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Notation Preface9

• Gamma function: �(‹) =
s Œ

0 exp≠t t‹≠1dt10

• Lower incomplete gamma function ratio: G(x, ‹) =
s

x

0 t‹≠1 exp(≠t)dt/�(‹)11

• Lower incomplete beta function ratio: B(x; a, b) =
s x

0
t

a≠1(1≠t)b≠1
dts 1

0
ta≠1(1≠t)b≠1dt

12

1. Functional forms of Lorenz curve models13

Properties. To ensure that the proposed functional form can serve as a Lorenz curve model, certain properties of Lorenz curves14

should be satisfied. As described in (1–3), general properties of the Lorenz curve L with respect to the cumulative percentages15

of the population p are the following:16

1. L(u) is monotone increasing17

2. L(u) Æ p18

3. L(u) is convex19

4. L(0) = 0 and L(1) = 120

More formally, the following theorem (cited by (4, 5) but attributed to Pakes 1981) determines what functions qualify as21

Lorenz curves:22

Theorem 1 (Lorenz curve)23

A function L(u), continuous on [0, 1] and with second derivative LÕÕ(u) is a Lorenz curve if and only if L(0) = 0, L(1) =24

1, LÕ(0+) Ø 0, LÕÕ(u) Ø 025

Supplementary Table 1. 1.-9. Lorenz curve models from distributional origin. 10.-17. Functional forms proposed to model Lorenz curves.
Model 14 is recognized as a family of Lorenz curves but not proposed as a Lorenz curve specifically. As this family is the most general
form of the specific Lorenz curve that Sarabia proposes, we use it as a four-parameter Lorenz curve (see (4, 6–9)). ÷ denotes the cumulative
percentage of income, u denotes the cumulative percentage of the population. �() is the cumulative distribution fucntion of the standard
normal distribution, G() is the incomplete gamma function ratio, B() is the lower incomplete beta function ratios as defined in SI Section 1.

# Parameter
Originates from Lorenz curve ÷(u) Par. restrictions
1. Pareto distribution 1 ≠ (1 ≠ u)1≠1/– 1 – > 1
2. Lognormal distribution �(�≠1(u) ≠ ‡) 1 ‡ > 0
3. Gamma distribution G(G≠1(u; ‡); ‡ + 1) 1 –, ‡ > 0
4. Weibull distribution G(≠ log(1 ≠ u); 1

–
+ 1) 1 – > 0

5. Gen. Gamma distr. G
!
G≠1(u; p); p + 1

a

"
2 a, p > 0

6. Dagum distribution B(u1/q; q + 1
a

, 1 ≠ 1
a

) 2 q > 0; a > 1
7. Singh-Maddala distr. B(1 ≠ (1 ≠ u)1/q; 1 + 1

a
, q ≠ 1

a
) 2 q, a > 0, q > 1

a

8. GB1 distribution B(B≠1(u; p, q); p + 1
a

, q) 3 p, q, a > 0
9. GB2 distribution B

!
B≠1(u; p, q); p + 1

a
, q ≠ 1

a

"
3 p, q, a > 0; q > 1

a

10. Kakwani/Podder [1973] (10) ue≠—(1≠u) 1 — > 0
11. Rasche et al. [1980] (11) (1 ≠ (1 ≠ u)–)1/— 2 0 < (–, —) Æ 1
12. Ortega et al. [1991] (12) u–(1 ≠ (1 ≠ u)—) 2 – Ø 0; 0 < — Æ 1
13. Chotikapanich [1993] (13) e

ku≠1
ek≠1 1 k > 0

14. Sarabia et al. [1999] (14)* u–+“ [1 ≠ a(1 ≠ u)— ]“ 4 0 Æ a Æ 1; 0 < — Æ 1;
0 Æ –; “ Ø 1

15. Abdalla/Hassan [2004] (15) u–(1 ≠ (1 ≠ u)”e—u) 3 – Ø 0; 0 Æ — Æ ” Æ 1
16. Rhode [2009] (16) u · —≠1

—≠u
1 — > 1

17. Wang et al. [2011] (17) ”u–[1 ≠ (1 ≠ u)— ] 5 – Ø 0; ‹ Ø 0; – + ‹ Ø 1;
+(1 ≠ ”)[1 ≠ (1 ≠ u)—1 ]‹ 0 < (”, —, —1) Æ 1
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2. Detailed Description of Data Cleaning26

General Procedure to Match the Datasets. Data from both sources (American Community Survey (ACS) 2011-2015 (18),27

Economic Policy Institute (EPI) (19)) were collected at the US county level, which allows us to calculate the Lorenz curve28

representation of the income distribution using the following procedure: recall that the Lorenz curve is depicted through the29

cumulative share of population on the x-axis and cumulative share of income on the y-axis. We therefore construct a dataset30

that contains the share of population (from low-income to high-income) who own a certain percentage of total income, such31

that we can draw a Lorenz curve using the cumulative sum of these data points.32

While the EPI report already presented the high-income earner data in such a way, further processing had to be undertaken33

for the ACS data: the data were given as headcounts per income bucket, which required transformation to income shares for34

the Lorenz curve representation. For this transformation, we assumed that people within income buckets were distributed35

symmetrically around the mean of the respective bucket. For example, a uniform distribution of people within an income36

bucket seems plausible in that people’s income is likely to be equidistantly spread between the narrow boundaries of 45 00037

USD and 49 999 USD per year. We could then calculate the volume of income held by the people belonging to that bucket by38

multiplying the number of people in the respective income bucket with the mean value of the bucket range, and then dividing39

this number by the aggregate income in that county, giving us the share of total income. Based on this transformation, a Lorenz40

curve could be constructed for each US county. To verify that our approximated Lorenz curve data are in line with the true41

income share percentiles of that ACS dataset (the 20th, 40th, 60th, 80th and 95th income share percentiles are provided), we42

evaluated deviations between our approximated Lorenz curve and true income share data from ACS. We found good agreement43

between the approximated Lorenz curves with the ACS income shares, which we detail in Section 3.44

Matching the ACS and EPI datasets revealed that, on average, the EPI data implied a higher level of inequality than the45

ACS data. This may arise in part because the EPI data are based on actual tax records at the taxpayer level, whereas the46

ACS data are from a self-reported survey at the household level, the latter of which is already an aggregate that typically47

underestimates the inequality suggested by the according Lorenz curve (20). For both ACS and EPI data, the exact 95th
48

percentile was available, which enabled us to perform an exact scaling, i.e., adjusting the ACS household-level data to the EPI49

taxpayer-level data, using this data point as a link between datasets, see section 3 detailing this procedure. We adjust to the50

taxpayer level because it reflects the true level of income inequality in that individuals earn income, not households as a unit51

itself. We further believe that the EPI data are closer to reality, as tax reports are more di�cult to manipulate and do not rely52

on self-reports that might be inaccurate, falsely remembered, or strategically misreported.53

Merging Source Tables. This subsection =describes the code data_cleaning_merge_b6_nhigs.R which was used to merge the54

raw data tables provided by ACS and EPI.55

We merge Tables B6 and B4� from https://www.epi.org/publication/income-inequality-in-the-us/#epi-toc-20 and Tables NHGIS56

A and NHGIS B from https://data2.nhgis.org/main that are from the American Community Survey 2011-2015. Source Table57

NHGIS A is taken from the dataset with NHGIS code 2011_2015_ACSa, and the source codes of the variables are B19001,58

B19013, B19025. Source Table NHGIS B is taken from the dataset with NHGIS code 2011_2015_ACSb, and the source codes59

of the variables are B19080, B19081, B19082, B19083. As additional information, a file with abbreviations and full names of60

US states (e.g. AK = Alaska) is taken from https://developers.google.com/public-data/docs/canonical/states_csv.61

The procedure to merge the source tables is as follows:62

• Load data and exclude Puerto Rico and the District of Columbia63

• Merge ACS data NHGIS A and NHGIS B by county name such that all data from the survey are in a single dataset64

• Adjust county names to prepare for the match: let the B6 county names (format: “San Francisco, CA”) look like NHGIS65

county names (format: “San Francisco County, California”). To do so, the B6 county data is split at “,” to separate the66

county name and state name. With the additional file on state abbreviations and names, the county state abbreviations67

are transformed into their actual name (e.g. from CA to California). Not only does the state name abbreviation di�er in68

the B6 from the NHGIS format; it also says “San Francisco County, California”. Therefore, to create a new B6 column69

that looks like the NHGIS county name, the county name (San Francisco), the word “County”, “,”, and the full state70

name “California” are pasted into a single column such that we end up with a column in B6 of the county name format71

“San Francisco County, California” to match with NHGIS72

- For the special cases Census Areas or Cities: don’t paste “County” after “Census Area” or “City”73

- For the special case Alaska: Alaska is not divided into counties but into cities, boroughs, or census areas. NHGIS74

names them as City/Borough/Census Areas, but B6 does not, so we omit everything after the first word (which is a75

unique determinant of the actual area) in both datasets to derive a matching name for the corresponding area in Alaska76

