Supplemental Tables

Supplemental Table 1: Methods for the identification of RNA binding sites of RBPs

CLIP methods are listed detailing how the reads are used to identify binding sites.

Supplemental Table 2: Peak calling tools

Peak calling tools are ordered by date of publication to reflect development in methodologies and technologies. A brief description and web link is given.

Supplemental Table 3: Tools for the analysis and visualisation of CLIP derived binding sites

Other tools relevant for CLIP data analysis are categorised into: i) motif finding, ii) binding site modelling, iii) databases, iv) visualisation and v) miscellaneous with a brief description and web link.

Supplemental Table 1: Methods for the identification of RNA binding sites of RBPs

Acronym	Full Name	Citation	Analysis based on
BrdU CLIP	Bromodeoxyuridine UV CLIP	(1)	read start
CIMS	Crosslink-induced mutation site analysis	(2)	deletions in read
CLIP	(UV) Crosslinking and immunoprecipitation	(3)	full read
CLIP-seq	Crosslinking immunoprecipitation coupled with high-throughput sequencing	(4)	full read
CRAC	UV cross-linking and analysis of cDNAs	(5)	full read
eCLIP	Enhanced CLIP	(6)	read start
FAST-iCLIP	Fully automated and standardized iCLIP	(7)	read start
FLASH	Fast ligation of RNA after some sort of affinity purification for high-throughput sequencing	(8)	read start
Fr-iCLIP	Fractionation iCLIP	(9)	read start
HITS-CLIP	High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation	(10)	full read

iCLIP	Individual-nucleotide resolution CLIP	(11)	read start
iCLAP	Individual-nucleotide resolution crosslinking and affinity purification	(12)	read start
irCLIP	Infrared-CLIP	(13)	read start
PAR-CLIP	Photoactivatable ribonucleoside-enhanced CLIP	(14)	transitions in read
4SU-iCLIP	4SU-enhanced iCLIP	(15)	read start
RIP-seq	RNP (or RNA) immunoprecipitation followed by sequencing	(16)	full read
RIP-iT-seq	RNA:protein immunoprecipitation in tandem coupled to high-throughput sequencing	(17)	full read
DO-RIP-seq	Digestion optimised RNA immunoprecipitation with deep sequencing	(18)	full read
sCLIP	Simplified CLIP	(19)	read start
uvCLAP	UV crosslinking and affinity purification	(8)	read start

Name	Description	Link
iCount	iCount package includes a peak caller for nucleotide-resolution methods	https://github.com/tomazc/iCount
(11, 20)	using false discovery rate with local randomisation. It allows adjustments of	http://icount.biolab.si
	three variables: 1. Randomisation within local regions (intergenic, UTR3,	https://imaps.genialis.com (under
	UTR5, ncRNA, intron, CDS) or within whole genes, 2. The length of the	development)
	flanking region around each position to define cluster of significantly	
	crosslinked sites. 3. The length of window used to combine proximal crosslink	
	clusters.	
	Pros: The method exploits the nucleotide resolution of truncated cDNAs, and	
	its enables to search for cluster of a broad size range (variable flank and	
	window regions, as explained in the text).	
	Cons: Normalisation by RNA-seq or other control data is not yet implemented.	
	It can be slow because of the randomisation step.	

PARalyzer	For PAR-CLIP only. Uses a kernel density estimator to profile mutations and	http://www.genome.duke.edu/labs/ohler/rese
(21)	background. Compares the difference to call binding sites.	arch/PARalyzer/.
	Pros: Widely used tool for PAR-CLIP analysis	
	Cons: Valid mutations selected by a threshold rather than modelling	
wavClusteR	Uses a non-parametric, two component mixture model to distinguish crosslink	https://bioconductor.org/packages/release/bi
(22)	mutations from noise. Uses a coverage-based algorithm, Mini-Rank Norm to	oc/html/wavClusteR.html
	identify peak boundaries.	
Piranha	Uses zero-truncated negative binomial distribution as the recommended	http://smithlabresearch.org/software/piranha/
(23)	setting. RNA-seq data, or information about covariates can be included in the	
	model.	
	Pros: Very fast. Can account for confounders or transcript abundance in peak	
	calling process	
	Cons: Does not support peak calling based on genomic region.	

