### **Supporting Information**

# Prediction of Broad-spectrum Pathogen Attachment to Coating Materials for Biomedical Devices

Paulius Mikulskis†, Andrew Hook†, Adam A. Dundas†¶, Derek Irvine¶, Olutoba Sanni†, Daniel Anderson#, Robert Langer#, Morgan R. Alexander†\*, Paul Williams§ and David A. Winkler&†\*

*† School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.* 

§ Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.

¶ Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

# Koch Institute for Integrative Cancer Research, MIT, Cambridge MA, 02139-4307, USA

& Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe

University, Kingsbury Drive, Melbourne, Victoria 3086, Australia; Monash Institute for

Pharmaceutical Sciences, Parkville 3052, Australia; School of Chemical and Physical

Sciences, Flinders University 5046, Australia

Corresponding authors email addresses: d.winkler@latrobe.edu.au; david.winkler@monash.edu; morgan.alexander@nottingham.ac.uk

|              |    | <u> </u> | UDEC | Multi    | Multi        |
|--------------|----|----------|------|----------|--------------|
| Descriptor   | РА | SA       | UPEC | (linear) | (BRANN)      |
| ATSC2s       | 1  |          |      | <i>✓</i> | <b>_</b>     |
| ATSC4s       |    | 1        |      |          |              |
| ATSC6s       | 1  |          |      | 1        | $\checkmark$ |
| ATSC7s       |    | 1        |      |          |              |
| ATSC8s       | 1  | 1        |      | 1        | $\checkmark$ |
| CENT         |    | 1        |      |          |              |
| CSI          | 1  |          |      |          |              |
| GMTIV        |    | 1        | 1    |          |              |
| IDMT         | 1  | 1        | 1    |          |              |
| J_X          | 1  | 1        | 1    |          |              |
| IDET         | 1  |          |      |          |              |
| P_VSA_LogP_3 |    | 1        |      | 1        | $\checkmark$ |
| P_VSA_LogP_4 | 1  | 1        |      | 1        | $\checkmark$ |
| P_VSA_MR_1   | 1  |          |      | 1        | $\checkmark$ |
| P_VSA_MR_2   | 1  | 1        |      | 1        | 1            |

Table S1. Computed molecular descriptors used in the models

| Descriptor    | РА    | SA  | UPEC | Multi        | Multi        |
|---------------|-------|-----|------|--------------|--------------|
| Descriptor    | 1 / 1 | 511 | ULL  | (linear)     | (BRANN)      |
| P_VSA_MR_5    |       |     | 1    |              |              |
| P_VSA_i_3     |       | 1   |      | 1            | $\checkmark$ |
| P_VSA_s_6     | 1     |     | 1    | 1            | $\checkmark$ |
| P_VSA_ppp_con | 1     | 1   |      |              |              |
| P_VSA_ppp_L   | 1     |     |      |              |              |
| P_VSA_ppp_cyc |       |     |      |              |              |
| P_VSA_ppp_ter | 1     |     |      | 1            | $\checkmark$ |
| T(OO)         |       |     | 1    |              |              |
| SMTIV         |       | 1   |      |              |              |
| TIE           | 1     |     | 1    |              |              |
| TIC1          |       | 1   |      | 1            | 1            |
| TIC2          |       |     |      | 1            | 1            |
| TIC5          | 1     |     |      | $\checkmark$ | 1            |
| Wi_Dt         | 1     | 1   |      | $\checkmark$ |              |
| Wap           |       | 1   |      |              |              |
| Wi_Dz(v)      |       |     | 1    | 1            | 1            |

|                              |              |    |      | Multi        | Multi   |
|------------------------------|--------------|----|------|--------------|---------|
| Descriptor                   | PA           | SA | UPEC | (linear)     | (BRANN) |
| ZM1Kup                       | 1            |    |      | <b>√</b>     | 1       |
| ZM2Per                       |              | 1  |      | $\checkmark$ | 1       |
| ZM2Kup                       |              |    |      | 1            | 1       |
| QW_L                         | $\checkmark$ |    |      |              |         |
| Wi_D/Dt                      |              |    |      | 1            | 1       |
| I <sub>SA</sub>              |              |    |      | 1            | 1       |
| $I_{PA}$                     |              |    |      | $\checkmark$ | 1       |
| $\mathbf{I}_{\mathrm{UPEC}}$ |              |    |      | $\checkmark$ | 1       |
|                              |              |    |      |              |         |

| Table S2 | . Explanation | of molecular | descriptors |
|----------|---------------|--------------|-------------|
|----------|---------------|--------------|-------------|

| Molecular                 | Description                                                       |  |  |  |  |
|---------------------------|-------------------------------------------------------------------|--|--|--|--|
| descriptor                |                                                                   |  |  |  |  |
| ATSC2s                    | Centred Broto-Moreau autocorrelation of lag 2 weighted by I-state |  |  |  |  |
| ATSC4s                    | Centred Broto-Moreau autocorrelation of lag 4 weighted by I-state |  |  |  |  |
| ATSC6s                    | Centred Broto-Moreau autocorrelation of lag 6 weighted by I-state |  |  |  |  |
| ATSC7s                    | Centred Broto-Moreau autocorrelation of lag 7 weighted by I-state |  |  |  |  |
| ATSC8s                    | Centred Broto-Moreau autocorrelation of lag 8 weighted by I-state |  |  |  |  |
| CENT                      | Centralization                                                    |  |  |  |  |
| CSI                       | Eccentric connectivity index                                      |  |  |  |  |
| GMTI                      | Gutman Molecular Topological Index                                |  |  |  |  |
| GMTIV                     | Gutman Molecular Topological Index by valence vertex degrees      |  |  |  |  |
| IDET                      | Total information content on the distance equality                |  |  |  |  |
| IDMT                      | Total information content on the distance magnitude               |  |  |  |  |
| J_X                       | Balaban-like index from chi matrix                                |  |  |  |  |
| P_VSA_LogP_3 <sup>1</sup> | P_VSA-like on LogP, bin 3                                         |  |  |  |  |
| P_VSA_LogP_4              | P_VSA-like on LogP, bin 4                                         |  |  |  |  |
| P_VSA_MR_1                | P_VSA-like on Molar Refractivity, bin 1                           |  |  |  |  |

#### Molecular

descriptor

## Description

| P_VSA_MR_2        | P_VSA-like on Molar Refractivity, bin 2                             |
|-------------------|---------------------------------------------------------------------|
| P_VSA_MR_5        | P_VSA-like on Molar Refractivity, bin 5                             |
| P_VSA_i_3         | P_VSA-like on ionization potential, bin 3                           |
| P_VSA_ppp_L       | P_VSA-like on potential pharmacophore points, L - lipophilic        |
| P_VSA_ppp_con     | P_VSA-like on potential pharmacophore points, conjugated atoms      |
| P_VSA_ppp_cyc     | P_VSA-like on potential pharmacophore points, atoms in rings        |
| P_VSA_ppp_ter     | P_VSA-like on potential pharmacophore points, terminal atoms        |
| P_VSA_s_6         | P_VSA-like on I-state, bin 6                                        |
| QW_L              | Quasi-Wiener index (Kirchhoff number) from Laplace matrix           |
| SMTIV             | Schultz Molecular Topological Index by valence vertex degrees       |
| T(OO)             | Sum of topological distances between OO                             |
| TIC1 <sup>2</sup> | Total Information Content index (neighbourhood symmetry of 1-order) |
| TIC2              | Total Information Content index (neighbourhood symmetry of 2-order) |
| TIC5              | Total Information Content index (neighbourhood symmetry of 5-order) |
| TIE               | E-state topological parameter                                       |
| Wap               | All-path Wiener index                                               |