- For the special case Louisiana: Louisiana is not divided into counties but into Parishes, so we paste “Parish”77

instead of “County” after county names in Louisiana78

• Transform encoding of NHGIS data from ‘ISO-8859-1’ to = ‘UTF-8’79

�Note that B4 is relevant not for the present study but for other (future) studies that intend using this dataset.
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• Use a fuzzy string matching algorithm to merge B4/B6 and NHGIS data by county name: Fuzzy string matching has to80

be double checked by visual inspection of the county names to ensure that only correct merges have taken place. Iterative81

procedure to minimize the amount of counties that have to be inspected and matched by hand: From all the imperfect82

matches (distance > 0), which exhibit a very similar pattern, e.g. “St.” instead of “St”, transform “St.” to “St” such that83

all of these cases are now perfect matches (distance = 0). Fuzzy match again and repeat procedure. When most of the84

common structures like “St.” -> “St” are cured, we can inspect the resulting imperfect matches for counties that we need85

to match by hand. For some counties, di�erent names exist, e.g. Shannon County, South Dakota, is another name for86

Oglala Lakota County, South Dakota87

• Write a single .csv file for the merged tables88

3. Calculation of the Lorenz Curves89

This subsection describes the code create_lorenz_curves.R to calculate Lorenz curve values for each county. The goal is90

to calculate the share of income held by shares of the population (from low-income to high-income). A quick recap of the91

information that the ACS and EPI source tables give us:92

• Table B6: Income share held by 90th,95th and 99th percentile of the population æ no further transformation needed93

• NHGIS B: Income share held by 20th, 40th, 60th, 80th and 95th percentile of the population æ no further transformation94

needed95

• NHGIS A: Aggregated income per county, people per county, count of people that fall into a certain income bucket, e.g.,96

have an income between 45, 000 USD and 49, 999 USD a year (see codebook in zip file for details) æ need to transform97

this information, procedure:98

- Assume that people are symmetrically distributed around the mean value of the income bucket range within each99

closed income bucket, i.e., we do not use the top income bucket > 200, 000 USD.100

- Use mean value of the income bucket range multiplied by the number of people that fall into that bucket as101

estimate of the income held by people belonging to the corresponding income bucket.102

- Divide this number by the income aggregate for the respective county, such that we end up with the share of total103

income held by the income bucket104

- Divide the number of people belonging to that income bucket by the total number of people in that county to get105

the share of people belonging to that income bucket106

• Check for consistency in the ACS dataset: Inspect whether the estimated income shares per bucket are coherent with the107

information on the (true) income shares held by the 20th, 40th, 60th, 80th, and 95th percentile of the population æ found108

to be consistent; see related Supplementary Figure 1.109

• Merge Lorenz curve data from ACS and EPI: Table B6 systematically suggests a higher level of inequality than the ACS110

data. This is a well-known phenomenon (20), as the ACS is at the household level (already an aggregate, e.g., two income111

earners living together in a household) whereas the B6 data are at the taxpayer level). We favor B6 data to depict a112

more realistic picture of the true inequality and hence decided to scale the ACS data to match the B6 data at the 95th
113

percentile:114

- We have exact information on the 95th percentile, so we can use the 95th percentile as the anchor point for scaling115

to account for the di�erence in the data induced by the fact that B6 is at the taxpayer level and NHGIS at the household116

level. This means that we multiply the NHGIS percentile data by the 95th percentile of the B6 data and then divide it by117

the 95th percentile of the NHGIS data. To ensure convexity, we use solely ACS data below the 95th percentile and solely118

EPI data above the 95th percentile.119

- Check for data consistency prior and post scaling: Visually, most of the scaled data are close to the non-scaled120

data. However, as an example of an extreme case, which also illustrates that Table B6 delivers valuable information, we121

can look at Teton County, WY, further described in 3.122

Systematic Evaluation of Constructed Lorenz Curves. We have already performed a brief cross-check for data consistency of123

the ACS dataset; i.e., we checked whether our approximation of income shares using the income buckets is close to the few true124

income share percentiles provided by the ACS. Now, we check the consistency of the ACS data more systematically.125

We estimated the share of total income held by each income bucket (for all closed income buckets; i.e., we omit the top income126

bucket > 200, 000 USD) under the assumption of symmetrically distributed incomes around the mean income within each127

income bucket. As we have true income share percentiles for some percentiles of the population, namely, the 20th, 40th, 60th, 80th,128

and 95th population percentiles, we can evaluate our estimated income shares by adding the true percentiles to our estimated129

Lorenz curves and for their fit. Remember that empirical Lorenz curves are defined by data points that are then linearly130

interpolated. Hence, we also linearly interpolate between our estimated income percentiles and calculate the estimated income131

percentile at the 20th, 40th, 60th, and 80th population percentile for which the ACS provides exact data. This allows us to132
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calculate the residual sum of squares (RSS) between the estimated income percentile at the 20th, 40th, 60th and 80th population133

percentiles and the true 20th, 40th, 60th and 80th percentiles.†134

While Supplementary Figure 1 already suggested that the estimated income percentiles from the income buckets seem to fit135

very well to the true income percentiles, we aim to quantify the fit more formally and calculate the RSS as described above. In136

Supplementary Figure 2, we can see one clear outlier, and potentially three more. Hence, we take a closer look at the counties137

with the top four RSS scores, which turn out to be [1] Falls Church city, Virginia, [2] Monroe County, Alabama, [3] Allendale138

County, South Carolina, and [4] Holmes County, Mississippi.139

The Lorenz curve plots of these counties, depicted in Supplementary Figure 3, reveal the following: for the county with the140

highest RSS score, Falls Church, we can clearly see that this high RSS score results from the fact that a significant fraction of141

its population falls into the top income bucket, > 200 000 USD. This forces a linear interpolation straight from a 0.73 percentile142

to the boundary of (1,1). We know this interpolation is not trustworthy, which is why we enrich the data at the top percentiles143

with EPI data and hence a comparably large deviation from the true 80th percentile should not worry us too much. For the144

remaining counties, the percentiles still seem to fit the Lorenz curve reasonably well. Therefore, we can conclude that there is145

no need to exclude any outliers from further analyses.146

†We omit the 95th from the analyses here because we know that linear approximation is not a good approximation for top income shares, which is why we use EPI data from B6 for the 95th percentile
and above.
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Supplementary Figure 1. Estimated and true income percentiles for some exemplary counties
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Supplementary Figure 2. RSS for estimated percentiles of income shares. Here, we refer to residuals as the difference between the true income share and estimated income
share. Residuals are then squared and summed over all available data points. This was performed for each county out of all 3063 counties.
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Supplementary Figure 3. Interpolated Lorenz curves from estimated income shares for the four counties with highest RSS scores in Supplementary Figure 2.
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Scaling the Data in an Exemplary County: Teton, Wyoming. Teton, WY, is an example of a county that exhibits a special147

distribution of income that we could not have guessed with the ACS data alone. The data of the American Community Survey148

alone are fine-grained for low and medium income levels, yet the ACS data alone might lead to unrealistic approximations of149

the top populations’ income shares, as the top income bucket > 200 000 USD is an open interval that does not provide any150

information on how people are distributed within that interval. Table B6, however, gives us detailed information on the income151

shares of the top-income percentages of the population on the taxpayer level.152

Apparently, there are a few people living in Teton, WY, that have an income far above the threshold 200 000 USD. In153

Supplementary Figure 4 Panel A, we can clearly see that the income share of the top 5% and top 1% percent of income154

earners far exceeds what we would have expected from the American Community Survey data. Now looking at the scaled data155

presented in Panel B of Supplementary Figure 4, i.e., taking into consideration the information from the EPI dataset, we can156

clearly see the immense di�erence. This example highlights the importance of considering Table B6 as an additional data157

resource for the construction of close-to-reality Lorenz curves.158
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Supplementary Figure 4. Panel A provides raw Lorenz curve data from ACS and Table B6; Panel B depicts scaled data for Teton County, Wyoming.
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4. Maximum Likelihood Estimation (MLE) via Dirichlet Distribution159

An approach to estimate Lorenz curves based on maximum likelihood estimation (MLE) was proposed by Chotikapanich et160

al. (2002) (21). They assume the income shares from grouped data to follow a Dirichlet distribution. Chang et al. (2018)161

(22) agree with this perspective and argue that the Dirichlet distribution “naturally accommodates the proportional nature162

of income share data and the dependence structure between the shares” (22, p. 2), which is a major advantage compared163

with the NLS estimation procedure (15). Chotikapanich et al. (2002) (21) demonstrate analytically that it is possible to164

relate desired functional forms of the Lorenz curve to the Dirichlet parameters; i.e., parameters of the Dirichlet distribution165

are set so that they incorporate the proposed functional form of the Lorenz curve with its parameters. The density of the166

