Patient allocation to disease clusters

Let the patient numbered *i* be denoted P_i . For the imbalanced scenario with *K* clusters, the (un-normalized) weighting for patient *i* being allocated to disease group *k*, w_k^i is uniform over the patients and distributed exponentially over the clusters:

 $Pr(w_k = x) \sim exp(-x)$

The patient is allocated to disease group k with probability

$$Pr(P_i(G=k)) = w_k / \sum_{j=1}^K w_j$$

For the balanced scenario, the probability of allocation to any disease cluster is equal to 1/K:

$$Pr(P_i(G=k)) = 1/K$$

Disease allocation to disease clusters

Let the disease cluster with number k be denoted DC_k and numbered 1 through K. Let the k'th disease cluster DC_k denote n_k diseases (d_i, \ldots, d_{n_k}) .

The number of diseases allocated to disease cluster k, n_k is Poisson distributed, with floor set to 2 and rate λ equal to 5.0:

$$Pr(n_k = m) \sim \mathbb{1}_{m \geq 2} Pn(\lambda; m)$$
 (up to normalization)

and for each cluster k, the n_k diseases d_1, \ldots, d_{n_k} are drawn with uniform probability, without replacement, from N_D diseases D_1, \ldots, D_N (numbered 1 through 25). For disease cluster k, DC_k , with n_k diseases in cluster k:

$$Pr(DC_k(d_1 = D_i, \dots, d_{n_k} = D_k); i < \dots < k, k \le N) = n_k!(N - n_k)!/N! = 1/\binom{N}{n_k}$$

Simulation of disease presence and absence from clusters

Let the observed presence or absence of disease *d* in patient *i* be denoted Y_i^d (0,1). We model the relationship between simulated disease presence and absence for patient *i* allocated to k'th disease group DC_k , as a multinomial probit:

$$Pr(Y_i^{sim,DC_k} = 1 | X^{DC_k}) \sim \Phi(X^{DC_k}, \Omega^{DC_k})$$

where Φ is the standard multivariate normal and X^{DC_k} , Ω^{DC_k} are a (n_k dimensional) latent variable and $n_k \ge n_k$ latent correlation matrix controlling the disease indicators. The value of the latent probit mean for disease group k, X^{DC_k} is set at a uniform value (-0.70).

As we might expect some correlation structure within a disease group, we set all off-diagonal correlations within Ω^{DC_k} to some uniform positive value $0 \le \rho \le 0.7$, which we can vary.

Addition of background noise to observations

We model the presence of uncorrelated background noise which could contaminate our cluster observations by adding a background value via an uncorrelated latent probit mean for the N_D diseases in the $N_P \ge D$ dimensional observation matrix Y. This is done by adding a latent value of the noise floor M, set to a uniform value over all disease for simplicity:

 $Pr(Y_i^{spurious,d} = 1) \sim \Phi(M^{N_D})$ $Y_i^{obs,d} = \max(Y_i^{spurious,d}, Y_i^{sim,d})$

In []: