18. M. E. Lynall,  D. S. Bassett, R. Kerwin,  P.  McKenna,  U. Muller,  and  E. T. Bullmore,  
“Functional connectivity and brain  networks  in schizophrenia,” J Neurosci,  vol. 30, no. 28, pp. 9477–
87, 2010. 

19. D. B. Percival  and A. T. Walden,  Wavelet Methods for Time Series Analysis.  Cambridge 
University 

Press,  2000. 

20. F. T. Sun, L. M. Miller, and M. D’Esposito,  “Measuring  interregional functional  connectivity 
using coherence  and  partial coherence  analyses  of fMRI data,” Neuroimage,  vol. 21, no. 2, pp.  647–
658,2004. 

21. A. Barnes,  E.  T.  Bullmore,  and  J.  Suckling,  “Endogenous human  brain  dynamics  recover  
slowly following cognitive effort,” PLoS One, vol. 4, no. 8, p. e6626, 2009. 

22. M.  J.  Lowe,  B.  J.  Mock,  and  J.  A.  Sorenson,  “Functional  connectivity in  single  and  
multislice echoplanar imaging using resting  state  fluctuations,” Neuroimage,  vol. 7, pp. 119–132, 
1998. 

23. D. Cordes,  V. M. Haughton, K. Arfanakis,  G. J. Wendt, P. A. Turski,  C. H. Moritz,  M. A. 
Qugley, and  M. E. Meyerand,  “Mapping  functionally  related  regions of brain  with  functional  
connectivity MR imaging,”  Am J Neuroradiol, vol. 21, pp. 1636–1644, 2000. 

24. D. Cordes,  V. M. Haughton, K. Arfanakis,  J. D. Carew,  P. A. Turski,  C. H. Moritz,  M. A. 
Quigley, and M. E. Meyerand,  “Frequencies contributing to functional  connectivity in the cerebral  
cortex  in “resting-state” data,” Am J Neuroradiol, vol. 22, no. 7, pp. 1326–1333, 2001. 

25. D. A. Fair,  B. L. Schlaggar,  A. L. Cohen, F. M. Miezin, N. U. Dosenbach,  K. K. Wenger,  M. 
D. Fox, A. Z. Snyder,  M. E.  Raichle,  and  S. E.  Petersen, “A method  for using  blocked  and  event-
related fMRI data  to study  ‘resting state’  functional  connectivity,” Neuroimage,  vol. 35, no. 1, pp. 
396–405, 

26. 2007. 

27. D. Meunier, S. Achard,  A. Morcom, and E. Bullmore,  “Age-related changes in modular  organization 
of human  brain  functional  networks,”  Neuroimage,  vol. 44, no. 3, pp. 715–723, 2008. 

28. Van De Ville D(2015) On spurious and real fluctuations of dynamic functional connectivity during 
rest. Neuroimage 104:430–436 

29. D. Meunier,  R. Lambiotte, A. Fornito, K. D. Ersche,  and E. T. Bullmore,  “Hierarchical modularity in 
human  brain  functional  networks,”  Front Neuroinformatics, vol. 3, p. 37, 2009. 

30. D. Prichard and J. Theiler, Phys. Rev. Lett. 73, 951 (1994). 

31. H. Nakatani, I. Khalilov, P. Gong, and C. van Leeuwen, Phys. Lett. A 319, 167 (2003).  

32. A. Zalesky, A. Fornito, and E. Bullmore, Neuroimage 60, 2096 (2012). 

33. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer, Physica D 58, 77 (1992). 

34. C. Räth, M. Gliozzi, I. E. Papadakis, and W. Brinkmann, Phys. Rev. Lett. 109, 144101 (2012).  



Dimitriadis et al.  Supplement 

31 

35. G. Rossmanith, H. Modest, C. Räth, A. J. Banday, K. M. Gorski, and G. Morfill, Phys. Rev. D 86, 
083005 (2012) 

36. Dimitriadis, S.et al. 2017a. Topological filtering of dynamic functional brain networks unfolds 
informative chronnectomics: a novel data-driven thresholding scheme based on Orthogonal Minimal 
Spanning Trees (OMSTs). Frontiers in Neuroinformatics 11, article number: 28 

37. Dimitriadis SI, Salis CI (2017b). Mining Time-Resolved Functional Brain Graphs to an EEG-Based 
Chronnectomic Brain Aged Index (CBAI). Front. Hum. Neurosci., 07 September 2017 
| https://doi.org/10.3389/fnhum.2017.00423 

38. Dimitriadis, S.et al. 2017c. Data-driven topological filtering based on orthogonal minimal spanning 
trees: application to multi-group MEG resting-state connectivity. Brain 
Connectivity  (10.1089/brain.2017.0512) 

39.  M. A. Porter, J.-P.  Onnela,  and  P.  J.  Mucha,  “Communities in networks,”  Not  Amer  Math  Soc, 
vol. 56, no. 9, pp. 1082–1097, 1164–1166, 2009 

40. S. Fortunato, “Community detection  in graphs,” Phys Rep, vol. 486, no. 3–5, pp. 75–174, 2010. 

41. Bassett DS, et al.(2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl 
Acad Sci USA 108(18):7641–764 

42. Jutla I, Jeub L, Mucha P (2011) A generalized Louvain method for community detection implemented 
in MATLAB (computer program).  

43. P.  J.  Mucha,  T. Richardson, K. Macon,  M. A. Porter, and  J.-P.  Onnela,  “Community structure in 
time-dependent, multiscale,  and multiplex  networks,”  Science, vol. 328, no. 5980, pp. 876–878, 2010. 

44.  D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg, D. R. Weinberger, S. Moore, and E. Bullmore, 
“Efficient physical embedding of topologically complex information processing networks in brains and 
computer circuits,”  PLoS Comput  Biol, vol. 6, no. 4, p. e1000748, 2010. 

45. Stuss DT(2006) Frontal lobes and attention: Processes and networks, fractionation and integration.J Int 
Neuropsychol Soc 12(2):261–271 

46. V.  D.  Blondel,  J.  L.  Guillaume,   R.  Lambiotte,  and  E.  Lefebvre,  “Fast unfolding  of community 
hierarchies  in large networks,”  J Stat  Mech, p. P10008, 2008. 

47. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M. (2012) Fsl. Neuroimage, 
62:782-790. 

48. U. Braun, et al.Dynamic reconfiguration of frontal brain networks during executive cognition in 
humans.Proc. Natl. Acad. Sci. U.S.A., 112 (2015), pp. 11678-11683 

49. U. Braun, et al.Dynamic brain network reconfiguration as a potential schizophrenia genetic risk 
mechanism modulated by NMDA receptor function.Proc. Natl. Acad. Sci. U. S. A., 113 (2016), 
pp. 12568-12573 

 

 


