Molecular Cell, Volume 82

Supplemental information

Structure and engineering of the minimal

type VI CRISPR-Cas13bt3

Ryoya Nakagawa, Soumya Kannan, Han Altae-Tran, Satoru N. Takeda, Atsuhiro Tomita, Hisato Hirano, Tsukasa Kusakizako, Tomohiro Nishizawa, Keitaro Yamashita, Feng Zhang, Hiroshi Nishimasu, and Osamu Nureki

Figure S1. Domain structures, Related to Figure 1

(A–D) Structural comparison of the HEPN (A), Helical-1 (B), Lid (C), and Helical-2 (D) domains of binary complexes of Cas13bt3 and PbuCas13b (PDB: 6DTD). In the PbuCas13b structure, the PbuCas13b-specific insertions are highlighted in blue. PbuCas13b (light blue) is superimposed onto Cas13bt3. (E) Phylogenetic tree of Cas13b and Cas13bt proteins.

Figure S2. crRNA structures, Related to Figure 2

(A) 2mFo - DFc electron density map for the crRNA in the binary complex (contoured at 2.50) (stereo view).

(B) 2mFo - DFc electron density map for the spacer region in two distinct conformations (contoured at 0.8σ).

(C and D) Sequences (C) and structures (D) of the DR regions of the Cas13bt3, PbuCas13b (Slaymaker et al., 2019) (PDB: 6DTD), and BzoCas13b

(Zhang et al., 2018) (PDB: 6AAY) crRNAs. The DR sequence of Cas13bt3 crRNA shares 58% and 67% identity with those of PbuCas13b and BzoCas13b, respectively.

(E) *In vitro* RNA cleavage experiments. The 5⁻Cy5-labeled target RNA was incubated with the Cas13bt3–crRNA complex at 37°C for 0.5, 15, 30 and 60 min, and then analyzed by denaturing urea-PAGE.

(F and G) Effects of mutations in the DR (F) and spacer (G) regions of the crRNA. The 5'-Cy5-labeled target RNA was incubated with the Cas13bt3–crRNA complex (wild-type or mutant crRNAs) at 37°C for 60 min, and then analyzed by denaturing urea-PAGE.

(H) *In vitro* processing experiments. The pre-crRNA was incubated with Cas13bt3 at 37°C for 60 min, and then analyzed by denaturing urea-PAGE. PbuCas13b was used as a positive control.

(I) Location of the 3' end of the crRNA. Disordered regions are indicated as dotted lines.

Figure S3. Schematics of RNA recognition, Related to Figures 3 and 5 The disordered regions are boxed by dashed grey lines.

Figure S4. Cryo-EM analysis of the Cas13bt3-crRNA-target RNA ternary complex, Related to Figure 4

(A) Single-particle cryo-EM image processing workflow.

(B) Fourier shell correlation curve for the 3D reconstruction.

(C) Local resolution of the cryo-EM density map.

(D and E) Cryo-EM density maps of the Cas13bt3-crRNA-target RNA ternary complex.

Figure S5. Structural comparison between the Cas13bt3 binary and ternary complexes, Related to Figure 5 Structures of the Cas13bt3–crRNA binary complex (left) and the Cas13bt3–crRNA–target RNA ternary complex (center). The binary complex (light blue) is superimposed onto the ternary complex (right).

Figure S6. Structural flexibility in the HEPN active site and molecular engineering, Related to Figure 6

(A) MD simulations of the Cas13bt3 binary (red) and ternary (blue) complexes. RMSF values for equivalent C α atoms were calculated by aligning the structures based on their crRNA DR regions during 200-ns MD simulations.

(B) Superimposition of the HEPN active sites in the binary (left) and ternary (right) complexes after 100-, 150-, and 200-ns MD simulations. (C) Structures of the HEPN domains of PbuCas13b and BzoCas13b.

(D) Mapping of the 17 residues onto the Cas13bt3–crRNA–target RNA complex. Since mutations, except for the E172R and E297F, did not substantially improve Cas13bt3-mediated RNA cleavage, we focused on the E172R and E297F mutations.

Figure S7. Structural comparisons of Cas13bt3 with LbuCas13a and EsiCas13d, Related to Figure 7 (A) Binary complex structures of Cas13bt3 (left), LbuCas13a (PDB: 5XWY) (center), and EsiCas13d (PDB: 6E9E) (right). (B) Ternary complex structures of Cas13bt3 (left), LbuCas13a (PDB: 5XWP) (center), and EsiCas13d (PDB: 6E9F) (right). (C and D) Superimposition of the overall structures (C) and the HEPN active sites (D) in the binary (light blue) and ternary (colored as in A) complexes of Cas13bt3, LbuCas13a, and EsiCas13d.