#### Molecular

descriptor

Description

| Wi_D/Dt  | Wiener-like index from distance/detour matrix               |
|----------|-------------------------------------------------------------|
| Wi_Dt    | Wiener-like index from detour matrix (detour index)         |
| Wi_Dz(v) | Wiener-like index from Barysz matrix weighted by VdW volume |
| ZM1Kup   | First Zagreb index by Kupchik vertex degrees                |
| ZM2Kup   | Second Zagreb index by Kupchik vertex degrees               |
| ZM2Per   | Second Zagreb index by perturbation vertex degrees          |

| Descriptor             | PA | SA | UPEC | Multi-   | Multi-pathogen | Ion present in monomers (Figure S1 |
|------------------------|----|----|------|----------|----------------|------------------------------------|
|                        |    |    |      | pathogen | (BRANN)        | for monomer names)                 |
|                        |    |    |      | (linear) |                |                                    |
| C                      | V  |    |      |          |                | A 11                               |
| C                      | Λ  |    |      |          |                | All                                |
| $C_{13}H_{9}^{+}$      |    | Х  |      |          |                | All but 5                          |
| $C_2H_3^+$             | Х  |    |      | Х        | Х              | All                                |
| $C_2H_3O^-$            |    | Х  |      |          |                | All                                |
| $C_2H_3O^+$            |    | Х  |      |          |                | All but 5                          |
| $C_2H_4^{+}$           |    | Х  |      |          |                | All                                |
| $C_2H_4N^+$            |    |    | Х    |          |                | E; 8,12,13,15 from contamination   |
| $C_2H_5^+$             | Х  |    | Х    |          |                | 5                                  |
| $C_2H_5O^+$            | Х  |    |      |          |                | All but 5, A, B, C, D, E, F        |
| $C_2H_5O_4^+$          | Х  | Х  |      |          |                | 6                                  |
| C <sub>2</sub> HO      | Х  |    |      |          |                | All                                |
| $C_3H^2$               | Х  |    |      | Х        | Х              | 5, 6, 7, A, B, E, F                |
| $C_{3}H_{3}^{+}$       | Х  | Х  |      | Х        | Х              | All                                |
| $C_3H_3O^+$            | Х  | Х  |      | Х        | Х              | All                                |
| $C_{3}H_{3}O_{2}^{-1}$ | Х  | Х  |      |          |                | All                                |
| $C_3H_5O^+$            | Х  |    |      |          |                | 3,6                                |
| $C_{3}H_{6}^{+}$       |    |    | Х    |          |                | All                                |

# Table S3. Experimental ToF-SIMS ion peak features used in modelling.

| Descriptor            | PA | SA | UPEC | Multi-   | Multi-pathogen | <b>Ion present in monomers</b> (Figure S1 |
|-----------------------|----|----|------|----------|----------------|-------------------------------------------|
|                       |    |    |      | pathogen | (BRANN)        | for monomer names)                        |
|                       |    |    |      | (linear) |                |                                           |
| $C_{3}H_{7}^{+}$      | Х  | Х  |      | Х        | Х              | All                                       |
| $C_{3}H_{7}O_{2}^{+}$ |    | Х  |      |          |                | 3,6,16, A,E                               |
| $C_3HO^+$             |    | Х  |      | Х        | Х              | All but 3, 4, 5, 6, 9, B                  |
| $C_4H^+$              | Х  |    |      | Х        | Х              | 7, 9, 14, D, F                            |
| $C_4H_{12}NO^+$       | Х  |    |      |          |                | Ε                                         |
| $C_4H_3^{+}$          |    |    | Х    |          |                | 1,2,4,5,6,16                              |
| $C_4 H_6^{+}$         | Х  |    | Х    |          |                | All                                       |
| $C_4 H_6 O^+$         | Х  | Х  |      |          |                | 12                                        |
| $C_4 H_6 O_2^+$       |    | Х  |      |          |                | All but 5,14,B,C,D,F                      |
| $C_4 H_7^{+}$         |    | Х  |      | Х        | Х              | All                                       |
| $C_4H_7O_2^+$         | Х  |    |      |          |                | 3                                         |
| $C_{5}H_{3}^{+}$      | Х  |    |      |          |                | 7,14                                      |
| $C_5H_6O^+$           |    | Х  |      |          |                | All                                       |
| $C_5H_7^{+}$          |    |    | Х    |          |                | All                                       |
| $C_{5}H_{7}O_{2}^{+}$ | Х  |    |      |          |                | All                                       |
| $C_{5}H_{8}O_{2}^{+}$ | Х  |    |      |          |                | All                                       |
| $C_5H_9^+$            |    |    | Х    |          |                | All                                       |
| $C_6H_{11}^{+}$       | Х  |    |      | Х        | Х              | 1, 4, 5, 6, 11, 13, A                     |

| Descriptor         | PA | SA | UPEC | Multi-   | Multi-pathogen | <b>Ion present in monomers</b> (Figure S1 |
|--------------------|----|----|------|----------|----------------|-------------------------------------------|
|                    |    |    |      | pathogen | (BRANN)        | for monomer names)                        |
|                    |    |    |      | (linear) |                |                                           |
| $C_6 H_{13}^{+}$   | Х  |    |      |          |                | All                                       |
|                    |    |    |      |          |                |                                           |
| $C_{6}H_{2}^{+}$   |    | Х  |      |          |                | 1,4,7,8,9,10,13,14,15,B,D,F               |
| $C_{6}H_{5}^{+}$   | Х  |    |      |          |                | 7,14                                      |
| $C_6H_5O^-$        |    |    | Х    |          |                | 7                                         |
| $C_6H_6O^+$        | Х  |    |      | Х        | Х              | 7                                         |
| $C_7 H_{13}^{+}$   | Х  |    |      |          |                | All                                       |
| $C_7H_5O^+$        | Х  |    |      |          |                | 14                                        |
| $C_8H_{12}^{+}$    | Х  |    |      |          |                | All                                       |
| $C_8H_9O^+$        | Х  |    |      | Х        | Х              | 7,9                                       |
| $C_9H_{13}^{+}$    | Х  |    |      |          |                | All                                       |
| $\mathrm{CH_3}^+$  |    |    | Х    |          |                | All                                       |
| CH <sub>5</sub> O+ |    | Х  |      |          |                | 14,16                                     |
| CHO+               | Х  | Х  |      | Х        | Х              | All but 5                                 |
| WCA                |    |    | Х    | Х        | Х              | N/A                                       |
| I <sub>SA</sub>    |    |    |      | Х        | Х              | N/A                                       |
| I <sub>PA</sub>    |    |    |      | Х        | Х              | N/A                                       |
| I <sub>UPEC</sub>  |    |    |      | Х        | Х              | N/A                                       |

| PA           |      | SA            |       | UPEC         |       |
|--------------|------|---------------|-------|--------------|-------|
| ATSC2s       | 0.18 | ATSC4s        | -0.09 | ATSC4s       | -0.22 |
| ATSC6s       | 0.07 | ATSC7s        | 0.07  | ATSC7s       | -0.11 |
| ATSC7s       | 0.19 | ATSC8s        | -0.05 | ATSC8s       | -0.18 |
| ATSC8s       | 0.08 | CENT          | -0.01 | CENT         | -0.03 |
| CENT         | 0.35 | CSI           | 0.00  | GMTI         | -0.02 |
| CSI          | 0.37 | GMTIV         | 0.00  | GMTIV        | 0.00  |
| GMTI         | 0.34 | IDMT          | -0.01 | IDMT         | -0.03 |
| GMTIV        | 0.37 | J_X           | 0.00  | J_X          | 0.02  |
| IDET         | 0.38 | P_VSA_LogP_3  | 0.41  | P_VSA_LogP_4 | -0.05 |
| IDMT         | 0.34 | P_VSA_LogP_4  | -0.13 | P_VSA_MR_2   | -0.10 |
| J_X          | 0.36 | P_VSA_MR_2    | -0.10 | P_VSA_MR_5   | 0.01  |
| P_VSA_LogP_4 | 0.28 | P_VSA_i_3     | -0.02 | P_VSA_s_6    | 0.11  |
| P_VSA_MR_1   | 0.37 | P_VSA_ppp_con | 0.04  | T(OO)        | 0.03  |
| P_VSA_MR_2   | 0.21 | SMTIV         | 0.00  | TIE          | 0.03  |
| P_VSA_MR_5   | 0.31 | TIC1          | -0.01 | Wi_Dt        | -0.03 |
| P_VSA_MR_6   | 0.15 | Wap           | -0.04 | Wi_Dz(v)     | -0.02 |

