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SUPPLEMENTARY METHODS 23 

 24 

 25 

Climate-associated SNP windows and cuticular hydrocarbon variation 26 

We tested for excess overlap between climate-associated SNP windows and genomic regions 27 

associated with cuticular hydrocarbon (CHC) variation. The logic here is that CHCs often play a 28 

role in desiccation tolerance and climatic adaptation in insects (e.g., [1]), such that genetic 29 

regions associated with climate versus CHCs might overlap. We thus specifically quantified the 30 

extent to which climate-associated SNP windows overlapped with windows harboring SNPs 31 

associated with CHCs, and whether this overlap was greater than expected by chance. The CHC 32 

data were originally described and analyzed by [2]. Specifically, for each insect, we had 33 

quantified the proportional abundance of 26 different mono- and di-methylated CHCs, which 34 

comprised eight pentacosanes, eight heptacosanes and ten nonacosanes, and then applied log-35 
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contrasts. For the current dataset, we used those values to calculate the proportional abundance 36 

of the sum of all pentacosanes, the sum of all heptacosanes and the sum of all nonacosanes 37 

(henceforth: pentacosanes, heptacosanes and nonacosanes). Therefore, the six CHC traits 38 

considered were pentacosanes, heptacosanes, and nonacosanes in males and females (i.e., three 39 

molecule types in each of two sexes = six traits total). 40 

Here, we first re-aligned the GBS data from [2] to the current (i.e., more recent and less 41 

fragmented) T. cristinae genome (draft version 0.3). This included GBS data from 395 male and 42 

195 female T. cristinae all collected from a single population (FHA), and all of which for CHC 43 

data was also collected. These data were aligned to the genome using the BWA ALN algorithm 44 

(version 0.7.17-r1188) [4]. We allowed for 5 mismatches total, and not more than 2 miss-45 

matches in the first 20 bp. Only reads with a mapping quality greater than 10 were retained. We 46 

then compressed, sorted, and indexed the alignments with SAMTOOLS and BCFTOOLS 47 

(version 1.2) [5,6]. Next, we used SAMTOOLS and BCFTOOLS to identify SNPs and calculate 48 

genotype likelihoods. For this, we used the recommended mapping quality adjustment (-C 50), 49 

only considered alignments with mapping qualities of 20 or more and SNPs with base qualities 50 

of 30 or more, and only called variants when the posterior probability that the locus was 51 

invariant was less than 0.01 given a prior mutation rate parameter of 0.001. We then used custom 52 

Perl scripts to filter out variants with a mean coverage of less than 2x, fewer than 10 non-53 

reference reads total, mapping quality less than 30, minor allele frequency less than ~0.005, more 54 

than 1% of reads in the reverse orientation (with our GBS method, all reads should have the 55 

same orientation), missing data (no reads) for more than 20% of individuals, SNPs with more 56 

than two alleles, and SNPs with coverage exceeding three standard deviations above the mean. 57 

Finally, we obtained Bayesian point estimates (posterior means) of genotypes for each locus and 58 

individual based on the genotype likelihoods and used the estimated allele frequencies to 59 

parameterize a binomial prior. 60 

We then conducted genetic mapping of CHC variation using a polygenic genome-wide 61 

association (GWA) mapping approach, that controls for linkage disequilibrium among SNPs and 62 

background population structure as detailed below. We specifically fit Bayesian sparse linear 63 

mixed models (BSLMMs) to determine the contribution of additive genetic variation (as 64 

captured by our collective SNP data set) to each of six CHC traits, and to determine the 65 
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probability of association (posterior inclusion probability, PIP) of each individual SNP with each 66 

trait (this PIP value is computed from, i.e., equal to, the proportion of MCMC samples that 67 

included each SNP in the polygenic regression model). We fit this model using gemma (version 68 

0.95a) [7], a polygenic GWA mapping method that fits a single model with all SNPs while 69 

accounting for uncertainty and redundancy in genotype-phenotype associations, for example by 70 

controlling for linkage disequilibrium among SNPs, and background polygenic effects. The latter 71 

is inferred based on a kinship matrix derived from the collective SNPs, which also serves to 72 

control for population structure when estimating effects for individual SNPs. Models were fit 73 

using MCMC, with each mapping exercise involving 10 independent chains each comprising 1 74 

million sampling iterations and a 200,000-iteration burn-in. 75 

Based on these analyses, we then computed the mean posterior inclusion probability or PIP (i.e., 76 

probability of a genotype-phenotype association) across all SNPs in 100 Kb windows for each of 77 

the six CHC traits. Then, we asked whether the average association with CHCs (averaged over 78 

windows) was higher for the climate-associated SNP windows than expected by chance. 79 

