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Supplemental Table 1: Methods for the identification of RNA binding sites of RBPs 

CLIP methods are listed detailing how the reads are used to identify binding sites. 

Supplemental Table 2: Peak calling tools 

Peak calling tools are ordered by date of publication to reflect development in methodologies and technologies. A brief description and web link is 

given. 

Supplemental Table 3: Tools for the analysis and visualisation of CLIP derived binding sites 

Other tools relevant for CLIP data analysis are categorised into: i) motif finding, ii) binding site modelling, iii) databases, iv) visualisation and v) 
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Supplemental Table 1: Methods for the identification of RNA binding sites of RBPs  

 

Acronym Full Name Citation Analysis based on  

BrdU CLIP Bromodeoxyuridine UV CLIP (1) read start 

CIMS Crosslink-induced mutation site analysis (2) deletions in read 

CLIP (UV) Crosslinking and immunoprecipitation (3) full read 

CLIP-seq Crosslinking immunoprecipitation coupled with high-throughput sequencing (4) full read 

CRAC UV cross-linking and analysis of cDNAs (5) full read 

eCLIP Enhanced CLIP (6) read start 

FAST-iCLIP Fully automated and standardized iCLIP (7) read start 

FLASH Fast ligation of RNA after some sort of affinity purification for high-throughput sequencing (8) read start 

Fr-iCLIP Fractionation iCLIP (9) read start 

HITS-CLIP High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (10) full read 

https://paperpile.com/c/Ao8mWr/Gj8ma
https://paperpile.com/c/Ao8mWr/4qXdA
https://paperpile.com/c/Ao8mWr/ll3WA
https://paperpile.com/c/Ao8mWr/XwJnD
https://paperpile.com/c/Ao8mWr/UnxQT
https://paperpile.com/c/Ao8mWr/mXhqe
https://paperpile.com/c/Ao8mWr/jxRqV
https://paperpile.com/c/Ao8mWr/sQiT0
https://paperpile.com/c/Ao8mWr/DU1kt
https://paperpile.com/c/Ao8mWr/O3XcA


iCLIP Individual-nucleotide resolution CLIP (11) read start 

iCLAP Individual-nucleotide resolution crosslinking and affinity purification (12) read start 

irCLIP Infrared-CLIP (13) read start 

PAR-CLIP Photoactivatable ribonucleoside-enhanced CLIP (14) transitions in read 

4SU-iCLIP 4SU-enhanced iCLIP (15) read start 

RIP-seq RNP (or RNA) immunoprecipitation followed by sequencing (16) full read 

RIP-iT-seq RNA:protein immunoprecipitation in tandem coupled to high-throughput sequencing (17) full read 

DO-RIP-seq Digestion optimised RNA immunoprecipitation with deep sequencing (18) full read 

sCLIP Simplified CLIP (19) read start 

uvCLAP UV crosslinking and affinity purification (8) read start 

 

  

https://paperpile.com/c/Ao8mWr/pTUV1
https://paperpile.com/c/Ao8mWr/Q8JAJ
https://paperpile.com/c/Ao8mWr/tCexL
https://paperpile.com/c/Ao8mWr/FtCWt
https://paperpile.com/c/Ao8mWr/RxddR
https://paperpile.com/c/Ao8mWr/eAzxi
https://www.ncbi.nlm.nih.gov/pubmed/24096052
https://paperpile.com/c/Ao8mWr/t9pyu
https://www.ncbi.nlm.nih.gov/pubmed/27840290
https://paperpile.com/c/Ao8mWr/ORHsF
https://paperpile.com/c/Ao8mWr/2pruH
https://paperpile.com/c/Ao8mWr/sQiT0


Supplemental Table 2: Peak calling tools 

 

Name Description Link 

iCount 

(11, 20) 

 

 

 

 

 

 

 

 

 

 

iCount package includes a peak caller for nucleotide-resolution methods 

using false discovery rate with local randomisation. It allows adjustments of 

three variables: 1. Randomisation within local regions (intergenic, UTR3, 

UTR5, ncRNA, intron, CDS) or within whole genes, 2. The length of the 

flanking region around each position to define cluster of significantly 

crosslinked sites. 3. The length of window used to combine proximal crosslink 

clusters. 

 

Pros: The method exploits the nucleotide resolution of truncated cDNAs, and 

its enables to search for cluster of a broad size range (variable flank and 

window regions, as explained in the text). 

Cons: Normalisation by RNA-seq or other control data is not yet implemented. 