 $\label{eq:stable} \textbf{Table S4}. \ Correlation \ of \ molecular \ descriptors \ with \ logF$ 

| PA            |      | SA     |       | UPEC   |       |
|---------------|------|--------|-------|--------|-------|
|               |      |        |       |        |       |
| P_VSA_ppp_L   | 0.13 | Wi_Dt  | -0.01 | ZM1Kup | -0.02 |
| P_VSA_ppp_con | 0.12 | ZM2Per | -0.01 | ZM2Kup | -0.04 |
| P_VSA_ppp_cyc | 0.10 |        |       |        |       |
| P_VSA_ppp_ter | 0.13 |        |       |        |       |
| P_VSA_s_6     | 0.36 |        |       |        |       |
| QW_L          | 0.34 |        |       |        |       |
| SMTIV         | 0.36 |        |       |        |       |
| TIC2          | 0.37 |        |       |        |       |
| TIC5          | 0.38 |        |       |        |       |
| TIE           | 0.36 |        |       |        |       |
| Wi_D/Dt       | 0.39 |        |       |        |       |
| Wi_Dt         | 0.34 |        |       |        |       |
| Wi_Dz(v)      | 0.34 |        |       |        |       |
| ZM1Kup        | 0.39 |        |       |        |       |

| PA                                  |       |                               |       |                       |       | SA                             |       | UPEC                                         |       |
|-------------------------------------|-------|-------------------------------|-------|-----------------------|-------|--------------------------------|-------|----------------------------------------------|-------|
|                                     |       |                               |       |                       |       |                                |       |                                              |       |
| C                                   | -0.05 | $C_{3}H_{3}O_{2}^{-}$         | 0.09  | $C_{5}H_{7}O_{2}^{+}$ | -0.02 | CHO <sup>+</sup>               | -0.17 | $\mathrm{CH_3}^+$                            | 0.17  |
| $\mathrm{CH}^{\scriptscriptstyle+}$ | -0.09 | $C_{3}H_{5}^{+}$              | -0.22 | $C_{5}H_{8}O_{2}^{+}$ | 0.26  | CH <sub>5</sub> O <sup>+</sup> | -0.17 | $C_2H_4N^+$                                  | 0.52  |
| CH                                  | 0.02  | $C_3H_5O^+$                   | 0.38  | $C_6 H_{10}^+$        | -0.19 | $C_{13}H_{9}^{+}$              | 0.02  | $C_2H_5^+$                                   | -0.32 |
| $\mathrm{CHO}^+$                    | 0.01  | $C_{3}H_{5}O_{2}^{+}$         | 0.16  | $C_6 H_{11}^{+}$      | -0.07 | $C_2H_3^-$                     | -0.34 | $C_{3}H_{6}^{+}$                             | 0.06  |
| $CH_2F^+$                           | -0.01 | $C_{3}H_{7}^{+}$              | -0.21 | $C_6 H_{12} O_2^+$    | 0.03  | $C_2H_3O^+$                    | -0.01 | $C_4H_3^+$                                   | -0.07 |
| $C_{10}H_{11}^{+}$                  | 0.03  | $C_4H^{\scriptscriptstyle +}$ | 0.03  | $C_6 H_{13}^{+}$      | 0.01  | $C_2H_3O^-$                    | 0.08  | C <sub>4</sub> H <sub>5</sub> <sup>+</sup>   | -0.54 |
| $C_{10}H_{11}O^{+}$                 | 0.10  | $C_4H^-$                      | 0.19  | $C_{6}H_{5}^{+}$      | 0.04  | $C_2 H_4^{+}$                  | -0.33 | $C_5 H_7^{+}$                                | -0.48 |
| $C_{10}H_{14}^{+}$                  | 0.29  | $C_4H_6^+$                    | -0.50 | $C_6H_6O^+$           | 0.10  | $C_2H_5O_4^{+}$                | 0.35  | $C_{5}H_{9}^{+}$                             | -0.44 |
| $C_{12}H_{15}^{+}$                  | -0.16 | $C_4H_6O^+$                   | -0.31 | $C_7 H_{13}^+$        | -0.06 | C <sub>3</sub> HO <sup>+</sup> | 0.11  | C <sub>6</sub> H <sub>5</sub> O <sup>-</sup> | 0.20  |
| $C_2H^+$                            | -0.10 | $C_4H_7O_2^+$                 | 0.39  | $C_7H_5O^+$           | 0.00  | $C_{3}H_{3}^{+}$               | -0.17 | WCA                                          | -0.51 |
| C <sub>2</sub> HO <sup>-</sup>      | 0.30  | $C_4 H_8^+$                   | -0.37 | $C_7H_6O^+$           | 0.01  | $C_3H_3O^+$                    | -0.11 |                                              |       |
| $C_2H_2O_2^-$                       | 0.08  | $C_4H_8O^+$                   | 0.25  | $C_8 H_{12}^{+}$      | -0.05 | $C_3H_3O_2^-$                  | 0.07  |                                              |       |
| $C_2H_3^-$                          | -0.43 | $C_4H_9O^+$                   | 0.01  | $C_8H_9O^+$           | 0.05  | $C_{3}H_{7}^{+}$               | -0.12 |                                              |       |
| $C_{2}H_{5}^{+}$                    | -0.22 | $C_{5}H_{10}^{+}$             | -0.24 | $C_9H_{11}O_2^+$      | -0.08 | $C_{3}H_{7}O_{2}^{+}$          | 0.29  |                                              |       |
| $C_2H_5O^+$                         | 0.21  | $C_5H_{12}N^+$                | 0.08  | $C_9H_{13}^{+}$       | -0.07 | $C_4H_6O^+$                    | -0.15 |                                              |       |
| $C_{2}H_{5}O_{4}^{+}$               | 0.32  | $C_5H_{12}NO^+$               | 0.19  | $C_9 H_{15}^{+}$      | -0.04 | $C_4H_6O_2^{+}$                | -0.10 |                                              |       |
| $C_3H^-$                            | 0.26  | $C_5H_2^+$                    | 0.03  | F⁻                    | 0.01  | $C_4H_7^+$                     | -0.32 |                                              |       |

 Table S5. Correlation of experimental feature descriptors with logF (>0.5 in bold)