ASPeak	Uses a negative binomial distribution. RNA-seq data can be supplied for	https://sourceforge.net/projects/as-peak/
(24)	normalisation.	
	Pros: Fast and can be parallelised. Local normalisation by genomic regions	
	together with RNA-seq.	
	Cons: For the single nucleotide resolution methods the data needs to be	
	preprocessed to set the right crosslinking positions.	
CLIP Tool	Defines the crosslink sites using CIMS and CITS analysis. Uses a	http://zhanglab.c2b2.columbia.edu/index.php
Kit	'valley-seeking' algorithm to delineate adjacent peaks	/СТК
(25, 26)		
MiCLIP	Uses a two-pass hidden Markov model first to identify enriched CLIP clusters	https://cran.r-project.org/src/contrib/Archive/
(27)	and second to identify reliable binding sites within the clusters.	MiClip/
PIPE-CLIP	Uses a zero-truncated negative binomial distribution.	https://github.com/QBRC/PIPE-CLIP
(28)		

	Pros: Applicable to readthrough, mutation and truncation methods. For	
	mutation methods, models events using a binomial distribution.	
	Cons: Clusters adjacent reads, rather than specifying a window	
PyCRAC	Identifies significantly enriched regions by calculating false discovery rates	http://sandergranneman.bio.ed.ac.uk/Granne
(29)		man_Lab/pyCRAC_software.html
CLIPper	Peak caller using false discovery rate with local randomisation followed by	https://github.com/YeoLab/clipper
(6, 30)	Poisson distribution count modelling.	
	Pros: Supports normalisation by genomic region and combines two methods	
	used in other tools.	
	Cons: Slow and needs annotation.	
OmniCLIP	In development. Uses a Bayesian model to account for confounding factors	https://github.com/philippdre/omniCLIP
(31)		
PureCLIP	Uses a hidden Markov model to incorporate RNA abundance and	https://github.com/skrakau/PureCLIP
(32)	non-specific sequence bias	

Supplemental Table 3: Tools for the analysis and visualisation of CLIP-derived binding sites

	Name	Description	Link
	MEMERIS	Adapts the MEME expectation maximisation	http://www.bioinf.uni-freiburg.de/~hiller/MEM
	(33)	motif finding algorithm by including the	ERIS/
		single-strandness of the region.	
	HOMER	Designed for ChIP-seq. Scores occurences of	http://homer.ucsd.edu/homer/
	(34)	motifs and uses a hypergeometric enrichment	
Motif finding		calculation	
	DREME	Designed for ChIP-seq. Uses an expectation	http://meme-suite.org/tools/dreme
	(35)	maximisation approach	
	cERMIT	Utilises quantitative data to rank regions then	https://ohlerlab.mdc-berlin.de/software/PAR-
	(36)	identifies enriched motifs.	CLIP_motif_analysis_tool_87/
	RNAcontext/	Trains a model that includes secondary structural	http://www.rnamotif.org/