Randomisations (1000) were used to generate a null distribution. Specifically, mean posterior 80 

probabilities for SNP-CHC associations were permuted across 1000 Kb windows and the number 81 

windows in the top 10% for climate association and (permuted) CHC posterior inclusion 82 

probabilities was determined. Note that we conducted this test independently for each of the six 83 

CHC traits and each of the three climate PCs. We then examined the combination of these results 84 

to assess the total evidence that SNP windows associated with climate adaptation are enriched 85 

for those regions of the genome possibly affecting CHC variation. 86 

Identifying introgression and population structure 87 

We quantified both historical and contemporary gene flow patterns, respectively as follows. For 88 

identifying historical introgression, we used TREEMIX (version 1.13) [8] to construct a 89 

population-based phylogeny to identify historical admixture or gene flow among our 53 focal 90 

populations. This differed from previous TREEMIX analysis done for Timema species where we 91 

used the data only from the Mel-Stripe locus [3]. For the analysis in our study here, we re-92 

aligned the GBS sequences for 1420 individuals (across 53 populations) included in this study to 93 

the T. cristinae genome (draft version 0.3). We did this by using the MEM algorithm from BWA 94 

(version 0.7.17-r1188). We ran BWA MEM with a minimum seed length of 15, internal seeds of 95 
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longer than 20 bp, and only output alignments with a quality score >= 30. We then used 96 

SAMTOOLS (version 1.6) to compress, sort and index the alignments [5,6]. We then identified 97 

SNPs using SAMTOOLS and BCFTOOLS (version 1.6). For variant calling, we used a mapping 98 

quality of 50, skipped alignments with mapping quality lower than < 20, skipped bases with base 99 

quality <15, and ignored insertion-deletion polymorphisms. We set the prior on SNPs to 0.001 100 

and called SNPs when the posterior probability that the nucleotide was invariant was <=0.01. 101 

After we got the initial set of variants, we filtered them to retain only those SNPs with sequence 102 

data for at least 80% individuals, a mean sequence depth of two per individual, at least 4 reads of 103 

the alternative allele, a minimum quality score of 30, a minimum overall minor allele frequency 104 

of at least 0.005, and no more than 1% of the reads in the reverse orientation (this is an 105 

expectation for our GBS method). We further removed SNPs with excessive coverage (3 106 

standard deviations above the mean) or that were tightly clustered (within 3 bp of each other), as 107 

these could be poor alignments (e.g., reads from multiple paralogs mapping to the same region of 108 

the genome). This left us with 8787 SNPs for this analysis. We used custom perl scripts to 109 

calculate genotype likelihoods for these SNPs and then used expectation-maximization algorithm 110 

to obtain maximum-likelihood estimates of population allele frequencies while accounting for 111 

uncertainty in genotypes (based on the calculated genotype likelihoods from BCFTOOLS). 112 

Finally, we used TREEMIX to construct Timema population graphs based on the matrix of allele 113 

frequency covariance between pairs of populations. We fit trees allowing 0-9 admixture events 114 

and calculate the proportion of variance in allele frequency variances explained by the 115 

population tree with the varying numbers of admixture events. This way we could determine the 116 

extent to which individual admixture events improved model fit. 117 

For estimating contemporary gene flow, we implemented the admixture model from ENTROPY 118 

(version 1.2) [9]. This analysis yielded similar results as previously reported using the same 119 

model [2]. From ENTROPY, we obtained Bayesian estimates of genotypes and admixture 120 

proportions. This analysis was performed separately for each species- and species-specific set of 121 