Dirichlet distribution (with newly defined parameters that consist of the Lorenz curve parameters) is then used to construct167

the likelihood that is maximized later on. In detail, the procedure to model the Lorenz curve models with maximum likelihood168

estimation using the Dirichlet distribution described in (21) is as follows:169

Let ÷i = L(ui; ◊) be the cumulative income share held by the cumulative share of the population ui. Then, q = (q1, . . . , qM )170

with qi = ÷i ≠ ÷i≠1 are assumed to be random variables that follow a Dirichlet distribution. The probability density function of171

the Dirichlet distribution is given by172

f(q|–) = �(–1 + –2 + · · · + –M )
�(–1)�(–2) . . . �(–M ) · q–1≠1

1 q–2≠1
2 . . . q–M ≠1

M
173

where the gamma function is defined as �(–) =
s Œ

0 x–≠1 exp≠x dx. The method is now to relate the parameters – of the174

Dirichlet distribution to the functional form of the Lorenz curve that we want to estimate. This can be conveniently be done175

by setting176

–i = ⁄[L(ui; ◊) ≠ L(ui≠1; ◊)]177

where ⁄ is an additional unknown parameter. Now we can write the probability density function as178

f(q|⁄, ◊) = �(⁄)
MŸ

i=1

q
⁄[L(ui;◊)≠L(ui≠1;◊)]≠1
i

�(⁄[L(ui; ◊) ≠ L(ui≠1; ◊)])179

To now estimate the parameters, we simply have to maximize the log-likelihood that takes the form180

log[f(q|⁄, ◊)] = log �(⁄) +
Mÿ

i=1

(⁄[L(ui; ◊) ≠ L(ui≠1; ◊)] ≠ 1) · qi ≠
Mÿ

i=1

log �(⁄[L(ui; ◊) ≠ L(ui≠1; ◊)])181

This maximum likelihood based estimation of Lorenz curve parameters is, however, not widely used. The original study of182

(21) was replicated and advanced by (22) and (15), finding mixed results. In detail, (22) find that the MLE estimation via183

the Dirichlet distribution provides a better fit to empirical data, and (15) find that NLS provides a “better and more reliable184

fit compared to the maximum likelihood estimation” (15, p. 117)). Moreover, (21) find that most Lorenz curve parameter185

estimates are not sensitive to the estimation method; i.e., they compared parameters estimated by NLS and MLE and found186

them yielding very similar point estimates for the parameters for most Lorenz curves proposed (but not all of them, which they187

attribute to estimation instability). (15) find similar point estimates of NLS and MLE as well, but report, as (21), much larger188

standard errors of the estimated parameters of the MLE method.189

5. Akaike Information Criterion (AIC) and AICc Simulation Study190

While the AIC measure of goodness-of-fit is well known as a tool for model selection in many fields of applied statistics, such as191

ecology (23) or astrophysics (24), it has not previously been used to systematically analyze the optimal number of parameters192

needed to adequately represent empirical Lorenz curves. One reason the AIC has not been used in prior literature may be193

the more common use of nonlinear least squares (NLS) approaches as an estimation procedure for Lorenz curves, which does194

not allow for the use of AIC. The NLS approach is widespread because it does not impose distributional assumptions on the195

data, which is a requirement for MLE. However, within the NLS framework, researchers typically rely on the residual sum of196

squares as a measure of goodness-of-fit. Residual sum of squares does not trade-o� fit for model complexity, which commonly197

results in the most complicated Lorenz model as the winner. For our research question—determining how many parameters are198

necessary to capture relevant information—we therefore focus on the MLE/AIC framework in order to balance complexity and199

model fit. As mentioned in the paper, we use the small-sample bias adjusted version of the criterion, namely AICc.200

Our key question we want to answer with our simulation study is: Will AICc suggest that we use the correct model? To201

answer this question, we will simulate Lorenz curve data points according to a certain model. Based on these data points,202

we will estimate the parameters of all 17 models we analyzed in the previous chapters and then let AICc choose the best203

model. If AICc actually picks the correct model that was used for data generation su�ciently often, the reliability of AICc as a204

criterion for model selection is supported for our setting. However, if AICc fails to pick the correct model, we have to question205

our previous results and take them with a (big) grain (rock) of salt. We will vary the sample size, i.e., the number of data206

points used for model estimation, to get a clearer picture of where our setting stands with respect to the extent to which we207

trust in AICc picking the correct model. Only then we can judge whether AICc can be used as an indicator of the number of208

parameters needed to describe income-inequality Lorenz curves.209
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Through an AICc-based ranking and Borda voting procedure, we found the Ortega Lorenz curve model (2 parameters),210

the GB2 Lorenz curve model (3 parameters), and the Wang Lorenz curve model (5 parameters) to be among the most211

suitable models. To verify that our judgment, especially between those three most promising models, is trustworthy, we will212

focus on those three models for income share generation. In detail, we will run three simulations, with the only di�erence213

being the model used to generate the income shares. One might wonder why we run the simulation not only with one214

exemplary income-generating model but with three models. The reason is that we then can cross-compare results between the215

income-generating routines. For example, we could detect whether a certain model is preferred by AICc regardless of the true216

data-generating process. In other words, AICc might always choose the same model.217

Simulation Setup. For ease of comprehensibility, we will describe the simulation procedure in a numbered list. The structure of218

the simulation study is as follows:219

1. Generate a vector that imitates population shares: fi = (0, fi1, . . . , fin, 1) with fii ≥ Unif(0,1).220

2. Generate a vector of cumulative income shares ÷ = L(fi, ◊), where L(◊) is a known Lorenz curve model of either type221

Ortega, GB2, or Wang with known parameters ◊‡ and population shares fi that were generated in the previous step. For222

each Lorenz curve model used for income-share generation, we run a separate simulation.223

3. Use MLE to fit all 17 Lorenz curve models§ to the data generated above and store the model name with minimum AICc224

value.225

4. Evaluate whether AICc has chosen the model that was used to generate the cumulative income shares or not.226

5. Repeat this procedure for sim = 1 000 population share vectors generated. Then vary the length of the population share227

vector and apply the same procedure.228

6. Evaluate the percentage of instances where AICc was able to detect the model that was used for income-share generation229

for each vector length and each of the the Lorenz curve models that are used to generate income.230

Simulation Results. Results show that we observed a high true-model detection rate even for small sample sizes, see Tables231

Supplementary Table 2, Supplementary Table 3, Supplementary Table 4, and Figures Supplementary Figure 5, Supplementary232

Figure 6, Supplementary Figure 7. For our sample size range of 19-23 data points—and assuming that the two-parameter233

Ortega truly was the Lorenz curve generating model—the true discovery rate would be Ø 0.97 (lower bound of 95% confidence234

interval), see Supplementary Table 4 and Supplementary Figure 7). This result provides additional confidence in the reliability235

of AICc given our specific setting.236

‡To find reasonable parameters, we used the mean value across the US county parameter estimates.
§See Table 1 in the paper
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Supplementary Table 2. Rate of bias corrected AIC picking the true data-generating model for varying sample sizes out of 1 000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: GB2

sample size rate lower bound upper bound
6 0.766 0.738 0.792
7 0.830 0.805 0.853
8 0.879 0.857 0.899
9 0.881 0.859 0.900
10 0.894 0.873 0.912
11 0.909 0.889 0.926
12 0.915 0.896 0.932
13 0.923 0.905 0.939
14 0.911 0.892 0.928
15 0.912 0.893 0.929
16 0.921 0.903 0.937
17 0.911 0.892 0.928
18 0.909 0.889 0.926
19 0.921 0.903 0.937
20 0.917 0.898 0.933
21 0.921 0.903 0.937
22 0.914 0.895 0.931
23 0.920 0.901 0.936
24 0.910 0.891 0.927
25 0.923 0.905 0.939
26 0.921 0.903 0.937
27 0.925 0.907 0.941
32 0.928 0.910 0.943
42 0.940 0.923 0.954
52 0.952 0.937 0.964
77 0.974 0.962 0.983

102 0.974 0.962 0.983
127 0.981 0.970 0.989
152 0.992 0.984 0.997
177 0.991 0.983 0.996
202 0.978 0.967 0.986
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Supplementary Table 3. Rate of bias corrected AIC picking the true data-generating model for varying sample sizes out of 1000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: Wang

sample size rate lower bound upper bound
6 0.000 0.000 0.004
7 0.000 0.000 0.004
8 0.169 0.146 0.194
9 0.408 0.377 0.439

10 0.558 0.527 0.589
11 0.648 0.617 0.678
12 0.683 0.653 0.712
13 0.709 0.680 0.737
14 0.727 0.698 0.754
15 0.739 0.711 0.766
16 0.728 0.699 0.755
17 0.755 0.727 0.781
18 0.768 0.741 0.794
19 0.739 0.711 0.766
20 0.765 0.737 0.791
21 0.780 0.753 0.805
22 0.775 0.748 0.801
23 0.774 0.747 0.800
24 0.781 0.754 0.806
25 0.802 0.776 0.826
26 0.765 0.737 0.791
27 0.776 0.749 0.801
32 0.787 0.760 0.812
42 0.825 0.800 0.848
52 0.842 0.818 0.864
77 0.878 0.856 0.898