RBPmotif	context to assess enrichment of a motif.	
Zagros	Includes sequence, pairing probability and	http://smithlabresearch.org/software/zagros/
(38)	crosslink events and learns these using	
	expectation maximisation	
RNAmotifs2	Compares motifs around regulated and control	https://github.com/grexor/rnamotifs2
(39, 40)	features. Uses a Fisher test and adjusts for the	
	false discovery rate	
<i>k</i> pLogo	Focuses on identifying position-specific short	http://kplogo.wi.mit.edu/
(41)	motifs based on enrichment	
ssHMM	Uses a hidden Markov model and Gibbs	https://github.molgen.mpg.de/heller/ssHMM
(42)	sampling to include the relationship between	
	sequence and structure.	
SMARTIV	Uses a <i>k</i> -mer based approach to extract	http://smartiv.technion.ac.il/
(43)	sequence and structure motifs from ranked	
	RBPmotif (37) Zagros (38) RNAmotifs2 (39, 40) <i>k</i> pLogo (41) ssHMM (42) SMARTIV (43)	RBPmotifcontext to assess enrichment of a motif.(37)Includes sequence, pairing probability and crosslink events and learns these using expectation maximisation(38)Crosslink events and learns these using expectation maximisationRNAmotifs2Compares motifs around regulated and control features. Uses a Fisher test and adjusts for the false discovery rate <i>k</i> pLogoFocuses on identifying position-specific short motifs based on enrichment(41)Uses a hidden Markov model and Gibbs sequence and structure.SMARTIVUses a <i>k</i> -mer based approach to extract sequence and structure motifs from ranked

		regions.	
	SARNAclust	An unsupervised method that uses graph kernels	https://github.com/idotu/SARNAclust
	(44)	to assess sequence and structure similarities and	
		identify the feature importance.	
	GraphProt	Encodes <i>k</i> -mer motifs and structural shapes as	http://www.bioinf.uni-freiburg.de/Software/Gr
	(45)	graph kernel features, including the	aphProt/
		interedependencies. Fits a model using Support	
		Vector Machine or regression depending on the	
		availability of affinity data.	
Binding site	iONMF	Uses matrix factorisation to integrate multiple	https://github.com/mstrazar/iONMF
modelling	(46)	factors in order to identify discriminative	
		non-overlapping, class-specific RNA binding	
		patterns of different strengths	
	Deepnet-rbp	Uses a deep learning framework (multimodal	https://github.com/thucombio/deepnet-rbp
	(47)	deep belief networks) to to encode sequence,	
		secondary structure and uniquely tertiary	

		structure predictions to generate RBP binding motifs and predictions	
	iDeep (48)/ iDeepS (49)	Uses a deep learning framework (convolutional neural networks). IDeep can only discover seqeunce preferences whereas IDeepS also	https://github.com/xypan1232/iDeep https://github.com/xypan1232/iDeepS
	DeBooster (50)	Identifies structural motifs. Uses a deep boosting machine learning approach to model sequence binding preferences.	https://github.com/dongfanghong/deepboost
Databases	DoRiNA 2.0 (51)	Includes RBP binding and miRNA target sites in a unified database. Includes 100 RBP datasets for human, 30 for M mouse and 6 for <i>C. elegans</i> . Integrated with the UCSC genome browser and allows the upload of the user's own data for queries. Does not re-process data.	http://dorina.mdc-berlin.de/
	CLIPdb2:	Includes both experimentally probed (498	http://lulab.life.tsinghua.edu.cn/postar/

	POSTAR	CLIP-seq and 151 eCLIP) and computationally	
	(52)	predicted binding sites. Includes systematic	
		re-annotation of regions. Different peak callers	
		used for different CLIP methods.	
Visualisation	iCount	A command-line tool to visualise metaprofiles	https://github.com/tomazc/iCount
	(11, 20)	(RNA maps) of crosslinking at splice sites, gene	http://icount.biolab.si
		boundaries, ncRNAs, and other features.	
	rMAPS	A web-server to produce RNA maps around	http://rmaps.cecsresearch.org/
	(53)	alternatively spliced exons	
	expressRNA	A web-server to examine RNA motifs and	http://www.expressrna.org/
	(40)	produce RNA maps	
	iCount	Apart from the peak caller, the iCount package	https://github.com/tomazc/iCount
Miscellaneous	(11, 20)	also includes tools to demultiplex and map	http://icount.biolab.si
analysis		sequence data to the genome to define cross-link	https://imaps.genialis.com (under
		sites, quantify cDNAs at these sites based on	development)
		UMIs, annotate the site, provide summary	