SNPs. We did this to identify contemporary gene flow within species to understand if gene flow 122 

could affect parallelism in response to climate. The admixture model in ENTROPY is similar to 123 

that in STRUCTURE [10] but differs by accounting for uncertainty in genotypes arising from 124 

finite sequence coverage and sequence errors, and by allowing simultaneous estimation of 125 
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genotypes and admixture proportions. For each species, we fit the model with k ∈ {2…5} source 126 

populations. For each value of k, we ran three MCMC chains, each with 8000 iterations, a burn-127 

in of 5000 iterations and a thinning interval of 3. We used assignments from a discriminant 128 

analysis of principal components to initialize the MCMC algorithm; this speeds convergence to 129 

the posterior and avoids label switching during MCMC without affecting the posterior 130 

probability distribution. We obtained genotype estimates as the posterior mean allele count for 131 

each individual and locus across chains and values of k (i.e., this integrates over uncertainty in 132 

the number of hypothetical source populations). We summarized patterns of population structure 133 

and admixture across the sampled populations and individuals based on these admixture 134 

proportions for k=2 and a principal component analysis (PCA) of the genotypic data. We then 135 

used the prcomp function [11] to perform a PCA in R (3.4) on the centered, but unstandardized 136 

genotype matrix. 137 

 138 

SUPPLEMENTARY RESULTS 139 

 140 

Climate-associated SNP windows and CHCs 141 

In addition to the test for natural selection using the field experiment, we conducted additional 142 

tests using genetic mapping of cuticular hydrocarbons (CHCs) in Timema cristinae. For the CHC 143 

analyses, we considered three compound classes - pentacosanes, heptacosanes, and nonacosanes 144 

- in males and in females (i.e., three compounds x two sexes = six CHC traits total). We found 145 

evidence of heritable variation for each compound in both male and female T. cristinae, with 146 

50.8% (male nonacosanes) to 89.7% (female pentacosanes) of the variability in these traits 147 

explained by a total of ~176 thousand sequenced SNPs in a mapping population (these values 148 

denote Bayesian point estimates based on 602 T. cristinae from a single population, FHA) (see 149 

Supplementary Table 5 for details). We summarized the evidence that each 100 Kb window 150 

included CHC-associated SNPs by computing the mean posterior probability of association (i.e., 151 

the mean probability of a non-zero genotype-phenotype association, also known as the posterior 152 

inclusion probability or PIP) across SNPs in the same 100 Kb windows used for summarizing 153 

SNP-climate associations. Based on a randomisation test, we found that for some CHC traits the 154 

average posterior inclusion probability for SNPs in the top climate-associated SNP windows in 155 

T. cristinae was marginally but significantly greater than expected by chance. Specifically, the 156 
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average probability of SNPs being associated with female pentacosanes was ~1.05 times higher 157 

than expected by chance for both the top 10% of PC2 and PC3 climate-associated SNP windows 158 

(P-value = 0.009 for PC2 and P-value = 0.010 for PC3 based on 1000 permutations; 159 

Supplementary Tables 7 and 8). We also detected a marginally non-significant increase in the 160 

average posterior inclusion probability for SNP associations with female nonacosanes in the top 161 

10% of PC3 climate-associated SNP windows (x-fold increase in mean inclusion probability = 162 

1.03, P-value = 0.051, 1000 permutations, Supplementary Table 8). We did not detect any 163 

significant overlap of SNPs associated with CHCs and those associated with PC1 climate 164 

windows (Supplementary Table 6). These results for CHCs support the hypothesis that at least a 165 

subset of the top climate-associated SNP windows is associated with traits involved in climatic 166 

adaptation in Timema. 167 

Introgression does not contribute to parallel evolution 168 

We conducted two analyses, focused on different time scales, to ask if introgression and gene 169 

flow between species promotes gene sharing and thus climate-associated parallel evolution. First, 170 

we identified historical patterns of introgression using a population tree-based approach. Second, 171 

we identified contemporary patterns of gene flow using an admixture model. Both these analyses 172 

helped us to assess the degree of genetic independence in adaptation to climate within each 173 

species.  174 

To identify historical patterns of introgression, we used TREEMIX to generate a tree for all 175 

populations and species, allowing for historical admixture or gene flow among intra-specific or 176 

inter-specific populations. For this analysis, we realigned GBS sequence data for all 1420 177 

individuals included in this study to the T. cristinae genome. We then called and filtered single 178 

nucleotide polymorphisms (SNPs) to identify a final set of 8787 SNPs for the TREEMIX 179 

analysis. Our results from TREEMIX yielded a population graph or bifurcating tree depicting 180 

relationships between focal localities in the study. The best bifurcating tree explained 99.6% of 181 

the variation in the population allele-frequency covariances. In this tree, Timema populations 182 

formed eight major clades that grouped populations by species (Figure 5A). Adding migration 183 

edges to the tree increased the variance explained by a negligible extent (Supplementary Table 184 

9), as expected given that the tree with no migration edges explained the overwhelming majority 185 

of the variation in the data. These results are consistent with two previous findings that little to 186 
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no evidence for introgression was observed in analogous analyses focused on the Mel-Stripe 187 

locus and that divergence times for the eight species in the current study ranged between 10 – 30 188 

million years, which indicates that Timema represent an old radiation [3]. 189 

We further used the admixture model from ENTROPY (version 1.2) to infer contemporary gene 190 

flow (see methods for details). Here, we focused our analyses on pairs of species and, thus, on 191 

admixture proportions for k=2 to identify individuals of possible hybrid ancestry. We 192 

summarized patterns of population structure and admixture across the sampled populations and 193 

individuals based on these admixture proportions in principal component analyses (PCA) of the 194 

genotypic data (Supplementary Figures 7-9). As previously reported [2], we detected minimal 195 

evidence for contemporary admixture between species in the ENTROPY analysis. Together 196 

these results imply that introgression and gene flow do not strongly or regularly influence the 197 

dynamics of parallel adaptation to climate in these species. 198 

  199 
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SUPPLEMENTARY TABLES 237 

 238 

Supplementary Table 1: Locality information and sample sizes for the eight species and 53 localities for which 239 
the GBS data has been included in this study. The GBS data associated with these populations and individuals 240 
was first presented in [2]. 241 

Species No. of populations No. of individuals 

T. bartmani 6 195 

T. californicum 3 77 

T. chumash 12 358 

T. cristinae 6 205 

T. knulli 5 89 

T. landelsensis 4 125 

T. podura 12 255 

T. poppensis 5 116 

  242 
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Supplementary Table 2: Details of climate variables included in this study and loadings for the first three PCs 243 
(Total proportion of variation explained by each PC: PC1 = 51.7%, PC2 = 24.4% and PC3 = 16.1%). 244 

 245 
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 246 

 247 

 248 

 249 

 250 

 251 

252 

Code Description PC1 PC2 PC3 

BIO1 Annual Mean Temperature -0.24 0.21 0.15 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - 

min temp)) 

0.17 0.19 0.03 

BIO3 Isothermality (BIO2/BIO7) (×100) -0.22 -0.12 -0.24 

BIO4 Temperature Seasonality (standard deviation ×100) 0.25 0.16 0.19 

BIO5 Max Temperature of Warmest Month 0.06 0.33 0.31 

BIO6 Min Temperature of Coldest Month -0.29 0.03 0.04 

BIO7 Temperature Annual Range (BIO5-BIO6) 0.25 0.19 0.17 

BIO8 Mean Temperature of Wettest Quarter -0.29 0.08 0.03 

BIO9 Mean Temperature of Driest Quarter -0.1 0.29 0.34 

BIO10 Mean Temperature of Warmest Quarter -0.02 0.34 0.33 

BIO11 Mean Temperature of Coldest Quarter -0.29 0.06 0.01 

BIO12 Annual Precipitation 0.09 -0.32 0.31 

BIO13 Precipitation of Wettest Month 0.02 -0.32 0.36 

BIO14 Precipitation of Driest Month 0.26 -0.14 -0.04 

BIO15 Precipitation Seasonality (Coefficient of Variation) -0.25 -0.01 0.18 

BIO16 Precipitation of Wettest Quarter 0.04 -0.31 0.36 

BIO17 Precipitation of Driest Quarter 0.27 -0.06 -0.11 

BIO18 Precipitation of Warmest Quarter 0.28 -0.05 -0.07 

BIO19 Precipitation of Coldest Quarter 0.04 -0.32 0.34 

Elev Elevation 0.29 0 -0.02 

Lat Latitude -0.19 -0.25 0.08 

Long Longitude 0.25 0.19 -0.02 
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Supplementary Table 3. Summary of model posterior predictive performance as approximated by the deviance 253 
information criterion (DIC) for models predicting parallelism as a function of genes and ecology. The full 254 
model in each case (for each PC) includes genes and ecology, and the null model includes only an intercept 255 
term. D gives the mean deviance and pD denotes the effective number of parameters. Lower DIC values 256 
denote better models. The best model for each PC is highlighted in bold. 257 
 258 