S-13

| PA               |       |                  |       |     |       | SA               | UPEC |  |
|------------------|-------|------------------|-------|-----|-------|------------------|------|--|
|                  |       |                  |       |     |       |                  |      |  |
| $C_{3}H_{3}^{+}$ | -0.43 | $C_{5}H_{3}^{+}$ | 0.01  | OF⁻ | 0.31  | $C_5H_6O^+$      | 0.08 |  |
|                  |       |                  |       |     |       |                  |      |  |
| $C_3H_3O^+$      | -0.30 | $C_5H_5O^+$      | -0.34 | WCA | -0.39 | $C_{6}H_{2}^{+}$ | 0.25 |  |
|                  |       |                  |       |     |       |                  |      |  |

| Polymer number | Monomer 1 | % monomer 1 | % TBCHA     | Measured F | log measured F |
|----------------|-----------|-------------|-------------|------------|----------------|
| (Figure S6)    |           |             | (Figure S6) | mCherry    | mCherry        |
| P1             | DdMA      | 100         | 0           | 730        | 2.86           |
| P2             | LMA       | 100         | 0           | 259        | 2.41           |
| Р3             | CyDMA     | 100         | 0           | 735        | 2.87           |
| P4             | GMA       | 100         | 0           | 854        | 2.93           |
| P5             | LMMA      | 100         | 0           | 848        | 2.93           |
| <i>P6</i>      | EGPhEA    | 100         | 0           | 1251       | 3.10           |
| <i>P</i> 7     | СНМА      | 100         | 0           | 411        | 2.61           |
| <i>P8</i>      | PhMA      | 100         | 0           | 1675       | 3.22           |
| <i>P</i> 9     | HPhOPA    | 100         | 0           | 2669       | 3.43           |
| P10            | DdMA      | 83.3        | 16.6        | 623        | 2.79           |
| P11            | LMA       | 83.3        | 16.6        | 273        | 2.44           |
| <i>P12</i>     | CyDMA     | 83.3        | 16.6        | 643        | 2.81           |
| P13            | GMA       | 83.3        | 16.6        | 901        | 2.95           |
| <i>P14</i>     | LMMA      | 83.3        | 16.6        | 673        | 2.83           |
| P15            | EGPhEA    | 83.3        | 16.6        | 448        | 2.65           |
| <i>P16</i>     | СНМА      | 83.3        | 16.6        | 694.0      | 2.84           |
| <i>P17</i>     | PhMA      | 83.3        | 16.6        | 1557       | 3.19           |
| P18            | HPhOPA    | 83.3        | 16.6        | 2788       | 3.45           |
| P19            | DdMA      | 66.6        | 33.3        | 682        | 2.83           |
| P20            | LMA       | 66.6        | 33.3        | 439        | 2.64           |
| P21            | CyDMA     | 66.6        | 33.3        | 816        | 2.91           |
| P22            | GMA       | 66.6        | 33.3        | 887        | 2.95           |
| P23            | LMMA      | 66.6        | 33.3        | 405        | 2.61           |
| P24            | EGPhEA    | 66.6        | 33.3        | 423        | 2.63           |
| P25            | СНМА      | 66.6        | 33.3        | 725        | 2.86           |

**Table S6** Composition and pathogen attachment (expressed as log mCherry fluorescence,logF) of the smaller polymer library used for model validation

| Polymer number | Monomer 1 | % monomer 1 | % TBCHA     | Measured F | log measured F |
|----------------|-----------|-------------|-------------|------------|----------------|
| (Figure S6)    |           |             | (Figure S6) | mCherry    | mCherry        |
| P26            | PhMA      | 66.6        | 33.3        | 1355       | 3.13           |
| <i>P27</i>     | HPhOPA    | 66.6        | 33.3        | 2118       | 3.33           |
| P28            | DdMA      | 50          | 50          | 570        | 2.76           |
| P29            | LMA       | 50          | 50          | 442        | 2.65           |
| <i>P30</i>     | CyDMA     | 50          | 50          | 668        | 2.83           |
| <i>P31</i>     | GMA       | 50          | 50          | 694        | 2.84           |
| <i>P32</i>     | LMMA      | 50          | 50          | 688        | 2.84           |
| <i>P33</i>     | EGPhEA    | 50          | 50          | 550        | 2.74           |
| <i>P34</i>     | СНМА      | 50          | 50          | 675        | 2.83           |
| P35            | PhMA      | 50          | 50          | 895        | 2.95           |
| P36            | HPhOPA    | 50          | 50          | 1280       | 3.11           |
| <i>P37</i>     | DdMA      | 33.3        | 66.6        | 1023       | 3.01           |
| P38            | LMA       | 33.3        | 66.6        | na         |                |
| P39            | CyDMA     | 33.3        | 66.6        | na         |                |
| P40            | GMA       | 33.3        | 66.6        | 354        | 2.55           |
| P41            | LMMA      | 33.3        | 66.6        | 450        | 2.65           |
| P42            | EGPhEA    | 33.3        | 66.6        | 656        | 2.82           |
| P43            | СНМА      | 33.3        | 66.6        | 591        | 2.77           |
| P44            | PhMA      | 33.3        | 66.6        | 732        | 2.86           |
| P45            | HPhOPA    | 33.3        | 66.6        | 1017       | 3.01           |
| P46            | DdMA      | 16.7        | 83.3        | 893        | 2.95           |
| P47            | LMA       | 16.7        | 83.3        | 642        | 2.81           |
| P48            | CyDMA     | 16.7        | 83.3        | 326        | 2.51           |
| P49            | GMA       | 16.7        | 83.3        | 720        | 2.86           |
| P50            | LMMA      | 16.7        | 83.3        | 190        | 2.28           |
| P51            | EGPhEA    | 16.7        | 83.3        | 530        | 2.72           |
| P52            | СНМА      | 16.7        | 83.3        | 298        | 2.47           |
| P53            | PhMA      | 16.7        | 83.3        | 614        | 2.79           |
|                | 1         |             |             |            |                |

| Polymer number | Monomer 1 | % monomer 1 | % TBCHA     | Measured F | log measured F |
|----------------|-----------|-------------|-------------|------------|----------------|
| (Figure S6)    |           |             | (Figure S6) | mCherry    | mCherry        |
| P54            | HPhOPA    | 16.7        | 83.3        | 826        | 2.92           |
| P55            | tBCHA     | 100         | 0           | 693        | 2.84           |
| P56            | NpMAe     | 100         | 0           | 855        | 2.93           |
| P57            | BMA       | 100         | 0           | 1075       | 3.03           |
| P58            | NpMAe     | 50          | 50          | 742        | 2.87           |
| P59            | BnMA      | 50          | 50          | 967        | 2.99           |
| P60            | MEdMSPNH  | 100         | 0           | 457        | 2.66           |
| P61            | MEdMSPNH  | 50          | 50          | 445        | 2.65           |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| СНМА        | 67          | Cddm        | 33          | 188        | 2.27           |
| tBCHA       | 67          | LMM         | 33          | 331        | 2.52           |
| EGDPEA      | 67          | 4MpM        | 33          | 430        | 2.63           |
| CiM         | 67          | 4MbM        | 33          | 395        | 2.60           |
| 4IpbM       | 67          | EGDPEA      | 33          | 349        | 2.54           |
| 4NbM        | 67          | Cddm        | 33          | 1196       | 3.08           |
| СМ          | 67          | LMM         | 33          | 505        | 2.70           |
| 4MpM        | 67          | 4MpM        | 33          | 631        | 2.80           |
| PM          | 67          | 4MbM        | 33          | 452        | 2.65           |
| 2EhM        | 67          | EGDPEA      | 33          | 315        | 2.50           |
| GM          | 67          | Cddm        | 33          | 511        | 2.71           |
| DdMA        | 67          | LMM         | 33          | 551        | 2.74           |
| Cddm        | 67          | 4MpM        | 33          | 427        | 2.63           |
| 4MbM        | 100         |             |             | 318        | 2.50           |
| MEdMSPNH    | 100         |             |             | 493        | 2.69           |
| 4MpM        | 25          | HPhOPA      | 75          | 2059       | 3.31           |
| 4MbM        | 25          | PhMA        | 75          | 629        | 2.80           |
| EGDPEA      | 25          | DEGMA       | 75          | 717        | 2.86           |
| Cddm        | 25          | MEdMSPNH    | 75          | 799        | 2.90           |
| LMM         | 50          | HPhOPA      | 50          | 495        | 2.69           |
| 4MpM        | 50          | PhMA        | 50          | 912        | 2.96           |
| 4MbM        | 50          | DEGMA       | 50          | 588        | 2.77           |
| СНМА        | 67          | LMM         | 33          | 262        | 2.42           |
| tBCHA       | 67          | 4MpM        | 33          | 491        | 2.69           |
| EGDPEA      | 67          | 64MbM       | 33          | 447        | 2.65           |
|             |             |             |             |            |                |