	statistics, identify enriched sequence motifs and	
	analyse motif distribution around crosslink sites,	
	and visualise metaprofiles (RNA maps) of	
	crosslinking at splice sites, gene boundaries,	
	ncRNAs, and other features.	
CLIP Tool Kit	Apart from the peak caller, the CLIP Tool Kit	http://zhanglab.c2b2.columbia.edu/index.php/
(25, 26)	provides a set of tools for analysis of CLIP data	СТК
	including pipelines to filter and map reads,	
	collapse PCR duplicates to obtain unique CLIP	
	tags, and define CLIP tag clusters.	
CapR	Calculates probabilities that an RNA base	https://github.com/fukunagatsu/CapR
(54)	position is located within secondary structural	
	context.	
dCLIP	dCLIP analyses differential binding regions in two	http://qbrc.swmed.edu/software/
(55)	CLIP experiments. As a hidden Markov model is	
	used to detect common or unique binding	

	regions, this is more appropriate for assessing	
	relative binding at a common site, rather than the	
	presence or absence of binding.	
PAR-CLIP HMM	Uses a Bayesian hidden Markov model to identify	https://qbrc.swmed.edu/softwares.php
(56)	PAR-CLIP mutation sites by establishing a joint	
	distribution of read and mutation counts.	
PyCRAC	A suite of Python scripts which can be used to	http://sandergranneman.bio.ed.ac.uk/Granne
(29)	analyze HITS-CLIP, PAR-CLIP or CRAC data	man_Lab/pyCRAC_software.html
	and many other types of data.	
BackCLIP	Identifies common non-specific background in	https://github.com/phrh/BackCLIP
(57)	PAR-CLIP data.	
iCLIPro	Can be used to control for systematic	http://www.biolab.si/iCLIPro/doc/
(58)	mis-assignments in iCLIP data by visualising	
	coinciding and non-coinciding fragment start sites	
	in order to examine the best way to analyze	
	iCLIP data.	

BMix	Uses a constrained three-component binomial	https://github.com/cbg-ethz/BMix
(59)	mixture model to identify high confidence	
	mutations in PAR-CLIP reads.	

Literature cited

- 1. Weyn-Vanhentenryck SM, Mele A, Yan Q, Sun S, Farny N, et al. 2014. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. *Cell Rep.* 6(6):1139–52
- Zhang C, Darnell RB. 2011. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. *Nat. Biotechnol.* 29(7):607–14
- Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. 2003. CLIP identifies Nova-regulated RNA networks in the brain. *Science*. 302(5648):1212–15
- 4. Yeo GW, Coufal NG, Liang TY, Peng GE, Fu X-D, Gage FH. 2009. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. *Nat. Struct. Mol. Biol.* 16(2):130–37
- 5. Granneman S, Kudla G, Petfalski E, Tollervey D. 2009. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. *Proc. Natl. Acad. Sci. U. S. A.* 106(24):9613–18
- 6. Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, et al. 2016. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). *Nat. Methods*. 13(6):508–14
- Flynn RA, Martin L, Spitale RC, Do BT, Sagan SM, et al. 2015. Dissecting noncoding and pathogen RNA-protein interactomes. *RNA*.
 21(1):135–43
- 8. Aktaş T, Avşar IIık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, et al. 2017. DHX9 suppresses RNA processing defects originating from