Table S1. Nucleic-acid sequences used in this study, Related to STAR Methods

Oligonucleotides used to introduce the Cas13bt3 mutations (pE-SUMO-His6-Cas13bt3)

Mutation	Forward primer	Reverse primer
R84A/H89A	TTCAGCgccTACAGACACAGCCCCGGCTG	GTAGTTggcCAGAGCCTCGGCCTTGGC
R739A/H744A	TTCTTTgccCACCACCTGAAGTTCGTGATCGATG	GGCTCTggcCACTTTGTTCACGGCGGTTTTCTC
R122A	gccAGAGAAACCGAAGTGATCATCGAGTTCC	CCTGCACTCGAAGATGGCCC
R123A	gccGAAACCGAAGTGATCATCGAGTTCCC	CCGCCTGCACTCGAAGATGG
R155A	gccAGAGTGCTGGACAGACTGTATGGC	TTCCACAAAGAAGCTGACGAAGAACAC
R156A	gccGTGCTGGACAGACTGTATGGCG	GCGTTCCACAAAGAAGCTGACGAAG
K169A	gccAAGAATGAGGGCCAGTACAAGCTGAC	CAGGCCGGACACGGCGC
K170A	gccAATGAGGGCCAGTACAAGCTGACC	CTTCAGGCCGGACACGGCG
K645A	gccCTGTATGTGCTGGACGACGCC	GCCGTAGTCGGACACGCTGAAC
E172R	cggGGCCAGTACAAGCTGACCCG	ATTCTTCTTCAGGCCGGACACGG
E297F	ttcGACCAGAGCTACTACATCAGCAAGAACAAC	GTCCTTCTTGGAGAAGTCCACCACC
The crRNA and target RNA	used for the structure determination	
crRNA	GCUUGGCAACCAUUCAAAUAUGUAUGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
Target RNA	AUACAUAUUUGAAUGGUUGCCAAGC	
crRNAs and target RNA use	ed for the in vitro cleavage and processing experiments	
crRNA	ggCAUUCCGAAGAACGCUGAAGCGCUGGGGGCGCGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
crRNA-C(-8)G	gg <u>CAUUCCGAAGAACGCUGAAGCGCUGGGGGC</u> GCUGGAGgAGCCCCCGAUUUGUGGGGUGAUUACAGC	
crRNA-G(-28)C	gg <u>CAUUCCGAAGAACGCUGAAGCGCUGGGGGC</u> GCUGGAGCAGCCCCCGAUUUGUGGGGUcAUUACAGC	
crRNA-A(-32)U	gg <u>CAUUCCGAAGAACGCUGAAGCGCUGGGGGC</u> GCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUuCAGC	
crRNA-mm1	ggCAUUCCGAAGAACGCUGAAGCGCUGGGGGcqGCUGGAGCAGCCCCCGAUUUGUGGGGGUGAUUACAGC	
crRNA-mm2	gg <u>CAUUCCGAAGAACGCUGAtcCGCUGGGGGGC</u> GCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
crRNA-mm3	gg <u>CAUUCCGAAGAAgcCUGAAGCGCUGGGGGGC</u> GCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
crRNA-mm4	gggtUUCCGAAGAACGCUGAAGCGCUGGGGGGCGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
Target RNA	AAUUU <u>GCCCCCAGCGCUUCAGCGUUCUUCGGAAUG</u> UCGCG	
Pre-crRNA		
PbuCas13b-crRNA	ggCAUGCCAAUGCGCGACAAUUCCGAAGAACGCGUUGCAUCUGCCUUCUUUUUGAAAGGUAAAAAAAA	
PbuCas13b-pre-crRNA	ggCAUGCCAAUGCGCGACAUUCCGAAGAACGCGUUGCAUCUGCCUUCUUUUUGAAAGGUAAAAACAACCAUGCCAAU GCGCGACAUUCCGAAGAACGCGUUGCAUCUGCCUUCUUUUUGAAAGGUAAAAACAAC	
crRNA used for mammalian	RNA knockdown and editing assays	
Gaussia luciferase	GGGCAUUGGCUUCCAUCUCUUUGAGCACCUGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
Gaussia luciferase crRNA 2	GGAAUGUCGACGAUCGCCUCGCCUAUGCCGGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
Cypridina luciferase	UUCUAAACCAUCCUGCGGCCUCUACUCUGCGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	
Non-targeting crRNA	GUAAUGCCUGGCUUGUCGACGCAUAGUCUGGCUGGAGCAGCCCCCGAUUUGUGGGGUGAUUACAGC	

The codons for the mutations and the 5' GG for in vitro transcription are indicated with lower case letters. The guide/target sequences are underlined.