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APPENDIX: LOCAL INTEGRATED INFORMATION

A natural way to extend IIT 2.0 for complex systems analy-
sis is to consider local versions of 8, which can be built via the
framework introduced by Lizier.32 Local (or pointwise) information
measures are able to identify coherent, emergent structures known
as particles, which have been shown to be the basis of the distributed
information processing that takes place in systems such as cellular
automata.31,33,34

One of the most basic pointwise information metrics is the local
mutual information, which is defined as

i(x; y) := log
p(x, y)

p(x)p(y)
(A1)

so that E[i(X; Y)] = I(X; Y) is the usual mutual information. By
evaluating i on every x, y pair, one can determine which particular
combinations of symbols play a predominant role for the observed
interdependency between X and Y. (More specifically, the local
mutual information captures specific deviations between the joint
distribution and the product of the marginals.) Building on these
ideas, Lizier proposed a taxonomy of distributed information pro-
cessing as composed of storage, transfer, and modification.31 For
this, consider a bivariate stochastic process (Xt, Yt) with t ∈ Z and

introduce the shorthand notation X(k)
t = (Xt−k, . . . , Xt) and X(k+)

t

= (Xt, . . . , Xt+k−1) for the corresponding past and future embedding
vectors of length k. In this context, storage within the subprocess Xt

is identified with its excess entropy Ek = I(X(k)
t ; X(k+)

t+1 )71 and transfer

from Yt to Xt+1 with the transfer entropy TEk = I(Xt+1; X
(k)
t |Y(k)

t ).72

Interestingly, both quantities have corresponding local versions,

ek(xt) := log
p(x(k)

t , x(k+)
t+1 )

p(x(k)
t )p(x(k+)

t+1 )
, (A2)

tk(yt → xt) := log
p(xt+1|x

(k)
t , y(k)

t )

p(xt+1|x
(k)
t )

(A3)

such that, as expected, E[ek] = Ek and E[tk] = TEk. Note that to
measure transfer in either direction for the results in Fig. 9, we
compute the local TE from a cell to its left and right neighbors and
take the maximum of the two.

These ideas can be used to extend the standard formulation
of integrated information measures in two ways. First, by using
embedding vectors, the IIT metrics are applicable to non-Markovian

systems.73 Second, by formulating pointwise measures, one can cap-
ture spatiotemporal variations in 8. Mathematically, we reformulate
Eq. (2) introducing these modifications as

ϕk[X; τ ,B] = I(X(k)
t−τ ; Xt) −

2
∑

j=1

I(M
j,(k)
t−τ ; M

j
t) (A4)

and apply the same partition scheme described in Sec. II A to obtain
an “embedded” integrated information, 8k. Then, the equation
above can be readily made into a local measure by replacing mutual
information with its local counterpart,

φk[xt; τ ,B] = i(x(k)
t−τ ; xt) −

2
∑

j=1

i(m
j,(k)
t−τ ; m

j
t) (A5)

such that, as expected, ϕk[X; τ ,B] = E [φk[xt; τ ,B]].
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