PC Model D pD DIC 

PC1 

Full 51.03 12.17 63.2 

Genes 52.04 11.03 63.1 

Ecology 69.55 10.27 79.8 

Null 76.1 5 81.1 

PC2 

Full 81.38 4.95 86.3 

Genes 80.59 3.89 84.5 

Ecology 84.18 3.98 85.2 

Null 80.48 2.85 83.3 

PC3 

Full 68.32 5.64 74 

Genes 74.95 4.51 79.5 

Ecology 78.03 3.88 81.9 

Null 80.2 2.9 83.1 

  259 
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Supplementary Table 4. Excess overlap between top climate-associations windows and those where change 260 
was mostly strongly correlated with elevation in the release-recapture experiment. Results are shown for 261 
different top quantiles. Here 0.90 indicates the top 10% of windows, which corresponds to the results in the 262 
main text. We report the observed number of windows in the top quantiles for both change and climate 263 
association, the x-fold enrichment relative to null expectations, and the corresponding P-value for each PC 264 
climate variable. Results are shown for null distributions where all windows were permuted or randomized 265 

(“Full randomisation”) and where randomisations were limited to windows with similar numbers of SNPs 266 

(“Constrained randomisation”). P-values ≤ .05 are highlighted in bold. Significant P-values denote whether the 267 
overlap is greater than expected by chance from a one-sided randomisation test. 268 
 269 

PC1 

  Full randomisation Constrained randomisation 

Quantile Observed X-fold P-value X-fold P-value 

0.9 108 1.40 0.00001 1.24 0.005 

0.91 86 1.39 0.0012 1.19 0.040 

0.92 75 1.53 0.00021 1.29 0.014 

0.93 59 1.56 0.00008 1.29 0.013 

0.94 48 1.72 0.000012 1.36 0.014 

0.95 43 2.21 0.00054 1.65 0.00012 

0.96 33 2.68 0.0001 1.84 0.001 

0.97 25 3.58 0.00032 2.29 0.0004 

0.98 15 4.83 0.00002 2.63 0.001 

0.99 6 7.47 0.00001 3.07 0.14 

PC2 

  Full randomisation Constrained randomisation 

Quantile Observed X-fold P-value X-fold P-value 

0.9 101 1.32 0.003 1.21 0.015 

0.91 77 1.24 0.034 1.12 0.138 

0.92 67 1.37 0.005 1.21 0.062 

0.93 53 1.39 0.010 1.22 0.064 

0.94 44 1.59 0.001 1.32 0.039 

0.95 36 1.86 0.00043 1.45 0.014 

0.96 28 2.29 0.000001 1.66 0.003 

0.97 17 2.48 0.001 1.64 0.035 

0.98 9 2.92 0.004 1.57 0.122 
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0.99 2 2.58 0.180 1.15 0.534 

PC3 

  Full randomisation Constrained randomisation 

Quantile Observed X-fold P-value X-fold P-value 

0.9 105 1.37 0.00021 1.21 0.021 

0.91 91 1.46 0.00001 1.27 0.005 

0.92 73 1.48 0.001 1.27 0.012 

0.93 50 1.32 0.019 1.11 0.232 

0.94 40 1.45 0.008 1.17 0.157 

0.95 26 1.33 0.068 1.04 0.438 

0.96 20 1.60 0.027 1.22 0.188 

0.97 12 1.72 0.049 1.25 0.264 

0.98 5 1.68 0.188 1.04 0.516 

0.99 3 3.95 0.028 2.50 0.103 

 270 
  271 
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Supplementary Table 5. Bayesian estimates of the percent of CHC variation explained by sequenced SNPs. 272 
Estimates are from the polygenic GWA in gemma. The posterior median gives the point estimate of the 273 
percent of CHC variation explained by the SNPs; the 95% equal-tail probability intervals (ETPIs) are also 274 
given. 275 
 276 

Trait Posterior median 95% ETPI 

Female pentacosanes 89.7 35.8-99.9 

Female heptacosanes 52.5 4.9-98.9 

Female nonacosanes 80.2 15.5-99.8 

Male pentacosanes 53.2 8.3-97.2 

Male heptacosanes 52.4 10.3-96.5 

Male nonacosanes 50.8 7.8-95.6 

 277 
 278 
  279 



 