**Table S7** Composition and pathogen attachment (expressed as log mCherry fluorescence,logF) of the larger polymer library used for model validation

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| CiM         | 67          | EGDPEA      | 33          | 336        | 2.53           |
| 4MbM        | 67          | Cddm        | 33          | 503        | 2.70           |
| 4NbM        | 67          | LMM         | 33          | 1279       | 3.11           |
| СМ          | 67          | 4MpM        | 33          | 400        | 2.60           |
| 4MpM        | 67          | 4MbM        | 33          | 381        | 2.58           |
| PM          | 67          | EGDPEA      | 33          | 360        | 2.56           |
| LMM         | 67          | Cddm        | 33          | 390        | 2.59           |
| GM          | 67          | LMM         | 33          | 390        | 2.59           |
| DdMA        | 67          | 4MpM        | 33          | 605        | 2.78           |
| Cddm        | 67          | 4MbM        | 33          | 407        | 2.61           |
| Cddm        | 100         |             |             | 378        | 2.58           |
| BnMA        | 100         |             |             | 161        | 2.21           |
| 4MbM        | 25          | HPhOPA      | 75          | 847        | 2.93           |
| EGDPEA      | 25          | PhMA        | 75          | 680        | 2.83           |
| Cddm        | 25          | BnMA        | 75          | 453        | 2.66           |
| LMM         | 25          | MEdMSPNH    | 75          | 459        | 2.66           |
| 4MpM        | 50          | HPhOPA      | 50          | 1682       | 3.23           |
| 4MbM        | 50          | PhMA        | 50          | 720        | 2.86           |
| EGDPEA      | 50          | DEGMA       | 50          | 698        | 2.84           |
| СНМА        | 67          | 4MpM        | 33          | 185        | 2.27           |
| tBCHA       | 67          | 4MbM        | 33          | 470        | 2.67           |
| EGDPEA      | 67          | EGDPEA      | 33          | 447        | 2.65           |
| 4IpbM       | 67          | Cddm        | 33          | 343        | 2.53           |
| 4MbM        | 67          | LMM         | 33          | 378        | 2.58           |
| 4NbM        | 67          | 4MpM        | 33          | 617        | 2.79           |
| СМ          | 67          | 4MbM        | 33          | 431        | 2.63           |
| 4MpM        | 67          | EGDPEA      | 33          | 391        | 2.59           |
| 2EhM        | 67          | 6Cddm       | 33          | 321        | 2.51           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| LMM         | 67          | LMM         | 33          | 299        | 2.47           |
| GM          | 67          | 4MpM        | 33          | 579        | 2.76           |
| DdMA        | 67          | 4MbM        | 33          | 417        | 2.62           |
| Cddm        | 67          | EGDPEA      | 33          | 357        | 2.55           |
| LMM         | 100         |             |             | 333        | 2.52           |
| EGDPEA      | 25          | HPhOPA      | 75          | 889        | 2.95           |
| Cddm        | 25          | DEGMA       | 75          | 397        | 2.60           |
| LMM         | 25          | BnMA        | 75          | 562        | 2.75           |
| 4MpM        | 25          | MEdMSPNH    | 75          | 699        | 2.84           |
| 4MbM        | 50          | HPhOPA      | 50          | 568        | 2.75           |
| EGDPEA      | 50          | PhMA        | 50          | 463        | 2.67           |
| Cddm        | 50          | BnMA        | 50          | 594        | 2.77           |
| СНМА        | 67          | 4MbM        | 33          | 338        | 2.53           |
| tBCHA       | 67          | EGDPEA      | 33          | 265        | 2.42           |
| CiM         | 67          | Cddm        | 33          | 336        | 2.53           |
| 4IpbM       | 67          | LMM         | 33          | 339        | 2.53           |
| 4MbM        | 67          | 4MpM        | 33          | 346        | 2.54           |
| 4NbM        | 67          | 4MbM        | 33          | 360        | 2.56           |
| СМ          | 67          | EGDPEA      | 33          | 431        | 2.63           |
| PM          | 67          | Cddm        | 33          | 355        | 2.55           |
| 2EhM        | 67          | LMM         | 33          | 381        | 2.58           |
| LMM         | 67          | 4MpM        | 33          | 359        | 2.55           |
| GM          | 67          | 4MbM        | 33          | 453        | 2.66           |
| DdMA        | 67          | EGDPEA      | 33          | 392        | 2.59           |
| 4MpM        | 100         |             |             | 528        | 2.72           |
| EGDPEA      | 75          | MEdMSPNH    | 25          | 592        | 2.77           |
| Cddm        | 25          | PhMA        | 75          | 518        | 2.71           |
| LMM         | 25          | DEGMA       | 75          | 667        | 2.82           |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| 4MpM        | 25          | BnMA        | 75          | 521        | 2.72           |
| 4MbM        | 25          | MEdMSPNH    | 75          | 1143       | 3.06           |
| EGDPEA      | 50          | HPhOPA      | 50          | 426        | 2.63           |
| Cddm        | 50          | DEGMA       | 50          | 468        | 2.67           |
| LMM         | 50          | BnMA        | 50          | 762        | 2.88           |
| СНМА        | 67          | EGDPEA      | 33          | 255        | 2.41           |
| EGDPEA      | 67          | Cddm        | 33          | 320        | 2.51           |
| CiM         | 67          | LMM         | 33          | 305        | 2.48           |
| 4IpbM       | 67          | 4MpM        | 33          | 307        | 2.49           |
| 4MbM        | 67          | 4MbM        | 33          | 503        | 2.70           |
| 4NbM        | 67          | EGDPEA      | 33          | 442        | 2.65           |
| 4MpM        | 67          | Cddm        | 33          | 545        | 2.74           |
| PM          | 67          | LMM         | 33          | 379        | 2.58           |
| 2EhM        | 67          | 4MpM        | 33          | 430        | 2.63           |
| LMM         | 67          | 4MbM        | 33          | 358        | 2.55           |
| GM          | 67          | EGDPEA      | 33          | 318        | 2.50           |
| Cddm        | 67          | Cddm        | 33          | 505        | 2.70           |
| PhMA        | 100         |             |             | 626        | 2.80           |
| Cddm        | 25          | HPhOPA      | 75          | 379        | 2.58           |
| LMM         | 25          | PhMA        | 75          | 731        | 2.86           |
| 4MpM        | 25          | DEGMA       | 75          | 618        | 2.79           |
| 4MbM        | 25          | BnMA        | 75          | 460        | 2.66           |
| EGDPEA      | 25          | MEdMSPNH    | 75          | 927        | 2.97           |
| Cddm        | 50          | PhMA        | 50          | 610        | 2.78           |
| LMM         | 50          | DEGMA       | 50          | 545        | 2.74           |
| 4MpM        | 50          | BnMA        | 50          | 586        | 2.77           |
| tBCHA       | 67          | Cddm        | 33          | 293        | 2.47           |
| EGDPEA      | 67          | LMM         | 33          | 332        | 2.52           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| CiM         | 67          | 4MpM        | 33          | 348        | 2.54           |
| 4IpbM       | 67          | 4MbM        | 33          | 330        | 2.52           |
| 4MbM        | 67          | EGDPEA      | 33          | 336        | 2.53           |
| СМ          | 67          | Cddm        | 33          | 461        | 2.66           |
| 4MpM        | 67          | LMM         | 33          | 436        | 2.64           |
| PM          | 67          | 4MpM        | 33          | 326        | 2.51           |
| 2EhM        | 67          | 4MbM        | 33          | 395        | 2.60           |
| LMM         | 67          | EGDPEA      | 33          | 341        | 2.53           |
| DdMA        | 67          | Cddm        | 33          | 548        | 2.74           |
| Cddm        | 67          | LMM         | 33          | 381        | 2.58           |
| LMM         | 25          | HPhOPA      | 75          | 677        | 2.83           |
| 4MpM        | 25          | PhMA        | 75          | 665        | 2.82           |
| 4MbM        | 25          | DEGMA       | 75          | 670        | 2.83           |
| EGDPEA      | 25          | BnMA        | 75          | 249        | 2.40           |
| Cddm        | 50          | HPhOPA      | 50          | 748        | 2.87           |
| LMM         | 50          | PhMA        | 50          | 739        | 2.87           |
| 4MpM        | 50          | DEGMA       | 50          | 628        | 2.80           |
| 4MbM        | 50          | BnMA        | 50          | 167        | 2.22           |
| СНМА        | 67          | DdMA        | 33          | 186        | 2.27           |
| tBCHA       | 67          | 2EhM        | 33          | 401        | 2.60           |
| EGDPEA      | 67          | СМ          | 33          | 412        | 2.61           |
| CiM         | 67          | 4IpbM       | 33          | 357        | 2.55           |
| 4IpbM       | 67          | tBCHA       | 33          | 372        | 2.57           |
| СМ          | 67          | 2EhM        | 33          | 582        | 2.76           |
| 4MpM        | 67          | СМ          | 33          | 692        | 2.84           |
| PM          | 67          | 4IpbM       | 33          | 593        | 2.77           |
| 2EhM        | 67          | 6tBCHA      | 33          | 400        | 2.60           |
| GM          | 67          | DdMA        | 33          | 373        | 2.57           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| DdMA        | 67          | 2EhM        | 33          | 496        | 2.70           |
| Cddm        | 67          | СМ          | 33          | 464        | 2.67           |
| 4IpbM       | 100         |             |             | 270        | 2.43           |
| tBCHA       | 100         |             |             | 313        | 2.50           |
| DEGMA       | 100         |             |             | 483        | 2.68           |
| СМ          | 25          | HPhOPA      | 75          | 1688       | 3.23           |
| 4IpbM       | 25          | PhMA        | 75          | 537        | 2.73           |
| tBCHA       | 25          | DEGMA       | 75          | 679        | 2.83           |
| DdMA        | 25          | MEdMSPNH    | 75          | 804        | 2.91           |
| 2EhM        | 50          | HPhOPA      | 50          | 494        | 2.69           |
| СМ          | 50          | PhMA        | 50          | 574        | 2.76           |
| 4IpbM       | 50          | DEGMA       | 50          | 496        | 2.70           |
| СНМА        | 67          | 2EhM        | 33          | 291        | 2.46           |
| tBCHA       | 67          | СМ          | 33          | 708        | 2.85           |
| EGDPEA      | 67          | 4IpbM       | 33          | 302        | 2.48           |
| CiM         | 67          | tBCHA       | 33          | 401        | 2.60           |
| 4MbM        | 67          | DdMA        | 33          | 482        | 2.68           |
| 4NbM        | 67          | 2EhM        | 33          | 1697       | 3.23           |
| СМ          | 67          | СМ          | 33          | 874        | 2.94           |
| 4MpM        | 67          | 4IpbM       | 33          | 365        | 2.56           |
| PM          | 67          | tBCHA       | 33          | 615        | 2.79           |
| LMM         | 67          | DdMA        | 33          | 340        | 2.53           |
| GM          | 67          | 2EhM        | 33          | 410        | 2.61           |
| DdMA        | 67          | СМ          | 33          | 523        | 2.72           |
| Cddm        | 67          | 4IpbM       | 33          | 398        | 2.60           |
| DdMA        | 100         |             |             | 333        | 2.52           |
| 4IpbM       | 25          | HPhOPA      | 75          | 634        | 2.80           |
| tBCHA       | 25          | PhMA        | 75          | 561        | 2.75           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| DdMA        | 25          | BnMA        | 75          | 676        | 2.83           |
| 2EhM        | 25          | MEdMSPNH    | 75          | 724        | 2.86           |
| СМ          | 50          | HPhOPA      | 50          | 1022       | 3.01           |
| 4IpbM       | 50          | PhMA        | 50          | 357        | 2.55           |
| tBCHA       | 50          | DEGMA       | 50          | 471        | 2.67           |
| СНМА        | 67          | 33CM        | 33          | 341        | 2.53           |
| tBCHA       | 67          | 4IpbM       | 33          | 374        | 2.57           |
| EGDPEA      | 67          | tBCHA       | 33          | 328        | 2.52           |
| 4IpbM       | 67          | DdMA        | 33          | 437        | 2.64           |
| 4MbM        | 67          | 2EhM        | 33          | 379        | 2.58           |
| 4NbM        | 67          | СМ          | 33          | 2274       | 3.36           |
| СМ          | 67          | 4IpbM       | 33          | 346        | 2.54           |
| 4MpM        | 67          | tBCHA       | 33          | 473        | 2.67           |
| 2EhM        | 67          | DdMA        | 33          | 571        | 2.76           |
| LMM         | 67          | 2EhM        | 33          | 372        | 2.57           |
| GM          | 67          | СМ          | 33          | 424        | 2.63           |
| DdMA        | 67          | 4IpbM       | 33          | 397        | 2.60           |
| Cddm        | 67          | tBCHA       | 33          | 389        | 2.59           |
| 2EhM        | 100         |             |             | 347        | 2.54           |
| tBCHA       | 25          | HPhOPA      | 75          | 773        | 2.89           |
| DdMA        | 25          | DEGMA       | 75          | 477        | 2.68           |
| 2EhM        | 25          | BnMA        | 75          | 405        | 2.61           |
| СМ          | 25          | MEdMSPNH    | 75          | 937        | 2.97           |
| 4IpbM       | 50          | HPhOPA      | 50          | 535        | 2.73           |
| tBCHA       | 50          | PhMA        | 50          | 442        | 2.64           |
| DdMA        | 50          | 5BnMA       | 50          | 528        | 2.72           |
| СНМА        | 67          | 4IpbM       | 33          | 287        | 2.46           |
| tBCHA       | 67          | tBCHA       | 33          | 386        | 2.59           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| CiM         | 67          | DdMA        | 33          | 491        | 2.69           |
| 4IpbM       | 67          | 2EhM        | 33          | 313        | 2.50           |
| 4MbM        | 67          | СМ          | 33          | 405        | 2.61           |
| СМ          | 67          | tBCHA       | 33          | 421        | 2.62           |
| PM          | 67          | DdMA        | 33          | 556        | 2.75           |
| 2EhM        | 67          | 2EhM        | 33          | 444        | 2.65           |
| LMM         | 67          | СМ          | 33          | 547        | 2.74           |
| GM          | 67          | 4IpbM       | 33          | 380        | 2.58           |
| DdMA        | 67          | tBCHA       | 33          | 400        | 2.60           |
| СМ          | 100         |             |             | 426        | 2.63           |
| tBCHA       | 75          | MEdMSPNH    | 25          | 710        | 2.85           |
| DdMA        | 25          | PhMA        | 75          | 578        | 2.76           |
| 2EhM        | 25          | DEGMA       | 75          | 579        | 2.76           |
| СМ          | 25          | BnMA        | 75          | 473        | 2.67           |
| 4IpbM       | 25          | MEdMSPNH    | 75          | 952        | 2.98           |
| tBCHA       | 50          | HPhOPA      | 50          | 546        | 2.74           |
| DdMA        | 50          | DEGMA       | 50          | 474        | 2.68           |
| 2EhM        | 50          | BnMA        | 50          | 349        | 2.54           |
| СНМА        | 67          | tBCHA       | 33          | 209        | 2.32           |
| EGDPEA      | 67          | DdMA        | 33          | 401        | 2.60           |
| CiM         | 67          | 2EhM        | 33          | 307        | 2.49           |
| 4IpbM       | 67          | СМ          | 33          | 450        | 2.65           |
| 4MbM        | 67          | 4IpbM       | 33          | 327        | 2.51           |
| 4NbM        | 67          | tBCHA       | 33          | 1417       | 3.15           |
| 4MpM        | 67          | DdMA        | 33          | 523        | 2.72           |
| PM          | 67          | 2EhM        | 33          | 512        | 2.71           |
| 2EhM        | 67          | 33CM        | 33          | 489        | 2.69           |
| LMM         | 67          | 4IpbM       | 33          | 477        | 2.68           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| GM          | 67          | tBCHA       | 33          | 404        | 2.61           |
| Cddm        | 67          | DdMA        | 33          | 477        | 2.68           |
| DdMA        | 25          | HPhOPA      | 75          | 1066       | 3.03           |
| 2EhM        | 25          | PhMA        | 75          | 538        | 2.73           |
| СМ          | 25          | DEGMA       | 75          | 543        | 2.73           |
| 4IpbM       | 25          | BnMA        | 75          | 564        | 2.75           |
| tBCHA       | 25          | MEdMSPNH    | 75          | 959        | 2.98           |
| DdMA        | 50          | PhMA        | 50          | 558        | 2.75           |
| 2EhM        | 50          | DEGMA       | 50          | 457        | 2.66           |
| СМ          | 50          | BnMA        | 50          | 510        | 2.71           |
| tBCHA       | 67          | DdMA        | 33          | 362        | 2.56           |
| EGDPEA      | 67          | 2EhM        | 33          | 293        | 2.47           |
| CiM         | 67          | СМ          | 33          | 477        | 2.68           |
| 4IpbM       | 67          | 4IpbM       | 33          | 362        | 2.56           |
| 4MbM        | 67          | tBCHA       | 33          | 378        | 2.58           |
| СМ          | 67          | DdMA        | 33          | 747        | 2.87           |
| 4MpM        | 67          | 2EhM        | 33          | 492        | 2.69           |
| PM          | 67          | СМ          | 33          | 439        | 2.64           |
| 2EhM        | 67          | 4IpbM       | 33          | 400        | 2.60           |
| LMM         | 67          | tBCHA       | 33          | 413        | 2.62           |
| DdMA        | 67          | DdMA        | 33          | 557        | 2.75           |
| Cddm        | 67          | 2EhM        | 33          | 502        | 2.70           |
| 2EhM        | 25          | HPhOPA      | 75          | 991        | 3.00           |
| СМ          | 25          | PhMA        | 75          | 628        | 2.80           |
| 4IpbM       | 25          | DEGMA       | 75          | 575        | 2.76           |
| tBCHA       | 25          | BnMA        | 75          | 400        | 2.60           |
| DdMA        | 50          | HPhOPA      | 50          | 911        | 2.96           |
