Patient allocation to disease clusters

Let the patient numbered i be denoted P_i . For the imbalanced scenario with K clusters, the (unnormalized) weighting for patient i being allocated to disease group k , w_{k}^{i} is uniform over the patients and distributed exponentially over the clusters:

 $Pr(w_k = x) \sim exp(-x)$

The patient is allocated to disease group k with probability

$$
Pr(P_i(G = k)) = w_k / \sum_{j=1}^{K} w_j
$$

For the balanced scenario, the probability of allocation to any disease cluster is equal to $1/K$:

$$
Pr(P_i(G=k)) = 1/K
$$

Disease allocation to disease clusters

Let the disease cluster with number k be denoted DC_k and numbered 1 through $K.$ Let the k'th disease cluster DC_k denote n_k diseases (d_i,\dots,d_{n_k}) .

The number of diseases allocated to disease cluster k , $n_k\;$ is Poisson distributed, with floor set to 2 and rate λ equal to 5.0:

$$
Pr(n_k = m) \sim 1_{m \geq 2} Pr(\lambda; m)
$$
 (up to normalization)

and for each cluster k , the n_k diseases $d_1,\,\ldots\,, d_{n_k}$ are drawn with uniform probability, without replacement, from N_D diseases D_1, \ldots, D_N (numbered 1 through 25). For disease cluster k , DC_k , with n_k diseases in cluster k :

$$
Pr(DC_k(d_1 = D_i, ..., d_{n_k} = D_k); i < ... < k, k \le N) = n_k!(N - n_k)!/N! = 1/{N \choose n_k}
$$

Simulation of disease presence and absence from clusters

Let the observed presence or absence of disease d in patient i be denoted Y_i^d (0,1). We model the relationship between simulated disease presence and absence for patient i allocated to k' th disease group DC_k , as a multinomial probit:

$$
Pr(Y_i^{\text{sim},DC_k} = 1 | X^{DC_k}) \sim \Phi(X^{DC_k}, \Omega^{DC_k})
$$

where Φ is the standard multivariate normal and X^{DC_k} , Ω^{DC_k} are a (n_k dimensional) latent variable and $n_k \times n_k$ latent correlation matrix controlling the disease indicators. The value of the latent probit mean for disease group k , X^{DC_k} is set at a uniform value (-0.70).

As we might expect some correlation structure within a disease group, we set all off-diagonal $\mathsf{correlations}$ within Ω^{DC_k} to some uniform positive value $0 \leq \rho \leq 0.7$, which we can vary.

Addition of background noise to observations

We model the presence of uncorrelated background noise which could contaminate our cluster observations by adding a background value via an uncorrelated latent probit mean for the $N_D\,$ diseases in the $N_P \times D$ dimensional observation matrix Y . This is done by adding a latent value of the noise floor M , set to a uniform value over all disease for simplicity: $\;$

 $Pr(Y_i^{spurious,d} = 1) \sim \Phi(M^{N_D})$ $Y_i^{obs,d} = \max(Y_i^{spurious,d}, Y_i^{sim,d})$

In $[]:$