It can be slow because of the randomisation step. 

https://github.com/tomazc/iCount 

http://icount.biolab.si 

https://imaps.genialis.com (under 

development) 

https://paperpile.com/c/Ao8mWr/pTUV1+p1pQN
https://github.com/tomazc/iCount
http://icount.biolab.si/


PARalyzer 

(21) 

 

 

 

For PAR-CLIP only. Uses a kernel density estimator to profile mutations and 

background. Compares the difference to call binding sites. 

 

Pros: Widely used tool for PAR-CLIP analysis 

Cons: Valid mutations selected by a threshold rather than modelling 

http://www.genome.duke.edu/labs/ohler/rese

arch/PARalyzer/. 

wavClusteR 

(22) 

 

 

Uses a non-parametric, two component mixture model to distinguish crosslink 

mutations from noise. Uses a coverage-based algorithm, Mini-Rank Norm to 

identify peak boundaries. 

https://bioconductor.org/packages/release/bi

oc/html/wavClusteR.html 

Piranha 

(23) 

 

 

 

 

Uses zero-truncated negative binomial distribution as the recommended 

setting. RNA-seq data, or information about covariates can be included in the 

model. 

 

Pros: Very fast. Can account for confounders or transcript abundance in peak 

calling process 

Cons: Does not support peak calling based on genomic region. 

http://smithlabresearch.org/software/piranha/ 

https://paperpile.com/c/Ao8mWr/GaQaL
https://paperpile.com/c/Ao8mWr/2vdO8
https://paperpile.com/c/Ao8mWr/KL6rQ


ASPeak 

(24) 

Uses a negative binomial distribution. RNA-seq data can be supplied for 

normalisation. 

 

Pros: Fast and can be parallelised. Local normalisation by genomic regions 

together with RNA-seq. 

Cons: For the single nucleotide resolution methods the data needs to be 

preprocessed to set the right crosslinking positions. 

https://sourceforge.net/projects/as-peak/ 

CLIP Tool 

Kit 

(25, 26) 

 

Defines the crosslink sites using CIMS and CITS analysis. Uses a 

‘valley-seeking’ algorithm to delineate adjacent peaks 

http://zhanglab.c2b2.columbia.edu/index.php

/CTK 

MiCLIP 

(27) 

 

Uses a two-pass hidden Markov model first to identify enriched CLIP clusters 

and second to identify reliable binding sites within the clusters. 

https://cran.r-project.org/src/contrib/Archive/

MiClip/ 

PIPE-CLIP 

(28) 

Uses a zero-truncated negative binomial distribution. 

 

https://github.com/QBRC/PIPE-CLIP  

https://paperpile.com/c/Ao8mWr/PuoVv
https://paperpile.com/c/Ao8mWr/zippT+KVD4L
https://paperpile.com/c/Ao8mWr/X4z4A
https://paperpile.com/c/Ao8mWr/jPjLa


Pros: Applicable to readthrough, mutation and truncation methods. For 

mutation methods, models events using a binomial distribution. 

Cons: Clusters adjacent reads, rather than specifying a window 

PyCRAC 

(29) 

Identifies significantly enriched regions by calculating false discovery rates http://sandergranneman.bio.ed.ac.uk/Granne

man_Lab/pyCRAC_software.html  

CLIPper 

(6, 30) 

Peak caller using false discovery rate with local randomisation followed by 

Poisson distribution count modelling.  

 

Pros: Supports normalisation by genomic region and combines two methods 

used in other tools. 

Cons: Slow and needs annotation. 

https://github.com/YeoLab/clipper 

OmniCLIP 

(31) 

In development. Uses a Bayesian model to account for confounding factors https://github.com/philippdre/omniCLIP 

PureCLIP 

(32) 

Uses a hidden Markov model to incorporate RNA abundance and 

non-specific sequence bias 

https://github.com/skrakau/PureCLIP 

 

https://paperpile.com/c/Ao8mWr/qh5wg
http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/pyCRAC_software.html
http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/pyCRAC_software.html
https://paperpile.com/c/Ao8mWr/mXhqe+jtuNp
https://paperpile.com/c/Ao8mWr/UFZc0
https://paperpile.com/c/Ao8mWr/xylI


Supplemental Table 3: Tools for the analysis and visualisation of CLIP-derived binding sites 

 

 Name Description Link 

Motif finding 

MEMERIS 

(33) 

Adapts the MEME expectation maximisation 

motif finding algorithm by including the 

single-strandness of the region. 

http://www.bioinf.uni-freiburg.de/~hiller/MEM

ERIS/ 

HOMER 

(34) 

