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SUPPLEMENTARY MATERIALS AND METHODS  

Clinical and histological data 

All samples in the study were fresh-frozen. Tissue samples were coded previously to storage 

using consecutive numbering. The code did not include any patient identifier, and the 

research team at Mount Sinai received already de-identified samples. The diagnosis of HCC 

was confirmed after a first evaluation made by 3 independently working expert pathologists 

in Mount Sinai (WQL, CM, and ST), and those samples with >50% necrotic tissue (n=18), 

tumors other than HCC (n=7), or repeated (n=2) were excluded. Thus, a final number of 192 

patients were included for further evaluation. 

Baseline clinicopathological characteristics were collected for both cohorts. All histological 

evaluations were performed by 2 expert pathologists, blinded to clinical data. Fibrosis stage 

was scored according to the METAVIR Scale1. All the above-mentioned variables were also 

collected for the Western cohort except for BMI, alanine aminotransferase (ALT) values, 

tumor size and number, region of origin, and presence of steatosis/steatohepatitis. All data 

were stored in a database containing de-identified information, and electronic files were 

stored according to Mount Sinai IRB protocols with encryption and password protection.  

Viral hepatitis evaluation 

The presence of viral infections (HBV, HCV and HDV) was assessed in the non-tumor tissue 

of all Mongolian samples, and was compared to the data obtained from Mongolian charts 

(HBV surface antigen -HBsAg- and HCV antibodies; HDV was not routinely evaluated in 

Mongolia).  
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Intrahepatic HBV and HDV status were assessed by quantitative PCR (qPCR). HBV-DNA 

was assessed by Taqman qPCR (ID Pa03453406 s1, ABI, Thermo Fisher) using the ViiA7 

Real Time PCR System (ABI) as previously described2. The calibration curve was prepared 

using ten-fold serial dilutions of a plasmid containing an HBV monomer (pHBV-EcoR1). 

Total HDV-RNA was determined by one-step RT-qPCR as previously reported3,4. For 

absolute quantification, serial dilution of an HDV-RNA standard (WHO 1st International 

Standard, Paul-Ehrlich-Institut) was included in each assay5. All samples positive for HDV 

were considered HBV/HDV positive. 

HCV status was determined by conventional PCR. Specifically, HCV RNA was 

retrotranscribed to cDNA with EcoDry Premix (Double Primed) (Takara cat# 639549) and 

HCV-specific sequences were amplified under standard conditions using the following 

primer pair: Fw CACGCAGAAAGCGTCTAG, HCV;  Rv 

TTGATCCAAGAAAGGACCC6. PCR products were run on an agarose gel, purified using 

PureLink Quick Gel Extraction Kit (Invitrogen cat# K210012) and sequenced by Sanger 

(Macrogen, USA). 

HBV and HDV genotyping 

HBV and HDV genotypes were determined by direct sequencing and phylogenetic analysis 

of a 1100 bp fragment of the HBV retrotranscriptase7 and a fragment of 370bp encompassing 

approximately 85% of the large HDV antigen (HDAg)8, respectively. Multiple alignments 

were performed with ClustalW9 and maximum likelihood trees were obtained with MEGA 

X software10. 
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Analysis of HBV mutations 

HBV mutations associated with HCC development were assessed by nested PCR (GoTaq 

Flexi DNA Polymerase - Promega). Specifically, precore region was screened for nucleotide 

substitution G1896A and the basal core promoter (BCP) region was checked for the presence 

of 2 nucleotides substitutions (A1762T and G1764A).  A DNA segment composing of the 

BCP, precore, and partial C regions was amplified by nested PCR and analyzed by direct 

sequencing11.  

Whole exome sequencing mutational variant calling in in-house cohorts 

Mutational variant calling was performed following the Tigris pipeline (v2.0.1). BWA 0.7.17 

was used for alignment, followed by base quality score recalibration via BQSR, read 

deduplication via Picard MarkDuplicates, germline molecular variant (SNV and small indel) 

calling via HaplotypeCaller, and somatic molecular variant calling via Mutect2, which calls 

variants using local de novo assembly and then does a two-pass filter using heuristics (further 

details can be found in the MuTect2 whitepaper from its GitHub repo at 

https://github.com/broadinstitute/gatk/tree/master/docs/mutect) . After applying these filters 

in MuTect2, the twice-filtered MuTect2 output was then filtered for 'PASS' variants only 

with allele frequency >= 5% for downstream analysis. Tigris computes depth-based and other 

NGS library QC metrics using GATK3 DepthOfCoverage and CallableLoci, as well as 

Picard.  Lastly, somatic copy number variants (sCNV) were called using tumor/normal 

SAAS-CNV (v0.3.4) workflow that models allele balance to determine balanced versus 

unbalanced somatic gains and losses, as well as determine somatic copy-neutral loss of 
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heterozygosity12. SAAS-CNV output were further processed using GISTIC2.0 for somatic 

CNV analysis.  

Analysis of gene mutations and filtering in previously published cohorts 

We used whole exome sequenxing (WES data to assess the mutation profile in the 

European13, Korean14, TCGA15 and Mongolian NCI16 HCC cohorts. In the TCGA cohort, 

only variants with filter PASS were considered and “3_prime_UTR_variant”, 

“5_prime_UTR_variant”, “intron_variant”,” synonymous_variant” were filtered from the 

cohort. For the Korean and European cohorts, only were accepted the following types of 

mutations, filtering the rest of the annotated subtypes: Missense_Mutation, 

“Nonsense_Mutation”, “Splice_Site”, “Translation_Start_Site”, “Frame_Shift_Ins”, 

“In_Frame_Ins”, “Frame_Shift_Del”, “In_Frame_Del”, “3'Flank”, “5'Flank” and 

“Nonstop_Mutation”. For all cohorts, only VAF ≥ 0.05 was accepted for further analysis. 