102 0.923 0.905 0.939
127 0.933 0.916 0.948
152 0.959 0.945 0.970
177 0.969 0.956 0.979
202 0.983 0.973 0.990
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Supplementary Table 4. Rate of bias corrected AIC picking the true data generating model for varying sample sizes out of 1 000 simulation
runs. A sample size of 102 means we have 100 data points generated between 0 and 1, plus 0 and 1 as boundary values. Lower and upper
bounds correspond to the 95% confidence interval, based on a binomial test. True model: Ortega

sample size rate lower bound upper bound
6 0.986 0.977 0.992
7 0.991 0.983 0.996
8 0.995 0.988 0.998
9 0.992 0.984 0.997
10 0.984 0.974 0.991
11 0.984 0.974 0.991
12 0.984 0.974 0.991
13 0.980 0.969 0.988
14 0.978 0.967 0.986
15 0.986 0.977 0.992
16 0.983 0.973 0.990
17 0.983 0.973 0.990
18 0.985 0.975 0.992
19 0.985 0.975 0.992
20 0.989 0.980 0.994
21 0.981 0.970 0.989
22 0.985 0.975 0.992
23 0.986 0.977 0.992
24 0.987 0.978 0.993
25 0.981 0.970 0.989
26 0.972 0.960 0.981
27 0.969 0.956 0.979
32 0.965 0.952 0.976
42 0.972 0.960 0.981
52 0.980 0.969 0.988
77 0.986 0.977 0.992

102 0.984 0.974 0.991
127 0.981 0.970 0.989
152 0.994 0.987 0.998
177 0.991 0.983 0.996
202 0.997 0.991 0.999
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Supplementary Figure 5. Simulation results for GB2 being the true income share generating model out of a selection of 17 possible models. Point estimates of the percentage
of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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Supplementary Figure 6. Simulation results for Wang being the true income share generating model out of a selection of 17 possible models.Point estimates of the percentage
of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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Supplementary Figure 7. Simulation results for Ortega being the true income share generating model out of a selection of 17 possible models.Point estimates of the
percentage of correct model detection are reported together with confidence bounds of the 95% confidence interval.
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6. Voting237

For interested readers, we recommend the literature of the Handbook of Social Choice and Welfare (25), which describes the238

voting procedures in more depth. This section is based on this handbook as well and aims to present voting procedures relevant239

for our study in a comprehensive way.240

According to Arrow’s impossibility theorem, there exists no single best voting procedure across the board (26). As a result,241

researchers have to choose the voting procedure that best fits the problem at hand. We suggest that the Borda count is242

particularly well suited for our context as it provides insight into which fitted model has good performance across all counties243

instead of a great fit in some counties but an inferior fit in other counties. We note that others arrive at a di�erent conclusion244

and prefer a di�erent voting procedure; in that case, we encourage interested readers to use our comprehensive voting results245

given in the subsection below.246

Relying on the principle ‘the winner takes all,’ plurality voting is a simple and intuitive voting procedure. Each individual247

has one vote, and the candidate receiving the most votes wins. Of course, this reveals only a fraction of the voters’ preferences,248

namely their top choice, but it neglects any remaining preference ordering behind the top choice. In our case, plurality voting249

corresponds to evaluating which Lorenz curve model was ranked first the most.250

A procedure that does not only take the first choice into consideration but performs pairwise comparisons between options251

is the so-called Condorcet procedure. In detail, each option is compared with any other option, and a winner between those252

options is determined. A quick example illustrates the procedure: Imagine that there are three possible options, A, B, and C,253

to choose from. Individual 1 has the preference ordering A > B > C¶ while the preference of individual 2 is B > C > A. To254

aggregate the preferences of both individuals, we can now compare how often an option was ranked ahead of another option.255

In this case, option A was preferred over B once (by individual 1), B was preferred over C twice (by individual 1 and 2), and C256

was preferred over A once (by individual 2); so in this case, the winner of the Condorcet procedure is option B. As we have an257

AICc-based ranking between Lorenz curve models for each county, we can perform such pairwise comparisons across counties.258

Note that the dominance matrix introduced above depicts these pairwise comparisons, i.e., displays how often a certain model259

was preferred over the remaining Lorenz curve models.260

However, the Condorcet procedure can result in circular preferences and compares the options only in a pairwise fashion. A261

voting procedure that fully takes into account the ranking of the options is the so-called Borda count. This procedure scores the262

di�erent options according to their ranks. In detail, if there are n options to choose from, the option ranking first receives n263

points, the option ranking second n ≠ 1 points, . . . , the least favored option receives 0 points. The points received are summed264

for all individuals, and the option receiving the most points wins the Borda count. Thus, options with a consistently high265

ranking have a greater chance to win than options that are brilliant for some individuals but heavily undesirable for others.266

This is exactly the behavior we desire for our Lorenz curve model comparison: we want to detect the model that overall267

achieves good performance across counties. Therefore, the Borda count is the most relevant voting procedure for our purpose.268

Voting results. It is important to again emphasize that the Borda count winner is not the only choice one could make. Other269

Lorenz curve models winning other voting procedures might be legitimate models as well. The crucial point is that one270

has to decide which aspects to focus on. By design, di�erent voting mechanisms will lead to di�erent model winners, as271

they–purposely–emphasize di�erent aspects. Where researchers want to emphasize other aspects, another Lorenz curve model272

might be more useful. As Arrow’s impossibility theorem states, the aggregation of preferences cannot be performed using a273

single best selection procedure but with di�erent procedures for di�erent kinds of problems and suitable outcomes. For our274

setting, we find the Borda count procedure superior. However, we do not want to discourage researchers from concluding that275

other Lorenz curve models might be superior if faced with a di�erent scenario. We therefore provide various voting results276

below.277

In our application, the results are as follows: in plurality voting, the Wang Lorenz curve model wins; applying the Condorcet278

procedure, the winner is the GB2 Lorenz curve model; and the Borda count winner is the Ortega Lorenz curve model. As the279

Borda count voting procedure depends on the goodness-of-fit criterion used to judge the models, we cross-check whether those280

results are driven by AICc or whether they are robust to the use of another information criterion. Therefore, we rerun the281

Borda voting procedure using the Bayesian information criterion (BIC) as indicator to rank the models. The BIC is defined as282

BIC = ≠2 · ¸(◊̂) + 2p · ln(n)283

Voting results are similar to the AICc-based Borda count; see 6. This result shows that these three models (Wang, GB2,284

and Ortega) are the most promising.285

¶ In words: Individual 1 prefers option A over B over C, so individual 1 ranks A first, B second, and C third.
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Supplementary Figure 8. Condorcet matrix on a county level. Count of how often models in the rows achieve a higher AICc rank than models in the columns, out of all 3 056
counties.
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Supplementary Table 5. Plurality voting results. In each county, the Lorenz curve model with the lowest AICc value gets one vote.The model
with the highest number of total votes wins.

Num. of
Parameters Model Votes
5 Wang 998
2 Ortega 546
2 Dagum 399
3 GB2 364
3 GB1 355
4 Sarabia 153
2 Generalized Gamma 80
2 Rasche 70
2 Singh-Maddala 53
1 Lognormal 28
1 Gamma 6
1 Weibull 2
3 Abdalla-Hassan 1
1 Kakwani-Podder 1
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Supplementary Table 6. Borda count result using AICc as information criterion. In each county, the Lorenz curve models were scored using
the Borda count procedure. The model with the highest Borda score wins.

Num. of
Parameters Model Borda Score
2 Ortega 42597
3 GB2 41906
2 Dagum 38791
5 Wang 38187
2 Singh-Maddala 36274
3 Abdalla-Hassan 35354
4 Sarabia 32272
2 Rasche 32131
1 Lognormal 24749
2 Generalized Gamma 23178
3 GB1 22852
1 Gamma 13926
1 Weibull 11400
1 Pareto 9522
1 Rhode 7296
1 Chotikapanich 4071
1 Kakwani-Podder 1110
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Supplementary Table 7. Borda count result using BIC as information criterion. In each county, the Lorenz curve models were scored using
the Borda count procedure. The model with the highest Borda score wins.