| 2EhM        | 50          | PhMA        | 50          | 466        | 2.67           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| СМ          | 50          | DEGMA       | 50          | 545        | 2.74           |
| 4IpbM       | 50          | BnMA        | 50          | 326        | 2.51           |
| СНМА        | 67          | GM          | 33          | 315        | 2.50           |
| tBCHA       | 67          | PM          | 33          | 592        | 2.77           |
| EGDPEA      | 67          | 4NbM        | 33          | 1512       | 3.18           |
| CiM         | 67          | CiM         | 33          | 238        | 2.38           |
| 4IpbM       | 67          | СНМА        | 33          | 341        | 2.53           |
| СМ          | 67          | PM          | 33          | 702        | 2.85           |
| PM          | 67          | CiM         | 33          | 249        | 2.40           |
| 2EhM        | 67          | СНМА        | 33          | 415        | 2.62           |
| GM          | 67          | GM          | 33          | 417        | 2.62           |
| DdMA        | 67          | РМ          | 33          | 769        | 2.89           |
| Cddm        | 67          | 4NbM        | 33          | 615        | 2.79           |
| CiM         | 100         |             |             | 185        | 2.27           |
| СНМА        | 100         |             |             | 244        | 2.39           |
| 4NbM        | 254         | HPhOPA      | 75          | 1930       | 3.29           |
| CiM         | 25          | PhMA        | 75          | 373        | 2.57           |
| СНМА        | 25          | DEGMA       | 75          | 487        | 2.69           |
| GM          | 25          | MEdMSPNH    | 75          | 573        | 2.76           |
| PM          | 50          | HPhOPA      | 50          | 612        | 2.79           |
| 4NbM        | 50          | PhMA        | 50          | 270        | 2.43           |
| CiM         | 50          | DEGMA       | 50          | 304        | 2.48           |
| СНМА        | 67          | РМ          | 33          | 241        | 2.38           |
| tBCHA       | 67          | 4NbM        | 33          | 1021       | 3.01           |
| EGDPEA      | 67          | CiM         | 33          | 251        | 2.40           |
| CiM         | 67          | СНМА        | 33          | 332        | 2.52           |
| 4MbM        | 67          | GM          | 33          | 368        | 2.57           |
| 4NbM        | 67          | РМ          | 33          | 2990       | 3.48           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| СМ          | 67          | 4NbM        | 33          | 1090       | 3.04           |
| 4MpM        | 67          | CiM         | 33          | 258        | 2.41           |
| PM          | 67          | СНМА        | 33          | 611        | 2.79           |
| LMM         | 67          | GM          | 33          | 349        | 2.54           |
| GM          | 67          | PM          | 33          | 620        | 2.79           |
| DdMA        | 67          | 4NbM        | 33          | 416        | 2.62           |
| Cddm        | 67          | CiM         | 33          | 322        | 2.51           |
| GM          | 100         |             |             | 333        | 2.52           |
| CiM         | 25          | HPhOPA      | 75          | 496        | 2.70           |
| СНМА        | 25          | PhMA        | 75          | 483        | 2.68           |
| GM          | 25          | BnMA        | 75          | 409        | 2.61           |
| PM          | 25          | MEdMSPNH    | 75          | 3849       | 3.59           |
| CiM         | 50          | PhMA        | 50          | 429        | 2.63           |
| СНМА        | 50          | DEGMA       | 50          | 405        | 2.61           |
| tBCHA       | 67          | CiM         | 33          | 288        | 2.46           |
| EGDPEA      | 67          | СНМА        | 33          | 293        | 2.47           |
| 4IpbM       | 67          | GM          | 33          | 345        | 2.54           |
| 4MbM        | 67          | РМ          | 33          | 697        | 2.84           |
| 4NbM        | 67          | 4NbM        | 33          | 2136       | 3.33           |
| СМ          | 67          | CiM         | 33          | 264        | 2.42           |
| 4MpM        | 67          | СНМА        | 33          | 492        | 2.69           |
| 2EhM        | 67          | GM          | 33          | 403        | 2.60           |
| LMM         | 67          | РМ          | 33          | 697        | 2.84           |
| GM          | 67          | 4NbM        | 33          | 2543       | 3.41           |
| DdMA        | 67          | CiM         | 33          | 437        | 2.64           |
| Cddm        | 67          | СНМА        | 33          | 455        | 2.66           |
| PM          | 100         |             |             | 590        | 2.77           |
| СНМА        | 25          | HPhOPA      | 75          | 1005       | 3.00           |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| GM          | 25          | DEGMA       | 75          | 439        | 2.64           |
| PM          | 25          | BnMA        | 75          | 585        | 2.77           |
| 4NbM        | 25          | MEdMSPNH    | 75          | 653        | 2.81           |
| CiM         | 50          | HPhOPA      | 50          | 295        | 2.47           |
| СНМА        | 50          | PhMA        | 50          | 263        | 2.42           |
| GM          | 50          | BnMA        | 50          | 478        | 2.68           |
| СНМА        | 67          | CiM         | 33          | 214        | 2.33           |
| tBCHA       | 67          | СНМА        | 33          | 491        | 2.69           |
| CiM         | 67          | GM          | 33          | 298        | 2.47           |
| 4IpbM       | 67          | РМ          | 33          | 351        | 2.54           |
| 4NbM        | 67          | CiM         | 33          | 1146       | 3.06           |
| СМ          | 67          | СНМА        | 33          | 683        | 2.83           |
| PM          | 67          | GM          | 33          | 545        | 2.74           |
| 2EhM        | 67          | PM          | 33          | 559        | 2.75           |
| LMM         | 67          | 4NbM        | 33          | 618        | 2.79           |
| GM          | 67          | CiM         | 33          | 387        | 2.59           |
| DdMA        | 67          | СНМА        | 33          | 471        | 2.67           |
| СНМА        | 75          | MEdMSPNH    | 25          | 322        | 2.51           |
| GM          | 25          | PhMA        | 75          | 425        | 2.63           |
| PM          | 25          | DEGMA       | 75          | 1136       | 3.06           |
| 4NbM        | 25          | BnMA        | 75          | 816        | 2.91           |
| CiM         | 25          | MEdMSPNH    | 75          | 277        | 2.44           |
| СНМА        | 50          | HPhOPA      | 50          | 812        | 2.91           |
| GM          | 50          | DEGMA       | 50          | 628        | 2.80           |
| PM          | 50          | BnMA        | 50          | 914        | 2.96           |
| СНМА        | 67          | СНМА        | 33          | 289        | 2.46           |
| EGDPEA      | 67          | GM          | 33          | 414        | 2.62           |
| CiM         | 67          | PM          | 33          | 222        | 2.35           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| 4IpbM       | 67          | 4NbM        | 33          | 1118       | 3.05           |
| 4MbM        | 67          | CiM         | 33          | 348        | 2.54           |
| 4MpM        | 67          | GM          | 33          | 430        | 2.63           |
| PM          | 67          | PM          | 33          | 202        | 2.31           |
| 2EhM        | 67          | 4NbM        | 33          | 793        | 2.90           |
| LMM         | 67          | CiM         | 33          | 341        | 2.53           |
| GM          | 67          | СНМА        | 33          | 418        | 2.62           |
| Cddm        | 67          | GM          | 33          | 383        | 2.58           |
| GM          | 25          | HPhOPA      | 75          | 835        | 2.92           |
| PM          | 25          | PhMA        | 75          | 619        | 2.79           |
| 4NbM        | 25          | DEGMA       | 75          | 746        | 2.87           |
| CiM         | 25          | BnMA        | 75          | 437        | 2.64           |
| СНМА        | 25          | MEdMSPNH    | 75          | 529        | 2.72           |
| GM          | 50          | PhMA        | 50          | 355        | 2.55           |
| PM          | 50          | DEGMA       | 50          | 279        | 2.45           |
| tBCHA       | 67          | GM          | 33          | 263        | 2.42           |
| EGDPEA      | 67          | РМ          | 33          | 242        | 2.38           |
| CiM         | 67          | 4NbM        | 33          | 275        | 2.44           |
| 4IpbM       | 67          | CiM         | 33          | 418        | 2.62           |
| 4MbM        | 67          | СНМА        | 33          | 338        | 2.53           |
| СМ          | 67          | GM          | 33          | 589        | 2.77           |
| 4MpM        | 67          | РМ          | 33          | 624        | 2.79           |
| PM          | 67          | 4NbM        | 33          | 1451       | 3.16           |
| 2EhM        | 67          | CiM         | 33          | 339        | 2.53           |
| LMM         | 67          | СНМА        | 33          | 505        | 2.70           |
| DdMA        | 67          | GM          | 33          | 536        | 2.73           |
| Cddm        | 67          | PM          | 33          | 680        | 2.83           |
| PM          | 25          | HPhOPA      | 75          | 942        | 2.97           |
|             |             |             |             |            |                |