Tumor mutational burden (TMB) from these external cohorts was calculated as previously 

indicated. Other TMB calculation approaches are provided in Supplementary Table 7 for 

comparison. 

Somatic copy number variations (SNVs) analysis 

HaplotypeCaller17 was used to generate germline VCF files as input for SAAS-CNV 

(v0.3.4)12, which in turn generated segmentation file as input for GISTIC 2.0 run18. The 

“log2ratio.Median.adj” column from saasCNV output was used for GISTIC 2.0 run, with the 

following parameter flags -genegistic 1 -smallmem 1 -broad 1 -brlen 0.98 -conf 0.99 -armpeel 

0 -savegene 1 -gcm extreme -qvt 0.1 -cap 2.0 -ta 0.85 -td 0.74. 



 

 

7 

 

Identification of potential driver genes 

OncodriveCLUSTL and dN/dScv algorithms were used to identify genes harboring 

significantly more mutations than expected by chance19,20 among the genes significantly 

more mutated in the Mongolian cohort compared to the Western cohort (n = 100, 

Supplementary Table 10). Genes predicted to have an enrichment for damaging alterations 

by OncodriveCLUSTL or dN/dScv were selected (q<0.05). The selected genes were filtered 

for cancer-related genes according to the OncoKB Cancer Gene List or previously reported 

studies in HCC13,21.  

TERT promoter mutations detection 

The promoter region of TERT in Mongolian samples was amplified by PCR and sequenced 

using Sanger sequencing as previously described22.  The number of TERT promoter 

mutations was compared to the reported percentages in Western cohorts (55-60%)13. 

Identification of de novo mutational signatures in Mongolian tumors 

The MutationalPatterns23 R package was used to perform de novo mutational signature 

extraction. Extracted signatures were mapped against COSMICv3. De novo signatures were 

mapped to single signatures and linear combinations of two if the cosine similarity was > 0.9. 

One novel signature “SBS Mongolia” was revealed with cosine similarity below the 

threshold for all comparisons (maximum observed cosine similarity of 0.818).  

Mutational signature fitting was performed using the deconstructSigs 

(https://github.com/raerose01/deconstructSigs) and quadprog R packages24, using HCC 

specific COSMICv3 mutational signatures plus SBS Mongolia. To select HCC specific 
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signatures, COSMICv3 signatures were assessed in 493 HCC samples from the Mongolian 

(n=151), Western (n=112) and TCGA (n=230) cohorts. Signatures occurring in ≥ 40 HCC 

samples or signatures that were revealed via de novo mutational signature extraction and able 

to be mapped to COSMICv3 reference were selected (i.e. SBS1, SBS4, SBS5, SBS6, 

SBS12SBS16, SBS18, SBS22, SBS26, SBS29, SBS40).  

In order to assess the confidence of signature assignment across our samples in signature 

fitting, a previously reported bootstrap approach was adopted25. At each bootstrap, we 

randomly selected the same number of mutations with replacement from the original 

observed mutational profile of a given tumor sample (classified by the 96 trinucleotide 

mutation types) and performed signature fitting to estimate signature weight (quadprog R 

package), resulting in a distribution of signature weights for each signature from all 

bootstraps (N = 500) in a given tumor. Based on the signature weight distribution, for any 

given sample, we were able to estimate confidence level. At p value = 0.1 (one sided), the 

10% quantile of signature weights would mean we were 90% confident that the signature 

weight was above that 10% quantile value. Finally, samples were considered positive for a 

mutational signature when the bootstrap exposure cutoff was ≥ 0.1.   

Analysis of environmental signatures 

Signature fitting analysis was performed using signatures from the Compendium of 

Mutational Signatures of Environmental Agents26. Specifically, all the 52 signatures included 

in the Compendium from agents generating significantly different substitution profiles 

compared to untreated controls were used26.  The weights of each mutational signature 

contributing to an individual tumor sample were obtained using the deconstructSigs R 
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package. The trinucleotide count for each sample was normalized by multiplying it by a ratio 

of its occurence in the genome to its occurence in the exome (exome2genome method), 

following recommendations for WES data. Signature contributions with a weight <0.25 were 

discarded from the analysis. A signature was considered present in an individual tumor 

sample when the weight threshold was ≥ 0.1. (Supplementary Table 22).     

Mutational signature analysis in external cohorts 

Mutational signature fitting analysis was performed in the Korean14 and Mongolian NCI16 

HCC cohorts as described above using COSMICv3 signatures plus SBS Mongolia, or 

environmental signatures from the Compendium of Mutational Signatures of Environmental 

Agents26. The Korean cohort was chosen as an example of Asian HCC cases likely not 

exposed to the same environmental factors as Mongolian patients.  

Identification of de novo mutational signatures in Mongolian non-tumoral liver samples 

Mutational signature analysis was used to assess signatures in the adjacent non-tumoral 

samples. First, for variant calling in the adjacent non-tumoral liver tissue, we subtracted the 

mutations in tumors from the mutation in non-tumoral tissue using MuTect2. Next, only 

samples with total SNV count ≥ 10 (for variants in exome region only at allelic frequency 

cutoff of 0.05) were selected for subsequent mutational signature analysis, resulting in a total 

of 78 samples (64 Mongolian cohort plus 14 Western cohort). Due to the small number of 

unique SNVs in adjacent non-tumoral samples, the analysis was performed on pooled 

variants from each cohort. The mutational signature fitting analysis was performed using all 

HCC specific COSMICv3 signatures plus SBS Mongolia, or environmental signatures from 

the Compendium of Mutational Signatures of Environmental Agents26. 
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