Num. of
Parameters Model Borda Score
2 Ortega 42595
3 GB2 41760
5 Wang 38861
2 Dagum 38806
2 Singh-Maddala 36297
3 Abdalla-Hassan 35153
4 Sarabia 32208
2 Rasche 32109
1 Lognormal 24830
2 Generalized Gamma 23084
3 GB1 22779
1 Gamma 13931
1 Weibull 11420
1 Pareto 9594
1 Rhode 7310
1 Chotikapanich 3909
1 Kakwani-Podder 970

22 of 48 Kristin Blesch, Oliver P. Hauser, Jon M. Jachimowicz



7. Analysis of BIC differences286

In order to rule out that the choice of information criterion (AICc) influenced the results of our analysis, we reran the �
analysis while using the Bayesian information criterion (BIC). The di�erences in BIC are defined in analogy to the AICc

di�erences (�) as

BIC di�erence = BICi ≠ BICj [1]

For BIC, the analysis of di�erences is also applied in the literature, yet with a slightly di�ering usage of wording and287

boundaries. While the interpretation of the di�erences is the same for both di�erences in AICc and BIC (namely, the larger the288

di�erence between the values, the less support there is for the competing model’s ability to provide as good an approximation of289

the data as the other one), the boundaries are shifted. (27) sets the boundaries of BIC di�erences as described in 7. Respecting290

those boundaries, we arrive at similar histograms as with the analysis of AICc di�erences; see Figures Supplementary Figure 9,291

Supplementary Figure 10, and Supplementary Figure 11. Hence, we conclude that the superiority of Ortega compared with292

single-parameter models is irrespective of the chosen information criterion.

BIC difference Evidence
0-2 weak
2-6 positive
6-10 strong
>10 very strong

293
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Supplementary Figure 9. Histogram of BIC differences between the one-parameter lognormal model i and the two-parameter Ortega and j.
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Supplementary Figure 10. Histogram of BIC differences between the three-parameter GB2 model i and the two-parameter Ortega and j.
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Supplementary Figure 11. Histogram of BIC differences between the five-parameter Wang model i and the two-parameter Ortega and j.
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8. �-AIC analysis of Ortega vs. GB2 and Ortega vs. Wang model294

Using the Borda count voting procedure, we have determined the two-parameter Ortega Lorenz curve to be the winning model.295

However, the GB2 model using three parameters tightly comes second in the Borda count, and the Wang five-parameter model296

also performs well and wins the majority voting procedure. So do the three- and five-parameter models potentially provide297

substantially more information for some counties than a two-parameter model? To investigate this question, we calculated the298

AICc di�erences between Ortega and GB2 as well as Ortega and the Wang model.299

We draw on prior literature, namely the guidelines given by Burnham and Anderson (28), to set up an evaluation strategy300

tied to the specific problem at hand of investigating the extent to which a certain model fits the data better than other models.301

Burnham and Anderson (28) acknowledge that an interpretation of absolute AIC values, and hence a comparison between302

competing models, is hindered because of arbitrary constants. Instead, (28) propose using di�erences in AIC values, �i =303

AICi ≠ AICmin, that represent the information loss experienced when using model i rather than the best model which exhibits304

the minimum AIC value AICmin. The severity of information loss can be characterized by defining intervals for �i values, with305

larger values representing a higher amount of information loss. Burnham and Anderson (28) provide some rules of thumb:306

Models i with �i,j Æ 2 have substantial support; for 4 Æ �i,j Æ 7 considerably less support and for �i,j > 10 no support for307

being the best approximating model in the candidate set. In other words, the higher the �i value, the less support there is308

for the hypothesis that the two models of comparison provide an equally well characterization of the empirical data. This309

information can then be used to evaluate the strength-of-evidence in favor of the minimum AIC model (28), i.e., to get a sense310

of whether the minimum AIC model is substantially better.311

For the setting of a Lorenz curve comparison as outlined in this paper, we generalize the evaluation strategy of (28) and312

fine-tune the interpretation in order to provide a more intuitive understanding. First, let us note that we work with the313

small-sample bias corrected version of AIC values (AICc values), which does not a�ect the evaluation strategy, but changes the314

name of the strategy to evaluating AICc di�erences instead of AIC di�erences. Second, we do not necessarily compare the315

model of interest to the minimum AICc model in the respective US county, but fixed models, e.g., Ortega versus lognormal316

model. Hence, instead of �i = AICi ≠ AICmin, we introduce a more general version �i,j := AICi ≠ AICj . To enhance ease of317

interpretation, we do not take on the perspective of (28) that focus on characterising the support of various models in being the318

best approximation of the data, but propose a slightly di�erent perspective on the values: Starting o� with the interpretation319

of (28) that �i,j represents the information loss experienced when using model i rather than model j, we frame the �i,j values320

directly as strength-of-evidence in favor of model j. This means that higher values of �i,j provide evidence in favor of model321

j capturing the information given by the empirical data more aptly. With this general setup of �i,j values, we might now322

encounter the situation of negative values in AICc di�erences, which is not possible with the AIC di�erence values defined in323

(28) as they set model j to the model with minimum AIC value. However, negative values of AICc values simply correspond to324

the case where i and j are reversed, hence gathering evidence for model i or, in other words, evidence for counter model j.325

Finally, we are forced to redefine the value intervals: (28) leave out interpretation guidelines for �i in the intervals [2, 4] and326

[7, 10], and we therefore extend their intervals in a conservative manner.327

In summary, our strength-of-evidence classification in terms of AICc di�erences is as follows: We find inconclusive evidence328

on whether model j, e.g., the Ortega model, is superior in modeling relevant information compared to model i, e.g., the329

lognormal model, if the AICc di�erence �i,j is œ [-4,4], some evidence that model j is superior if �i,j œ [4,10] and decisive330

evidence that model j is superior to model i if �i,j > 10. If �i,j œ [≠4, ≠10], we find some evidence against model j’s331

superiority, and decisive evidence against model j’s superiority for �i,j < ≠10. With histograms of AICc di�erences (�i,j), we332

can see how often, i.e., in how many US counties, we find supporting evidence for whether one model indeed provides more333

substantial information about the data.334

As a recap, for the comparison between an Ortega two-parameter model and the single-parameter lognormal model, we find335

a clear picture in support of the two-parameter model; see Figure 2 in the main text.336

Now evaluating Ortega versus GB2, we see a much more inconclusive picture; see Supplementary Figure 12. For most of the337

counties, there is inconclusive evidence; i.e., there is substantial support that both models perform similarly well in modeling338

the information given in the empirical data. This indicates that the three- and two-parameter models are somewhat comparable.339

Given this information, it is debatable which model to prefer, but as Ortega is the simpler model, we clearly favor it over GB2.340

In comparing the Ortega model and the five-parameter Wang model, we get a more distinct histogram; see Supplementary341

Figure 13. On the one hand, we can clearly see that for many counties, we have evidence that the five-parameter model342

captures relevant information better than the two-parameter Ortega model. On the other hand, we find counter-evidence in343

many counties as well: i.e., that the two-parameter model performs that task better. This result is unsurprising given which344

aspects the various voting procedures emphasize: the Borda count values good performance across counties (Ortega won),345

whereas majority voting honors how often a model performs best in a county (Wang won). That is, the Wang five-parameter346

model is excellent many times but also inferior many times compared with the two-parameter Ortega model. As we seek a347

model that performs well across all US counties, we prefer Ortega for that purpose.348
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Supplementary Figure 12. Histogram of AICc differences (�i,j ) between the three-parameter GB2 model i and the two-parameter Ortega and j.
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Supplementary Figure 13. Histogram of AICc differences (�i,j ) between the five-parameter Wang model i and the two-parameter Ortega and j.
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9. Nonlinear Least Squares (NLS)349

In terms of Lorenz curves, we are dealing with functions that are nonlinear in their parameters, which is why we call the
framework in this case nonlinear least squares (NLS). The NLS approach is a widely used method for estimating the parameters
of functional forms of the Lorenz curve, e.g., in (8, 15, 29–32). The objective we are trying to minimize is the sum of squared
residuals. We recognize the estimation task as

min
◊

Kÿ

i=1

(L(ui, ◊) ≠ ÷i)2 [2]

where ◊ is the parameter vector of the Lorenz curve model and ÷i the cumulative empirical income share observed for the350

cumulative population share ui.351

Using the NLS procedure, we get consistent estimates. However, they are not e�cient, as least squares estimation in352

the Lorenz curve setting exhibits auto-correlated and heteroskedastic residuals (5, 8). Krause (2014) used the approach of353

minimizing the MSE in their recent study and mentions that other procedures to gain e�ciency, e.g., proposed by (10), hardly354

change results given their setting.355

A main disadvantage of NLS stems from ignoring the proportional nature of the data (33) and “overlook[ing] the fact that356

the sum of the income shares is, by definition, equal to one” (8, p. 11). Both features of the data are neglected by NLS and357

hence fruitful opportunities in using this special structure of the data are missed.358

Apart from that, the NLS estimation method is still widely used for estimating Lorenz curves and does not provide e�cient,359

but more importantly, consistent, estimates.360

NLS estimates for each county are provided for the present study and will be evaluated as a robustness check.361

10. Comparison of MLE and NLS Estimates362

We explore whether potential estimation method artifacts account for our results by comparing the estimated parameters363

for the 17 Lorenz curve models using both NLS and MLE. We find similar point estimates for most model parameters. The364

median relative di�erence between the MLE and NLS estimates across counties is depicted in Supplementary Table 8 below.365

An exception is the GB1 model, for which di�erences were large: for the generalized gamma and GB1 Lorenz curve model,366

the di�erences between NLS and MLE estimates were large, e.g., 84.1659 for the second GB1 parameter. This observation is367

not surprising, as those two Lorenz curve models exhibited severe estimation instabilities, which we take as indicating their368

unsuitability as a basis for deriving inequality measures. For this reason, we classify the GB1 model as unsuitable and exclude369

it from further analysis.370

The remaining models exhibit small relative di�erences between both estimation methods. For example, the median relative371

di�erence between MLE and NLS point estimates of the Ortega parameters was 0.0234 for Ortega parameter – and 0.0165 for372

Ortega parameter —. Hence, we have no reason to believe that the estimation technique has a systematic influence on the373

model parameters estimated.374

We refer to the relative di�erence as given by375

relative di�erence = |◊̂MLE ≠ ◊̂NLS |
|◊̂NLS |

376

The median of the relative di�erence of parameter estimates across all N = 3 056 US counties included in our study is given377

in Supplementary Table 8.378
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Supplementary Table 8. Median relative difference between MLE and NLS estimates across all counties.