Designed for ChIP-seq. Scores occurences of 

motifs and uses a hypergeometric enrichment 

calculation 

http://homer.ucsd.edu/homer/ 

DREME 

(35) 

Designed for ChIP-seq. Uses an expectation 

maximisation approach 

http://meme-suite.org/tools/dreme 

cERMIT 

(36) 

Utilises quantitative data to rank regions then 

identifies enriched motifs. 

https://ohlerlab.mdc-berlin.de/software/PAR-

CLIP_motif_analysis_tool_87/ 

RNAcontext/ Trains a model that includes secondary structural http://www.rnamotif.org/ 

https://paperpile.com/c/Ao8mWr/D5AL4
https://paperpile.com/c/Ao8mWr/v4FYP
https://paperpile.com/c/Ao8mWr/vJTbv
https://paperpile.com/c/Ao8mWr/Hx14L


RBPmotif 

(37) 

context to assess enrichment of a motif.  

 

Zagros 

(38) 

Includes sequence, pairing probability and 

crosslink events and learns these using 

expectation maximisation 

http://smithlabresearch.org/software/zagros/ 

RNAmotifs2 

(39, 40) 

Compares motifs around regulated and control 

features. Uses a Fisher test and adjusts for the 

false discovery rate 

https://github.com/grexor/rnamotifs2 

kpLogo 

(41) 

Focuses on identifying position-specific short 

motifs based on enrichment 

http://kplogo.wi.mit.edu/ 

ssHMM 

(42) 

Uses a hidden Markov model and Gibbs 

sampling to include the relationship between 

sequence and structure. 

https://github.molgen.mpg.de/heller/ssHMM 

SMARTIV 

(43) 

Uses a k-mer based approach to extract 

sequence and structure motifs from ranked 

http://smartiv.technion.ac.il/ 

https://paperpile.com/c/Ao8mWr/0Rk2e
https://paperpile.com/c/Ao8mWr/ewkM8
https://paperpile.com/c/Ao8mWr/IjBlV+UrRhx
https://paperpile.com/c/Ao8mWr/lVjEh
https://paperpile.com/c/Ao8mWr/TLERb
https://paperpile.com/c/Ao8mWr/2xI3P


regions. 

SARNAclust 

(44) 

An unsupervised method that uses graph kernels 

to assess sequence and structure similarities and 

identify the feature importance. 

https://github.com/idotu/SARNAclust 

Binding site 

modelling 

GraphProt 

(45) 

Encodes k-mer motifs and structural shapes as 

graph kernel features, including the 

interedependencies. Fits a model using Support 

Vector Machine or regression depending on the 

availability of affinity data. 

http://www.bioinf.uni-freiburg.de/Software/Gr

aphProt/ 

iONMF 

(46) 

Uses matrix factorisation to integrate multiple 

factors in order to identify discriminative 

non-overlapping, class-specific RNA binding 

patterns of different strengths 

https://github.com/mstrazar/iONMF 

Deepnet-rbp 

(47) 

Uses a deep learning framework (multimodal 

deep belief networks) to to encode sequence, 

secondary structure and uniquely tertiary 

https://github.com/thucombio/deepnet-rbp 

https://paperpile.com/c/Ao8mWr/ZyFy
https://paperpile.com/c/Ao8mWr/jW6Ez
https://paperpile.com/c/Ao8mWr/hzAq3
https://paperpile.com/c/Ao8mWr/ayQVw


structure predictions to generate RBP binding 

motifs and predictions 

iDeep (48)/ 

iDeepS (49)  

Uses a deep learning framework (convolutional 

neural networks). IDeep can only discover 

seqeunce preferences whereas IDeepS also 

identifies structural motifs. 

https://github.com/xypan1232/iDeep 

https://github.com/xypan1232/iDeepS 

DeBooster 

(50) 

Uses a deep boosting machine learning 

approach to model sequence binding 

preferences. 

https://github.com/dongfanghong/deepboost 

Databases DoRiNA 2.0 

(51) 

 

Includes RBP binding and miRNA target sites in 

a unified database. Includes 100 RBP datasets 

for human, 30 for M mouse and 6 for C. elegans. 

Integrated with the UCSC genome browser and 

allows the upload of the user’s own data for 

queries. Does not re-process data. 

http://dorina.mdc-berlin.de/ 

CLIPdb2: Includes both experimentally probed (498 http://lulab.life.tsinghua.edu.cn/postar/ 

https://paperpile.com/c/Ao8mWr/ThXmj
https://paperpile.com/c/Ao8mWr/qit6X
https://paperpile.com/c/Ao8mWr/vONKS
https://paperpile.com/c/Ao8mWr/yr4qc


POSTAR 

(52) 

CLIP-seq and 151 eCLIP) and computationally 

predicted binding sites. Includes systematic 

re-annotation of regions. Different peak callers 

used for different CLIP methods. 