the Alu invasion of the human genome. Nature. 544(7648):115-19

- 9. Brugiolo M, Botti V, Liu N, Müller-McNicoll M, Neugebauer KM. 2017. Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. *Nucleic Acids Res.* doi: 10.1093/nar/gkx671
- 10. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, et al. 2008. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. *Nature*. 456(7221):464–69
- 11. König J, Zarnack K, Rot G, Curk T, Kayikci M, et al. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. *Nat. Struct. Mol. Biol.* 17(7):909–15
- 12. Wang Z, Kayikci M, Briese M, Zarnack K, Luscombe NM, et al. 2010. iCLIP predicts the dual splicing effects of TIA-RNA interactions. *PLoS Biol.* 8(10):e1000530
- 13. Zarnegar BJ, Flynn RA, Shen Y, Do BT, Chang HY, Khavari PA. 2016. irCLIP platform for efficient characterization of protein-RNA interactions. *Nat. Methods*. 13(6):489–92
- 14. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. *Cell*. 141(1):129–41
- 15. Haberman N, Huppertz I, Attig J, König J, Wang Z, et al. 2017. Insights into the design and interpretation of iCLIP experiments. *Genome Biol.* 18(1):7
- Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, et al. 2010. Genome-wide identification of polycomb-associated RNAs by RIP-seq. *Mol. Cell*. 40(6):939–53
- 17. Singh G, Ricci EP, Moore MJ. 2014. RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods. 65(3):320-32

- Nicholson CO, Friedersdorf MB, Bisogno LS, Keene JD. 2017. DO-RIP-seq to quantify RNA binding sites transcriptome-wide. *Methods*.
 118-119:16–23
- 19. Kargapolova Y, Levin M, Lackner K, Danckwardt S. 2017. sCLIP-an integrated platform to study RNA-protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. *Nucleic Acids Res.* 45(10):6074–86
- 20. Curk T, Rot G, Gorup C, Zmrzlikar J, König J, et al. 2017. iCount: protein-RNA interaction iCLIP data analysis. (in preparation)
- 21. Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, et al. 2011. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. *Genome Biol.* 12(8):R79
- 22. Sievers C, Schlumpf T, Sawarkar R, Comoglio F, Paro R. 2012. Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. *Nucleic Acids Res.* 40(20):e160
- 23. Uren PJ, Bahrami-Samani E, Burns SC, Qiao M, Karginov FV, et al. 2012. Site identification in high-throughput RNA-protein interaction data. *Bioinformatics*. 28(23):3013–20
- 24. Kucukural A, Özadam H, Singh G, Moore MJ, Cenik C. 2013. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq. *Bioinformatics*. 29(19):2485–86
- 25. Moore MJ, Zhang C, Gantman EC, Mele A, Darnell JC, Darnell RB. 2014. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. *Nat. Protoc.* 9(2):263–93
- 26. Shah A, Qian Y, Weyn-Vanhentenryck SM, Zhang C. 2017. CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. *Bioinformatics*. 33(4):566–67
- 27. Wang T, Chen B, Kim M, Xie Y, Xiao G. 2014. A model-based approach to identify binding sites in CLIP-Seq data. PLoS One. 9(4):e93248

- Chen B, Yun J, Kim MS, Mendell JT, Xie Y. 2014. PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. *Genome Biol.* 15(1):R18
- 29. Webb S, Hector RD, Kudla G, Granneman S. 2014. PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. *Genome Biol.* 15(1):R8
- 30. Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, et al. 2013. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. *Nat. Struct. Mol. Biol.* 20(12):1434–42
- Drewe-Boss P, Wessels H-H, Ohler U. 2017. omniCLIP: Bayesian identification of protein-RNA interactions from CLIP-Seq data. *bioRxiv*. doi: 10.1101/161877
- 32. Krakau S, Richard H, Marsico A. 2017. PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data. *Genome Biol.* 18(1):240
- 33. Hiller M, Pudimat R, Busch A, Backofen R. 2006. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. *Nucleic Acids Res.* 34(17):e117
- 34. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, et al. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell*. 38(4):576–89
- 35. Bailey TL. 2011. DREME: motif discovery in transcription factor ChIP-seq data. *Bioinformatics*. 27(12):1653–59
- 36. Georgiev S, Boyle AP, Jayasurya K, Ding X, Mukherjee S, Ohler U. 2010. Evidence-ranked motif identification. Genome Biol. 11(2):R19
- 37. Kazan H, Ray D, Chan ET, Hughes TR, Morris Q. 2010. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. *PLoS Comput. Biol.* 6:e1000832