Model Param. 1 Param. 2 Param. 3 Param. 4 Param. 5
Abdalla-Hassan 0.0315 0.9410 0.0168 - -
Chotikapanich 0.1498 - - - -
Dagum 0.0605 0.0186 - - -
Gamma 0.2135 - - - -
GB1 83.3003 84.1659 0.8906 - -
GB2 0.2329 0.1884 0.1548 - -
Generalized Gamma 80.8858 0.8900 - - -
Kakwani-Podder 0.2040 - - - -
Lognormal 0.0165 - - - -
Ortega 0.0234 0.0165 - - -
Pareto 0.0751 - - - -
Rasche 0.0218 0.0145 - - -
Rhode 0.0250 - - - -
Sarabia 0.3857 0.0292 0.0890 0.0680 -
Singh-Maddala 0.0718 0.0342 - - -
Wang 0.2122 0.1616 0.0894 0.4698 0.9285
Weibull 0.0810 - - - -
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11. Relationship between Ortega parameters and Pareto index379

Sarabia et al. (1999) (34) introduced a general method to build ordered families of Lorenz curves, noting that one of the Pareto380

Lorenz curve families coincides with the Ortega Lorenz curve. We draw on this work in advancing the correspondence between381

the Pareto distribution parameter and one of the Ortega parameters.382

To derive the relationship between Ortega parameter — and the Pareto index, let us first introduce some definitions. The383

Ortega Lorenz curve is given by (12):384

LOrtega(u) = u– · (1 ≠ (1 ≠ u)—) [3]385

where – Æ 0, 0 < — Æ 1.386

The cumulative distribution function of the classical Pareto distribution is given by387

F (x) = 1 ≠
1

‡
x

2a

[4]388

where ‡, a > 0. Following this notation, we can recognize ‡ as a scale parameter and a as a shape parameter. The Pareto index389

equals the shape parameter of the classical Pareto distribution (e.g., used in (35)). Being consistent with our notation, we can390

therefore define391

Pareto index := a [5]392

To show that there is a relationship between — and a, it is useful to calculate the Lorenz curve for the classical Pareto393

distribution first. The general definition of a Lorenz curve is given by (36):394

L(u) = µ≠1
⁄

u

0
F ≠1(t)dt [6]395

where µ is the finite mean and F ≠1(t) the inverse of the cumulative distribution function. For the classical Pareto case with
µ = a‡

a≠1 and F ≠1(t) = ‡(1 ≠ t)≠ 1
a , we get

LP areto(u) = a ≠ 1
a‡

⁄
u

0
‡(1 ≠ t)≠ 1

a dt [7]

= a ≠ 1
a‡

5
≠‡

1 ≠ 1
a

· (1 ≠ t)1≠ 1
a

6u

0
[8]

= a ≠ 1
a‡

53
≠‡

1 ≠ 1
a

· (1 ≠ u)1≠ 1
a

4
≠

3
≠‡

1 ≠ 1
a

46
[9]

=
1

1 ≠ 1
a

2
·
5

≠1
1 ≠ 1

a

(1 ≠ u)1≠ 1
a + 1

1 ≠ 1
a

6
[10]

= 1 ≠ (1 ≠ u)1≠ 1
a [11]

We can see that the Pareto Lorenz curve depends on the Pareto index a only. If we are able to relate the Pareto Lorenz curve396

to the Ortega Lorenz curve and demonstrate that the Pareto index is linked to one of the two Pareto parameters only, we know397

that we can transform that parameter into the Pareto index. (34) actually introduced a family of Lorenz curves that helps398

explain the relationship between the Pareto Lorenz curve and the Ortega Lorenz curve. In detail, their second theorem states:399

Theorem 2 ((34)) Let L(p) be a Lorenz curve and consider the transformation L–(p) = p– · L(p), where – Æ 0. Then, if400

– Ø 1, L–(p) is a Lorenz curve too. In addition, if 0 Æ – < 1 and LÕÕÕ(p) Ø 0, L–(p) is also a Lorenz curve.401

(34) further show that the condition LÕÕÕ(p) is satisfied for the Pareto Lorenz curve such that for – Ø 0, we can transform
the Pareto Lorenz curve using theorem 2, which yields

L–(u) = u– · LP areto(u) [12]

= u– ·
1

1 ≠ (1 ≠ u)1≠ 1
a

2
[13]

Now looking at the Ortega Lorenz curve as defined in 3, we can clearly see that the Ortega Lorenz curve is nothing other than402

the Pareto Lorenz curve, extended by a newly introduced parameter – through the use of theorem 2 and a redefined parameter403

— := 1 ≠ 1
a

[14]404

In other words, we can see the Ortega Lorenz curve as an extension to the Pareto Lorenz curve. Having established this close405

link between the two Lorenz curves, we can think of Ortega parameter — as being in close relation to the Pareto index a, using406

the relationship defined in 14. If the true income distribution were to follow a Pareto distribution, Ortega parameter – would407

be zero and the Ortega parameter — would be an exact monotonic transformation of the Pareto index. However, in cases408

where the true income distribution was not generated by a Pareto distribution, of course, the additional estimation of Ortega409

parameter – might capture aspects that are also correlated to —, such that the exact monotonic transformation given in 14410
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is rather an approximate relationship, depending on the data. Although this is a weaker statement, it is still useful for our411

purpose: we want to know which aspects of the income distribution the Ortega parameters capture. We know that the lower412

the Pareto index, the larger the proportion of very-high-income people. And we derived above that the higher the Pareto413

index associated with the income distribution, the higher the Ortega parameter —. Having demonstrated the close relationship414

between — and the Pareto index a in the above section, we see this as evidence of a capturing the occurrence of very top415

incomes. We therefore conclude that Ortega — has the following interpretation: the lower the Pareto index, the larger the416

proportion of very-high-income people. We therefore propose it as a measure of top-concentrated income inequality.417

12. Interpreting the Ortega Lorenz curve418

Visual inspection of Ortega parameters. To visually inspect how a change in parameters a�ects the Ortega Lorenz curve,419

we simulate Ortega Lorenz curves while varying – and “. The R code simulation_ortega_lorenz_curves.R replicates this420

simulation and is available in the GitHub repository we provide for this paper (see www.measuringinequality.com). In detail,421

first we plot the Ortega Lorenz curves varying – between 0.01 and 1.5 while keeping “ fixed at 0.5 (for –, the side constraint is422

Ø 0; the upper limit 1.5 is chosen as an extension to the empirical values that valued 1.23 at max). In our empirical estimation423

of US county-level Ortega Lorenz curves, for – a typical value was 0.5 and for “ 0.5, which is why we fix the respective values424

at that level. Then, we plot Ortega Lorenz curves with – = 0.5 and vary “ between 0.01 and 0.99 (side constraint 0 Æ “ < 1).425

Our simulation results are generally in line with prior theory, i.e., that Ortega parameter “ is associated with top-concentrated426

inequality. The asymmetry line in Figure 3 in the main text of the paper, Panel B, facilitates comprehension whereby we427

observe a disproportionate change in the Lorenz curve on the right side (i.e., at higher incomes). Note that we observe428

top-concentrated inequality arising when there is a step increase in the Lorenz curve shortly ahead of the cumulative share of429

population reaching 100%. Further, our observations are in accordance with the direction of change we expected through the430

relationship between “ and the Pareto index, i.e., a higher value of “ indicating a higher level of top-concentrated inequality.431

In sum, our simulation study suggests that – is a reflection of bottom0concentrated inequality whereas “ is a reflection of432

top-concentrated inequality.433

When varying – while keeping “ a fixed constant, we can see that an increase in – stretches the left side of the Lorenz curve434

toward the x-axis (i.e., at lower incomes). The higher –, the more this is the case, as seen in Figure 3A in the main text. This435

e�ect can again be acknowledged when adding the asymmetry line to the plot, which helps in identifying the disproportionate436

change in the curves. With a more intense change on the left side, one can conclude that – captures specificities on the left tail437

of the income distribution.� Therefore, we conclude that – is a measure of bottom-concentrated inequality.438