Visualisation iCount 

(11, 20) 

A command-line tool to visualise metaprofiles 

(RNA maps) of crosslinking at splice sites, gene 

boundaries, ncRNAs, and other features. 

https://github.com/tomazc/iCount 

http://icount.biolab.si 

rMAPS 

(53) 

A web-server to produce RNA maps around 

alternatively spliced exons 

http://rmaps.cecsresearch.org/ 

expressRNA 

(40) 

A web-server to examine RNA motifs and 

produce RNA maps 

http://www.expressrna.org/ 

 

Miscellaneous 

analysis 

iCount 

(11, 20) 

Apart from the peak caller, the iCount package 

also includes tools to demultiplex and map 

sequence data to the genome to define cross-link 

sites, quantify cDNAs at these sites based on 

UMIs, annotate the site, provide summary 

https://github.com/tomazc/iCount 

http://icount.biolab.si 

https://imaps.genialis.com (under 

development) 

https://paperpile.com/c/Ao8mWr/BGZnj
https://paperpile.com/c/Ao8mWr/pTUV1+p1pQN
https://github.com/tomazc/iCount
http://icount.biolab.si/
https://paperpile.com/c/Ao8mWr/1dY48
https://paperpile.com/c/Ao8mWr/UrRhx
https://paperpile.com/c/Ao8mWr/pTUV1+p1pQN
https://github.com/tomazc/iCount
http://icount.biolab.si/


statistics, identify enriched sequence motifs and 

analyse motif distribution around crosslink sites, 

and visualise metaprofiles (RNA maps) of 

crosslinking at splice sites, gene boundaries, 

ncRNAs, and other features. 

CLIP Tool Kit 

(25, 26) 

Apart from the peak caller, the CLIP Tool Kit 

provides a set of tools for analysis of CLIP data 

including pipelines to filter and map reads, 

collapse PCR duplicates to obtain unique CLIP 

tags, and define CLIP tag clusters. 

http://zhanglab.c2b2.columbia.edu/index.php/

CTK 

CapR 

(54) 

Calculates probabilities that an RNA base 

position is located within secondary structural 

context.  

https://github.com/fukunagatsu/CapR 

dCLIP 

(55) 

dCLIP analyses differential binding regions in two 

CLIP experiments. As a hidden Markov model is 

used to detect common or unique binding 

http://qbrc.swmed.edu/software/ 

https://paperpile.com/c/Ao8mWr/zippT+KVD4L
https://paperpile.com/c/Ao8mWr/ggNPa
https://paperpile.com/c/Ao8mWr/FPu3p


regions, this is more appropriate for assessing 

relative binding at a common site, rather than the 

presence or absence of binding. 

PAR-CLIP HMM 

(56) 

Uses a Bayesian hidden Markov model to identify 

PAR-CLIP mutation sites by establishing a joint 

distribution of read and mutation counts. 

https://qbrc.swmed.edu/softwares.php 

PyCRAC 

(29) 

A suite of Python scripts which can be used to 

analyze HITS-CLIP, PAR-CLIP or CRAC data 

and many other types of data. 

http://sandergranneman.bio.ed.ac.uk/Granne

man_Lab/pyCRAC_software.html  

BackCLIP 

(57) 

Identifies common non-specific background in 

PAR-CLIP data.  

https://github.com/phrh/BackCLIP 

iCLIPro 

(58) 

Can be used to control for systematic 

mis-assignments in iCLIP data by visualising 

coinciding and non-coinciding fragment start sites 

in order to examine the best way to analyze 

iCLIP data. 

http://www.biolab.si/iCLIPro/doc/ 

https://paperpile.com/c/Ao8mWr/rqcpL
https://paperpile.com/c/Ao8mWr/qh5wg
http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/pyCRAC_software.html
http://sandergranneman.bio.ed.ac.uk/Granneman_Lab/pyCRAC_software.html
https://paperpile.com/c/Ao8mWr/OIDr7
https://paperpile.com/c/Ao8mWr/iW6Jp


BMix 

(59) 

Uses a constrained three-component binomial 

mixture model to identify high confidence 

mutations in PAR-CLIP reads. 

https://github.com/cbg-ethz/BMix 

 

 

  

https://paperpile.com/c/Ao8mWr/LTjB2
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