16 

Supplementary Table 6: X-fold enrichments and associated P-values for number of overlapping SNP windows 280 
for PC1 for comparison with genetic mapping of CHCs. Observed value gives the mean posterior inclusions 281 
probability (i.e., probability of a genotype-phenotype association) across all SNPs in 100 Kb windows for each 282 
of the six CHC traits. P-values ≤ .05 are highlighted in bold. Significant P-values denote whether the overlap is 283 
greater than expected by chance from a one-sided randomisation test. 284 

T. bartmani T. podura 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.06 0.000439 0.128 F-penta 1.07 0.0004425 0.059 

F-hepta 1.02 0.000301 0.271 F-hepta 1.01 0.0002928 0.457 

F-nona 0.99 0.000264 0.526 F-nona 0.94 0.00024994 0.909 

M-penta 0.96 0.000345 0.781 M-penta 0.99 0.00035676 0.551 

M-hepta 1.07 0.000508 0.072 M-hepta 1.03 0.00048354 0.265 

M-nona 0.9 0.000325 0.576 M-nona 0.98 0.00032352 0.641 

T. chumash T. cristinae 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 0.89 0.00036706 0.983 F-penta 1.01 0.00041936 0.217 

F-hepta 0.94 0.00027501 0.898 F-hepta 1.01 0.00029503 0.266 

F-nona 0.98 0.00025862 0.674 F-nona 0.94 0.00024953 0.997 

M-penta 0.99 0.00035754 0.512 M-penta 0.99 0.0003586 0.509 

M-hepta 0.97 0.00045792 0.712 M-hepta 0.95 0.00044654 0.992 

M-nona 1.06 0.00034639 0.122 M-nona 0.97 0.00031857 0.942 

T. knulli T. poppensis 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 0.96 0.00039798 0.859 F-penta 0.98 0.00040417 0.689 

F-hepta 1.02 0.00029934 0.201 F-hepta 0.99 0.00029192 0.521 

F-nona 1.03 0.00027378 0.132 F-nona 0.96 0.00025463 0.856 

M-penta 1.02 0.00036701 0.232 M-penta 1 0.00036056 0.429 

M-hepta 0.99 0.00046794 0.554 M-hepta 1.03 0.00048384 0.208 

M-nona 1 0.00033049 0.465 M-nona 1.07 0.00035128 0.024 

T. landelsensis T. californicum 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 0.94 0.00039035 0.951 F-penta 0.97 0.00040217 0.753 

F-hepta 0.98 0.00028747 0.684 F-hepta 0.99 0.00028878 0.601 

F-nona 0.97 0.00025692 0.819 F-nona 0.98 0.00026206 0.625 

M-penta 0.98 0.00035169 0.726 M-penta 0.96 0.00034453 0.892 

M-hepta 1.03 0.00048427 0.201 M-hepta 1.05 0.00049524 0.071 

M-nona 1.02 0.00033471 0.304 M-nona 1.01 0.00033312 0.333 

 285 
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Supplementary Table 7: X-fold enrichments and associated P-values for number of overlapping SNP windows 286 
for PC2 for comparison with CHC experiment. Observed value gives the mean posterior inclusions probability 287 
(i.e., probability of a genotype-phenotype association) across all SNPs in 100 Kb windows for each of the six 288 
CHC traits. P-values ≤ .05 are highlighted in bold. Significant P-values denote whether the overlap is greater 289 
than expected by chance from a one-sided randomisation test. 290 

T. bartmani T. podura 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 0.97 0.000403 0.681 F-penta 0.99 0.00041351 0.486 

F-hepta 1.05 0.000306 0.143 F-hepta 0.92 0.00027053 0.978 

F-nona 1 0.000265 0.494 F-nona 1.06 0.00028006 0.089 

M-penta 0.96 0.000345 0.773 M-penta 0.97 0.00035019 0.709 

M-hepta 0.96 0.000455 0.734 M-hepta 1.05 0.00049492 0.113 

M-nona 0.99 0.000326 0.573 M-nona 0.89 0.0002953 0.994 

T. chumash T. cristinae 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.01 0.00041693 0.417 F-penta 1.05 0.0004352 0.009 