Determining the relationship between Ortega parameters and other measures of inequality. To further investigate the interpre-439

tation of the Ortega parameters, we relate them to income ratios, as they are more intuitive and used in some prior research to440

measure inequality. First, we explore the dependency between Ortega parameters and common percentile measures (95/50 and441

50/10 ratios). Then, we move on to evaluate which percentile ratios might reflect the information captured by the Ortega442

parameters more precisely.443

A common measure of top-concentrated income inequality is the fraction of income held by the 95th percentile divided by444

the median income share (also known as a 95/50 ratio), whereas bottom-concentrated income is often measured using a 50/10445

ratio; see (37–39). We have argued that Ortega parameter “ is related to top-concentrated inequality and should increase with446

higher levels of inequality. The 95/50 ratio also aims at capturing the phenomenon of top-concentrated income inequality, which447

is why we suspect the quantities to be highly positively correlated. We also hypothesized that Ortega parameter – is related to448

bottom-concentrated income inequality and should increase with higher levels of inequality. Another measure that aims at449

capturing bottom inequality is the 50/10 ratio, i.e., the income share held by the lower 50% of the population divided by the450

income share held by the lower 10% of the population. We suspect that both quantities, i.e., – and the 50/10 ratio, should be451

highly positively correlated because they should measure the same underlying phenomenon (bottom-concentrated inequality).452

To test whether our suggested correlational dependencies hold true, we first simulate Ortega Lorenz curves with varying453

parameters – and “, then calculate the income percentile ratios 95/50 and 50/10 for those Lorenz curves, and consequently454

analyze the correlation between Ortega and percentile ratio quantities. In detail, we simulate a total of 10 000 Ortega Lorenz455

curves with varying parameter values. We vary – from 0.01 to 1 with a step size of 0.01 and “ from 0 to 0.99 with the same456

step size of 0.01. Subsequently, we calculate partial correlations between the quantities. Doing so, we control for all other457

variables included in this analysis; i.e., we correlate – with the 50/10 ratio controlling for “ and the 95/50 ratio.458

Our results, depicted in Supplementary Table 9, show that – indeed highly correlates with the bottom-concentration ratio459

50/10 while “ highly correlates with the top-concentration ratio 95/50. However, it is worth pointing out that this correlational460

dependency only becomes apparent when focusing on the full parameter space of “ (0 Æ “ < 1) while limiting the parameter461

space of – for the same range as “. For the empirical US county-level Lorenz curves, we encountered a parameter range of 0.12462

to 1.23 for – and 0.3 to 0.93 for beta. In this range of parameters, the correlation between – and the 50/10 ratio, and “ and463

the 95/50 ratio, gets distorted, which indicates high sensitivity of the correlational structure regarding the parameter range.464

This gives us reason to believe that those ratios might not reflect the type of top- and bottom-concentrated inequality that465

is measured by the Ortega parameters. Revising Figure 3 in the main text, we can see “ a�ecting rather the very top of the466

distribution. Exploring the dependency structure percentile ratios and the Ortega parameters, it indeed becomes clear that467

�A high level of bottom-concentrated inequality can be recognized from the Lorenz curve if the curve is rather flat near the bottom percentiles but exhibits a sharp increase before reaching the median
population.
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Ortega “ is instead measuring inequality in the very top percentiles and that – captures a broader range of the distribution. We468

find the correlational dependency between the 99/90 ratio with “ and 90/10 ratio with – very robust to the parameter range.469

Also, the strength of correlational dependency is more distinct; see Supplementary Table 10, which depicts the correlations470

within the same parameter range used for Lorenz curve generation as in Supplementary Table 9.471

We therefore conclude that our suggested interpretation of the Ortega parameters should not directly be linked to current472

measures of top- and bottom-concentrated inequality, i.e., the 95/50 and 50/10 ratios, but to measures of inequality at the very473

top (99/90 ratio) and most of the remainder of the distribution (90/10 ratio).474

Supplementary Table 9. Partial correlations between Ortega parameters and percentile ratios, controlling for all other quantities; e.g., the
partial correlation between “ and the 95/50 ratio is 0.940 after controlling for – and the 50/10 ratio.

50/10 ratio 95/50 ratio

Ortega – 0.786 0.137
Ortega “ -0.259 0.940

Supplementary Table 10. Partial correlations between Ortega parameters and percentile ratios, controlling for all other quantities; e.g., the
partial correlation between “ and the 99/90 ratio is 0.9088 after controlling for – and the 90/10 ratio.

90/10 ratio 99/90 ratio

Ortega – 0.9081 -0.0408
Ortega “ -0.0620 0.9088

Supplementary Figure 14. Panel A illustrates two very different Lorenz curves exhibiting the same 90/50 percentile ratio. In Panel B we can notice that when fixing both the
90/50 and the 50/10 percentile ratios into a similar range, the resulting Lorenz curves must have a similar shape. This indicates that (at least) two parameters should be
provided to limit the potential volatility of the resulting Lorenz curves.

Analytical investigation of the Ortega Lorenz curve: Derivatives. A natural way to investigate how a function is a�ected by its475

parameters is to inspect the (partial) derivatives. For the Ortega Lorenz curve, the partial derivatives with respect to – and “476

are477

”
”–

!
u–(1 ≠ (1 ≠ u)1≠“)

"
= (u–(1 ≠ (1 ≠ u)1≠“) log(u) [15]

”
”“

!
u–(1 ≠ (1 ≠ u)1≠“)

"
= (u–(1 ≠ u)1≠“ log(1 ≠ u) [16]

From this it is not immediately obvious how the Ortega Lorenz curve is a�ected by the parameters. However, we can478

note that both derivatives are Æ 0 within the allowed parameter space. What we are especially interested in is whether479

the interpretation of the parameters suggested by the simulation study (– more intensely emphasizing bottom-concentrated480
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inequality and “ highlighting top-concentrated inequality) can be seen analytically as well. To test this, we take a closer look481

at the rate of change, i.e., the partial derivatives, at certain regions along the x-axis. In other words, if the Lorenz curve482

function is more intensely a�ected by a parameter in a certain region of the population, we could conclude that this parameter483

is more sensitive to this area of the population: e.g., the top or bottom. Supplementary Figure 15 visualizes the derivatives of484

the Ortega Lorenz curve with respect to – and “ along the x-axis (i.e., cumulative share of population) while keeping the485

parameters themselves fixed at – = 0.5, “ = 0.5, just as when simulating Ortega Lorenz curves in the above section. Note that486

we need to evaluate the absolute values of rate of change for the respective parameters, i.e., the absolute values of the partial487

derivatives. From Supplementary Figure 15, we can clearly see that a variation in – most intensely a�ects the Lorenz curve488

around the middle of the population (the absolute value of the derivative with respect to – is largest around the percentiles ≥489

0.45-0.65). In contrast, a variation in “ has the highest rate of change within the top percentile of the population (the absolute490

value of the derivative with respect to “ is largest around the top percentiles ≥ 0.80-0.95.491

Supplementary Figure 15. Value of the derivatives of the Ortega Lorenz curve function L(u) = u0.5 (̇1 ≠ (1 ≠ u)0.5 across the cumulative share of population.
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13. Approximating the empirical Gini coefficient492

To assess how well the di�erent models approximate the main distributional statistics related to inequality, we compare the493

Gini coe�cients implied by the model parameters with those Gini coe�cients calculated nonparametrically on the US county494

data. The nonparametric Gini coe�cients are calculated using the given data points of the empirical income distribution with495

linear interpolation, whereas the Gini coe�cients implied by the models utilize integral calculus�� for determining the area496

between the Lorenz curve and the line of perfect inequality.497

These analyses, visualized in Supplementary Figure 16, reveal that when taking into account the number of parameters498

included in the model—ideally as few as possible—we can see that the Ortega model provides a reasonable trade-o� between499

deviation from the nonparametric Gini and the number of parameters needed. Most notably, one-parameter models (red500

distributions in the figure) substantially deviate from the ideal average deviation of zero, while two-parameter models (brown)501

are a major improvement. Across the two-parameter models, the Ortega model is the one closest to the deviation of zero502

(dotted line) with a substantial number of data points (see boxplot touching the dotted line). While with more parameters503

(green, blue, and purple boxplots), precision further increases, the improvements are much smaller than those between one-504

and two-parameter models. This analysis demonstrates that using more than one parameter improves the approximation of505

empirical distributional statistics such as the Gini coe�cient, and that further improvement in precision with more parameters506

is possible but is much smaller.507

Number of model parameters

Supplementary Figure 16. Comparison across various parametric Lorenz curve models in approximating the empirical (nonparametric) Gini coefficient. Note that in order to
prevent a masking effect of severe outliers, we omitted them in the plot. The boxes depict the 25th, 50th and 75th percentiles of the deviations from the empirical Gini.
The whiskers extend from the hinge to the smallest value at most (or largest value and no further, respectively) 1.5 times the inter-quartile range of the hinge. Minimum and
maximum values as well as the center of the distributions are visualized by plotting the actual distribution of deviations above the boxes.