- Bahrami-Samani E, Penalva LOF, Smith AD, Uren PJ. 2015. Leveraging cross-link modification events in CLIP-seq for motif discovery.
 Nucleic Acids Res. 43(1):95–103
- 39. Cereda M, Pozzoli U, Rot G, Juvan P, Schweitzer A, et al. 2014. RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. *Genome Biol.* 15(1):R20
- 40. Rot G, Wang Z, Huppertz I, Modic M, Lenče T, et al. 2017. High-Resolution RNA Maps Suggest Common Principles of Splicing and Polyadenylation Regulation by TDP-43. *Cell Rep.* 19(5):1056–67
- 41. Wu X, Bartel DP. 2017. kpLogo: positional k-mer analysis reveals hidden specificity in biological sequences. Nucleic Acids Res.
- 42. Heller D, Krestel R, Ohler U, Vingron M, Marsico A. 2017. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data. *Nucleic Acids Res.*
- 43. Polishchuk M, Paz I, Kohen R, Mesika R, Yakhini Z, Mandel-Gutfreund Y. 2017. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data. *Methods*. 118-119:73–81
- 44. Dotu I, Adamson SI, Coleman B, Fournier C, Ricart-Altimiras E, et al. 2018. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data. *PLoS Comput. Biol.* 14(3):e1006078
- Maticzka D, Lange SJ, Costa F, Backofen R. 2014. GraphProt: modeling binding preferences of RNA-binding proteins. *Genome Biol.* 15(1):R17
- 46. Stražar M, Žitnik M, Zupan B, Ule J, Curk T. 2016. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. *Bioinformatics*. 32(10):1527–35
- 47. Zhang S, Zhou J, Hu H, Gong H, Chen L, et al. 2016. A deep learning framework for modeling structural features of RNA-binding protein

targets. Nucleic Acids Res. 44(4):e32

- 48. Pan X, Shen H-B. 2017. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. *BMC Bioinformatics*. 18(1):136
- 49. Pan X, Rijnbeek P, Yan J, Shen H-B. 2017. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. *bioRxiv*. doi: 10.1101/146175
- 50. Li S, Dong F, Wu Y, Zhang S, Zhang C, et al. 2017. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. *Nucleic Acids Res.*
- 51. Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A. 2015. DoRiNA 2.0--upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. *Nucleic Acids Res.* 43(Database issue):D160–67
- 52. Hu B, Yang Y-CT, Huang Y, Zhu Y, Lu ZJ. 2017. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. *Nucleic Acids Res.* 45(D1):D104–14
- 53. Park JW, Jung S, Rouchka EC, Tseng Y-T, Xing Y. 2016. rMAPS: RNA map analysis and plotting server for alternative exon regulation. *Nucleic Acids Res.* 44(W1):W333–38
- 54. Fukunaga T, Ozaki H, Terai G, Asai K, Iwasaki W, Kiryu H. 2014. CapR: revealing structural specificities of RNA-binding protein target recognition using CLIP-seq data. *Genome Biol.* 15(1):R16
- 55. Wang T, Xie Y, Xiao G. 2014. dCLIP: a computational approach for comparative CLIP-seq analyses. *Genome Biol.* 15(1):R11
- 56. Yun J, Wang T, Xiao G. 2014. Bayesian hidden Markov models to identify RNA-protein interaction sites in PAR-CLIP. *Biometrics*. 70(2):430–40

- 57. Reyes-Herrera PH, Speck-Hernandez CA, Sierra CA, Herrera S. 2015. BackCLIP: a tool to identify common background presence in PAR-CLIP datasets. *Bioinformatics*. 31(22):3703–5
- 58. Hauer C, Curk T, Anders S, Schwarzl T, Alleaume A-M, et al. 2015. Improved binding site assignment by high-resolution mapping of RNA-protein interactions using iCLIP. *Nat. Commun.* 6:7921
- 59. Golumbeanu M, Mohammadi P, Beerenwinkel N. 2016. BMix: probabilistic modeling of occurring substitutions in PAR-CLIP data. *Bioinformatics*. 32(7):976–83