F-hepta 0.95 0.00027777 0.863 F-hepta 0.98 0.00028726 0.805 

F-nona 1.04 0.00027621 0.191 F-nona 1.01 0.00026784 0.286 

M-penta 1.05 0.00037559 0.172 M-penta 1.01 0.00036299 0.286 

M-hepta 0.98 0.00046092 0.628 M-hepta 0.96 0.00045164 0.976 

M-nona 0.92 0.00030343 0.955 M-nona 0.99 0.00032555 0.681 

T. knulli T. poppensis 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.02 0.00041785 0.295 F-penta 1.03 0.00042699 0.171 

F-hepta 1.02 0.00029805 0.221 F-hepta 1.04 0.0003051 0.087 

F-nona 0.98 0.00025978 0.738 F-nona 0.97 0.00025664 0.811 

M-penta 0.97 0.00034943 0.806 M-penta 1.06 0.0003824 0.042 

M-hepta 0.99 0.00046472 0.612 M-hepta 1.05 0.00049262 0.093 

M-nona 1 0.00032921 0.471 M-nona 0.97 0.00032084 0.772 

T. landelsensis T. californicum 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 0.92 0.00038096 0.987 F-penta 0.95 0.00039456 0.895 

F-hepta 0.97 0.0002817 0.864 F-hepta 0.93 0.00027181 0.99 

F-nona 1.01 0.00026628 0.43 F-nona 1.01 0.00026813 0.346 

M-penta 0.99 0.00035724 0.517 M-penta 1.05 0.00037699 0.062 

M-hepta 1.01 0.00047379 0.437 M-hepta 1.01 0.00047356 0.395 

M-nona 0.99 0.00032686 0.561 M-nona 0.96 0.00031934 0.831 
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Supplementary Table 8: X-fold enrichments and associated P-values for number of overlapping SNP windows 291 
for PC3 for comparison with CHC experiment. Observed value gives the mean posterior inclusions probability 292 
(i.e., probability of a genotype-phenotype association) across all SNPs in 100 Kb windows for each of the six 293 
CHC traits. P-values ≤ .05 are highlighted in bold. Significant P-values denote whether the overlap is greater 294 
than expected by chance from a one-sided randomisation test. 295 

T. bartmani T. podura 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.06 0.000439 0.128 F-penta 1.03 0.00042715 0.222 

F-hepta 1.02 0.000301 0.271 F-hepta 1.04 0.00030464 0.132 

F-nona 0.99 0.000264 0.526 F-nona 0.93 0.00024736 0.948 

M-penta 0.96 0.000345 0.781 M-penta 1.08 0.00038877 0.029 

M-hepta 1.07 0.000508 0.072 M-hepta 1.09 0.00051268 0.028 

M-nona 0.9 0.000325 0.576 M-nona 0.99 0.00032619 0.531 

T. Chumash T. cristinae 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.07 0.0004442 0.088 F-penta 1.05 0.00043482 0.012 

F-hepta 0.99 0.0002889 0.569 F-hepta 1.01 0.00029312 0.393 

F-nona 0.94 0.00024939 0.889 F-nona 1.03 0.00027351 0.051 

M-penta 1.03 0.00037132 0.216 M-penta 0.99 0.00035579 0.666 

M-hepta 1.03 0.00048255 0.281 M-hepta 0.98 0.00046005 0.832 

M-nona 1.05 0.00034602 0.164 M-nona 0.98 0.00032394 0.791 

T. knulli T. poppensis 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.05 0.00043564 0.054 F-penta 1.06 0.00043928 0.034 