| Monomer 1   | % monomer 1 | Monomer 2   | % monomer 2 | Measured F | log measured F |
|-------------|-------------|-------------|-------------|------------|----------------|
| (Figure S7) |             | (Figure S7) |             | mCherry    | mCherry        |
| 4NbM        | 25          | PhMA        | 75          | 798        | 2.90           |
| CiM         | 25          | DEGMA       | 75          | 499        | 2.70           |
| СНМА        | 25          | BnMA        | 75          | 472        | 2.67           |
| GM          | 50          | HPhOPA      | 50          | 707        | 2.85           |
| PM          | 50          | PhMA        | 50          | 303        | 2.48           |
| 4NbM        | 50          | DEGMA       | 50          | 578        | 2.76           |
| CiM         | 50          | BnMA        | 50          | 100        | 2.00           |



**Figure S1**. Monomer structures of commercially available compounds employed in the micro array fabrication. The co-polymers were formed by combining monomers 1-15 with monomers A-F in different volume ratios then exposing the mixture to UV.



Figure S2. Structures of monomers used to generate smaller polymer library used to validate model predictions for mCherry-transformed pathogens



Figure S3. Structures of monomers used to generate larger polymer library used to validate model predictions for mCherry-transformed pathogens



**Figure S4.** Graph (left) and histograms (right) of distributions of normalized pathogen adhesion predicted by the individual, multi-pathogen and log mCherry fluorescence data for PA (top panels) and UPEC (bottom panels).



**Figure S5.** Measured and predicted attachment of PA, SA and UPEC for individual pathogens using molecular descriptors, training set (triangles), test set (circles).



**Figure S6.** Measured and predicted attachment of PA, SA and UPEC for individual pathogens using experimental feature descriptors, training set (triangles), test set (circles).

#### PA attachment











**Figure S7.** Truth tables for the three class predictions of pathogen attachment to a new polymer array where the pathogen adhesion was assessed by the brightness of the mCherry fluorescence.

#### References

1. Labute, P., A widely applicable set of descriptors. *J. Mol. Graph. Model.* **2000**, *18* (4-5), 464-477.

2. Raychaudhury, C.; Ray, S. K.; Ghosh, J. J.; Roy, A. B.; Basak, S. C., Discrimination of Isomeric Structures Using Information Theoretic Topological Indexes. *J. Comput. Chem.* **1984**, *5* (6), 581-588.