��For the Lorenz curve models based on the generalized beta distribution (GB1, GB2), we faced difficulties in calculating the integrals necessary for parametric Lorenz curve derivation, which is why these
models are missing in our analysis.
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14. Exploratory correlational study508

In our exploratory correlational study, for which we provide results below, we correlate 100 variables from policy-relevant fields509

to inequality measures. Our source of data is the ACS Survey 2011-2015, from which we pulled relevant source tables directly510

from https://data2.nhgis.org/main, and the data from (40) and (41) are publicly available at https://opportunityinsights.org. Code to511

replicate the study, as well as detailed information on the data used—i.e., a codebook—is available at www.measuringinequality.512

com.513

We propose the use of both the Ortega parameters simultaneously (i.e., in a regression setting, researchers should include514

both Ortega parameters as independent variables within the regression model equation), which is why we calculate partial515

Pearson correlations between covariates and Ortega parameters. For the Gini coe�cient, simple Pearson correlations are516

su�cient, as this is a single-parameter inequality measurement approach. We use the Gini coe�cient provided by the ACS517

dataset. One might argue that we should have used the Gini index implied by the empirical Lorenz curves we used in the Ortega518

parameter estimation. However, the US Census Bureau, which conducts the ACS, has more fine-grained data (inaccessible to519

the public) available to calculate the Gini index for each county highly accurately, which makes their Gini indices more reliable.520

In Supplementary Table 11, we provide an overview of potential outcomes and the frequency of their occurrence across our521

analysis. Case ID 1 can be interpreted as Ortega’s ability to disentangle (probably counteracting) e�ects related to inequality522

present in di�erent parts of the income distribution, and case ID 2 might also shed light on a specific region of the income523

distribution being correlated to policy outcomes. For case ID 3, i.e., that neither Gini nor Ortega parameters show significant524

correlations, we have a coherent suggestion from both inequality measures that there is no association between inequality and525

the correlated variable. We also find coherent guidance on whether inequality is associated with a variable for case IDs 4 and 5.526

However, these cases show that use of the Ortega parameter might refine the insights we can obtain: while the Gini only reveals527

that there is an association between overall inequality and the variable, using the Ortega parameters, we can di�erentiate which528

part of the income distribution drives the significant correlation, including the magnitude. For case ID 6, i.e., that Gini is529

significant but none of the Ortega parameters are, the interpretation of such cases is rather puzzling. A potential interpretation530

is that in such cases, the association between inequality and the variable is driven by a feature of inequality that is captured531

through the Gini coe�cient measuring overall inequality but is not explained by the concentration of income in di�erent parts532

of the income distribution.533

Supplementary Table 11. Cases occurring in our exploratory study correlating 100 covariates with the Gini index and calculating partial
correlations between covariates and Ortega parameters.

Case ID Correlation with Gini coe�-
cient ”= 0

Correlation with . . . Ortega
parameters ”= 0

Number of occurrences

1 no 2 12
2 no 1 21
3 no 0 8
4 yes 1 25
5 yes 2 34
6 yes 0 0

100 = total number of covari-
ates
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Supplementary Figure 17. Pearson correlations between inequality measures and county-level covariates. The plot shows Pearson correlations with the Gini index and
partial Pearson correlations with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter
across N = 3 049 US counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 18. The plot shows Pearson correlations for instances of case ID 1 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 19. The plot shows Pearson correlations for instances of case ID 2 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 20. The plot shows Pearson correlations for instances of case ID 3 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 21. The plot shows Pearson correlations for instances of case ID 4 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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Supplementary Figure 22. The plot shows Pearson correlations for instances of case ID 5 (see Supplementary Table 11) with the Gini index and partial Pearson correlations
with the Ortega parameters, i.e., the correlation between one Ortega parameter and the covariate while controlling for the other Ortega parameter across N = 3 049 US
counties. Pearson correlation point estimates are visualized within confidence bounds of the Bonferroni corrected confidence interval.
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15. Simulation Study: Minimum Dataset Requirements534

We introduce and evaluate three key criteria that datasets for inequality estimation need to possess in order for us to include535

them in this systematic “tournament-style” comparison to identify the best-fitting inequality measure given empirical income536

distributions. We find that such datasets need to contain (1) at least 15 or more data points per Lorenz curve; (2) at least two537

data points on top income shares above the 90th percentile of the income distribution; and (3) at least 60 Lorenz curves—and538

ideally, many more. We conducted numerous simulation studies, outlined in this section, to estimate these requirements.539

In the simulation study on data granularity in the SI, Section 10, we found that for a su�cient granularity (15+ data540

points), and in the absence of noise, the MLE procedure will detect the correct model in almost every case if it was generated541

by an Ortega model (>98% of cases; see Supplementary Table 4). However, empirical observations contain observational noise.542

Is the AICc procedure for a given granularity of, say, 20 data points—in the presence of observational noise—still able to detect543

Ortega? In this case, the number of Lorenz curves available becomes crucial; i.e., if the number of Lorenz curves is too small,544

the reduced certainty in detecting Ortega via AICc for each Lorenz curve could lead to a false overall conclusion. But how545

many Lorenz curves are necessary to reduce uncertainty to reasonable amounts?546

We quantify uncertainty in deciding the correct model for a given number of Lorenz curves (N) by considering each of the N547

Lorenz curves as independent draws from some Ortega Lorenz curve. Mathematically speaking, we can see AICc’s chance of548

success for detecting Ortega in each of the N Lorenz curves in terms of a Bernoulli distributed variable, i.e., AICc either detects549

Ortega (success = 1) or not (no success = 0). From this perspective, we can interpret the Bernoulli parameter p (probability of550

success) as the expected percentage of Ortega detections. For N Lorenz curves, we would expect to detect p · N Lorenz curves551

as Ortega. Note that for simplicity, we assume the researcher decides for Ortega if it is detected in the majority of cases; hence552

we require p>0.5.553

The crucial point of N is that the percentage of Ortega detections, which corresponds to the maximum likelihood estimate
of Bernoulli parameter p, will approximate the true value of p more accurately with increasing N: variation in estimated p
across sample sizes N is the actual quantity we are interested in when quantifying the uncertainty of determining the correct
model overall. We can derive the variance of this estimator analytically; i.e.,

Var(p̂) = p(1 ≠ p)
N

[17]

For the simulation, we vary the number of N Lorenz curves to be generated from some underlying Ortega Lorenz curve model,554

allowing for each of the N samples to exhibit di�erent Ortega parameters, and a small normally distributed random noise555

term (mean = 0, sd = 0.002) to reflect observational noise. We then use our MLE procedure to fit various Lorenz curve556

models, let AICc determine the optimum model, and divide the number of detected Ortega models by N to get an estimate for557

p. Repeating this procedure 10 000 times gives us an estimate for the empirical standard deviation of estimated p, i.e., the558

standard deviation in the percentage of correctly classified Lorenz curves.559

Our results show that with increased sample size N, the standard deviation of the percentage of correct model detections560

decreases; critically, we show that at least 60 Lorenz curves are necessary to ensure that the share of correctly classified Lorenz561

curves is above 50%; see Supplementary Figure 23. When fewer than 60 Lorenz curves are available, the identification of the562

correct model is below 50%, reflecting the challenges of using datasets that contain fewer Lorenz curves, in line with criterion563

#3.564

In this simulation setup, we can further analyze the e�ects of sparse top-income data. In the base setting, we use equidistant565

population data shares with fixed granularity level (20 data points including population levels 0 and 1), i.e., a case where we566

have as much information on top-income shares as on any other parts of the income distribution. We compare this with a567

case where we have sparser information on top-income shares: we use the same granularity of 20 data points, but now these568

data points are shifted on the x-axis of the Lorenz curve toward the bottom of the income distribution, resulting in a lack of569

information on the top income percentiles. For example, if 1 out of the 20 data points is above the 90th percentile, this means570

that we have information on the bottom 90% of income earners and the 95th percentile, whereas in the case of 3 out of 20 data571

points being above the 90th percentile, we would have information on the bottom 90% of income earners and the 92.5th, 95th,572

and 97.5th percentiles. We see a considerable increase in the average percentage of true model detection as more information573

on top income earners is available; see Supplementary Figure 24. When fewer than two data points on top-income earners574

above the 90th percentile are available, the share of correctly identified models again drops below 50%, in line with criterion575

#2. Note that the number of Lorenz curves becomes irrelevant in this case: a higher number of Lorenz curves that do not576

contain top-income information do not improve our selection of the overall best-fitting model, given that p = 0.4 < 0.5 even577

when the estimated p converges with a large N. This analysis additionally reveals that our three criteria can not be treated578

separately but must be considered jointly.579
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Supplementary Figure 23. Uncertainty in true model detection: Variation in sample size
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Supplementary Figure 24. Uncertainty in true model detection: Variation in information density within top incomes
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