F-hepta 0.99 0.0002911 0.547 F-hepta 0.97 0.00028301 0.832 

F-nona 0.97 0.00025644 0.842 F-nona 0.96 0.00025389 0.894 

M-penta 1.03 0.00036955 0.141 M-penta 0.93 0.00033533 0.981 

M-hepta 0.99 0.00046841 0.563 M-hepta 0.98 0.0004604 0.723 

M-nona 0.99 0.00032395 0.676 M-nona 0.96 0.00031526 0.903 

T. landelsensis T. californicum 

CHC X-fold Observed P-value CHC X-fold Observed P-value 

F-penta 1.03 0.0004247 0.236 F-penta 1.02 0.0004232 0.268 

F-hepta 1.03 0.00030062 0.175 F-hepta 0.95 0.00027931 0.913 

F-nona 0.99 0.00026403 0.532 F-nona 0.97 0.00026 0.732 

M-penta 0.97 0.00034978 0.769 M-penta 0.98 0.00035164 0.713 

M-hepta 0.95 0.00044452 0.939 M-hepta 1.05 0.00049509 0.068 

M-nona 1.05 0.00034642 0.056 M-nona 0.99 0.00032631 0.594 

 296 
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Supplementary Table 9: Proportion of variation explained by the TREEMIX [8] population graph with 297 
different numbers of migration edges. 298 
 299 

Number of 

migration edges 

Proportion of variation 

explained 

0 0.997 

1 0.998 

2 0.998 

3 0.998 

4 0.999 

5 0.999 

6 0.999 

7 0.999 

8 0.999 

9 0.999 

 300 
  301 
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SUPPLEMENTARY FIGURES 302 

SUPPLEMENTARY FIGURES  1, 2, 3: Plots shows parameter estimates with standardized coefficients for 303 
the full model for PC1, PC2, and PC3 for the permuted data sets compared to the original data set. The PC 304 
variables were randomized before running BayPass. This test was implemented for all eight species and 56 305 
species pairs. Here the gray points denote estimates for permuted data sets, and red points indicate estimates of 306 
original data. Gray lines indicate 95% equal-tail probability intervals (ETPIs). Estimates diverging from zero 307 
indicate a positive or negative effect of ecology or genetics on parallelism. 308 
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SUPPLEMENTARY FIGURE  4: Tests for parallel climate-associated SNP windows between species of 312 
Timema stick insects (all plots are for the top 10% empirical quantile) using randomized PC1 variables before 313 
running BayPass. Bars denote the x-fold enrichments for the number of overlapping climate-associated SNP 314 
windows for PC1 for multi-species comparisons between 2 or more, 3 or more, and 4 or more species 315 
generated in the randomisations. N values above each bar indicate the number of overlapping climate-316 
associated SNP windows for each comparison in the randomisations. Red dot above each bar indicates the x-317 
fold enrichment for each comparison determined for the original dataset. * Indicates x-fold enrichments of 318 
permuted data sets with P-value < 0.05. 319 
 320 

 321 
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SUPPLEMENTARY FIGURE  5: Tests for parallel climate-associated SNP windows between species of 323 
Timema stick insects (all plots are for the top 10% empirical quantile) using randomized PC2 variables before 324 
running BayPass. Bars denote the x-fold enrichments for the number of overlapping climate-associated SNP 325 
windows for PC2 for multi-species comparisons between 2 or more, 3 or more, and 4 or more species 326 
generated in the randomisations. N values above each bar indicate the number of overlapping climate-327 
associated SNP windows for each comparison in the randomisations. Red dot above each bar indicates the x-328 
fold enrichment for each comparison determined for the original dataset. * Indicates x-fold enrichments of 329 
permuted data sets with P- value ≤ 0.05. 330 

.  331 
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SUPPLEMENTARY FIGURE  6: Tests for parallel climate-associated SNP windows between species of 332 
Timema stick insects (all plots are for the top 10% empirical quantile) using randomized PC3 variables before 333 
running BayPass. Bars denote the x-fold enrichments for the number of overlapping climate-associated SNP 334 
windows for PC3 for multi-species comparisons between 2 or more, 3 or more, and 4 or more species 335 
generated in the randomisations. N values above each bar indicate the number of overlapping climate-336 
associated SNP windows for each comparison in the randomisations. Red dot above each bar indicates the x-337 
fold enrichment for each comparison determined for the original dataset. * Indicates x-fold enrichments of 338 
permuted data sets with P-value ≤ 0.05.  339 

 340 

 341 
 342 

  343 
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SUPPLEMENTARY FIGURES 7, 8, 9: Plots show summaries of population structure based on principal 344 
component analysis for eight species included in this study for PC1 vs. PC2 (Supplementary Figure 7), PC1 vs. 345 
PC3 (Supplementary Figure 8), and PC2 vs. PC3 (Supplementary Figure 9). Abbreviations indicate 346 
populations corresponding to SUPPLEMENTARY TABLE 1. 347 

 348 
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